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ABSTRACT
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by Arioli and Baldini (2001), where an iterative-direct hybrid method is described. In
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point operations. Moreover, we extensively take advantage of the graph properties to
build efficient preconditioners for the iterative algorithm. Finally, we present the results
of several numerical tests.

Keywords: Augmented systems, sparse matrices, mixed finite elements.

AMS(MOS) subject classifications: 65F05, 65F50.

Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory pub/reports.

L M.Arioli@rl.ac.uk, Rutherford Appleton Laboratory,

2 Gianmarco.Manzini@ian.pv.cnr.it, IAN - CNR, via Ferrata 1, 27100 Pavia, Italy

The work of the first author was supported in part by EPSRC grant GR/R46441/01. The work of second
author was supported by EPSRC grant GR/R46427/01.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

September 25, 2001



Contents

1

2

Introduction

The analytical problem and its approximation
2.1 Darcy’sLaw . . . . . . o o e e e e
2.2 Mixed finite-element method for Darcy’slaw . . . . .. . ... ... ... ...,

Null Space Algorithms
Graph and Network properties

Preconditioning and quotient tree
5.1 Data structures and separators . . . . . . . . .. ..o o e
5.2 Preconditioners . . . . . . . . . .. L e e e e e e e e

Numerical experiments

6.1 Test problems . . . . . . . . L. e e e
6.2 Practicalities . . . . . . . .. L e e e e e e e
6.3 Numerical results . . . . . . . . . . . e e

Conclusions

12
14
22

22
22
23
24

26



1 Introduction

The approximation of Darcy’s Laws by Mixed Finite-Element techniques produces a finite-
dimensional version of the continuous problem which is described by an augmented system.
In this paper, we present an analysis of a Null Space method which uses a mixture of direct
and iterative solvers applied to the solution of this special augmented system. The properties
of this method, in the general case, have been studied by Arioli and Baldini (2001) where
its backward stability is proved, when using finite-precision arithmetic, and where a review
of the bibliography on the topic is also presented. Here, we will take advantage of network
programming techniques for the design of a fast algorithm for the direct solver part and for
the building of effective preconditioners. The relationship between the graph properties of the
mesh and the augmented system has been pointed out by Alotto and Perugia (1999). Several
authors used similar data structures and network techniques in a rather different context or
for different purposes. Albanese and Rubinacci (1988), Bir6, Preis, Vrisk, Richter and Ticar
(1993), and Kettunen, Forsman and Bossavit (1999) have suggested similar techniques in the
area of computational electro-magnetics for gauging vector potential formulations. In the field
of computational fluid dynamics, analogous methods have been applied to the finite-difference
method for the solution of Navier-Stokes equations by Amit, Hall and Porsching (1981) and
Hall (1985). Finally, Arioli, Maryska, Rozloznik and Ttima (2001a) studied a similar approach
in the approximation of a 3-D Darcy’s Law by Hybrid Finite-Element techniques.

In Section 2, we will briefly summarize the approximation process and describe the basic
properties of the linear system and of the augmented matrix.

In Section 3, the Null Space algorithm and its algebraic properties are presented . The
direct solver is based on the LU factorization of the submatrix of the augmented system which
approximates the divergence operator div. We will see in Section 4, how the basic structures
of the matrices involved are described in terms of graph theory and how the LU decomposition
can be performed by Network Programming classical algorithms. In particular, we will use
“Shortest Path Tree” algorithms to achieve a reliable fast decomposition. Furthermore, the
same graph properties allow us to describe the block structure of the projected Hessian matrix
on which we will apply the conjugate gradient algorithm. This will be used in Section 5 to
develop effective preconditioners.

Finally, in Section 6, we show the results of the numerical tests that we conducted on selected
experiments, and in Section 7 we give our conclusions.

In the following, we will denote by E; € R™*™ and Es € R (n—m) (m < n) the matrices

I, Om,nfm

E, = ,and  Fy=

On—m,m In—m

Given a n x m matrix B of entries B;; and a n-vector v of entries v;, we will denote by |B|
and |v| the matrix and the vector whose entries are the absolute values of the entries of B and
v.

Finally, we assume that the computer arithmetic satisfies the standard model (Higham
1996):

fl(eDB) = (a0B)(1 +6(0, 0, 8)) 5 |6(0, e, B)] <,



where fI(-) denotes the result of a floating-point computation, « and S are floating-point num-
bers, ¢ is the rounding unit and O is one of + — /.

2 The analytical problem and its approximation

2.1 Darcy’s Law

Let us indicate with  the spatial domain of computation, where the equations are defined.
Mathematically, 2 is a simply connected bounded polygonal domain in R? (in 2-D), defined by a
closed (1-D) surface I'. T is usually the union of two parts I'p and I'y, where different boundary
conditions are imposed, of Dirichlet and Neumann type respectively: I' = I'p UT'ny. The
relationship between the pressure p (the total head) and the velocity field v (the visible effect)
in ground-water flow can be expressed as a system of Darcy-type partial differential equations.
Under the assumption that the soil matrix is incompressible (soil matrix characteristics - density,
texture, specific storage, ...- are not functions of time, space, and pressure itself, as occurs in
deformable porous media in which stress, strain, and fluids are strongly coupled), the saturated
flow equations are given as:

v(x) = —Xgrad p(x), z € Q (1)
divv(x) = f(z), z€Q (2)

In equations (1)-(2) X is the hydraulic conductivity tensor and f(z) is a source-sink term.
Equation (1) relates the vector field v to the scalar field p via the permeability tensor, which
accounts for the soil characteristics. Equation (2) relates the divergence of v to the source-sink
term f(z). These equations are supplemented with a set of boundary conditions for both v and

p:

p(x)lr, = gponTp (3)
v-nlr, = gyvonly (4)

using two regular functions gp and gy for Dirichlet and Neumann conditions, and where n
denotes the external normal to I'. In the following, we assume that gy = 0.

2.2 Mixed finite-element method for Darcy’s law

The coupled system of equations (1)-(2) in the hydrostatic pressure p and the velocity field v
has been approximated by a mixed finite-element approach. In this section, we shortly review
some basic ideas underlying the numerical method, referring to the literature for a detailed
exposition.

A weak formulation is formally obtained in a standard way by multiplying equation (1) by
the test functions

2 2. 2
weV={q|qe (L (Q)) ,divg € L*(Q),q - n|r, =0},

and equation (2) by ¢ € L%(Q) and integrating by parts over the domain of computation. We
refer to Brezzi and Fortin (1991) for the definition and the properties of the functional space V.
The mixed weak formulation of the problem is:



find v € V and p € L?(2) such that

/fK*lv-wdx —/pdivwdx = — gpwW - nds Yw eV,
Q Q T'p

/(divv)qf)dx :/ fx)pdx Ve LXQ).
Q Q

The discrete counterpart of (5) can be introduced as follows.

Let Ty be a family of triangulations of €, i.e. each Ty is a set of disjoint triangles {T'} which
covers {2 in such a way that no vertex of any triangle lies in the interior of an edge of another
triangle. Let h = %nez}:); diam(T'), we assume that Ty is regular in the sense of Ciarlet (1978, page

132), i.e. triangles do not degenerate as h — 0. Moreover, we assume that no triangle has a
vertex on ['p and any other vertex on I'y, and that each triangle cannot have more than one
edge lying on T'.

Consider then the spaces

VIJ:{W(X) Q= R?, w(x)|r = ax+2, « € RVT € T, w-nfpy :0}’

and
Qp = {¢(x) : @ = R, ¢(x)|7 = const, VT € T} .

The space Vj is the usual Raviart-Thomas space (we refer to Brezzi and Fortin, 1991 for a
detailed analysis), and Vj, and @y are respectively dense in V and L?($2). We will now describe
the usual mixed finite-element basis for V},. Let {e;} j=1,..n, be the set of the edges of T} where
we exclude the edges lying on I'y. For each T' € %y, we have the corresponding three edges
{e1,e2,e3} and their external normals {ne, , ne,, ne, }. We define the function w,; € V4 on T by
the relations (Brezzi and Fortin 1991):

1, i=3j
We; " De; ds = (6)
0, i#j

Thus, we have N, degrees of freedom, which can be interpreted as the 0"*-order momentum of
the normal component of v.

The set of basis functions {¢;} j=1,ny for Qy is composed of functions such that ¢; =1 on
Tj and ¢; = 0 on 2\ T; and the number of degrees of freedom N7 is equal to the number of
triangles which give the mesh.

The approximation of (5) results from substituting v and p by the expressions for v, and

py as linear combination of the basis function {wej} and of {¢;}:

NT Ne
Py =Y pidi, vy =D ujwe,
i—1 j=1

where v = {u;} and p = {p;} are the discrete unknown vectors associated with the velocity and
the pressure respectively.



Therefore, the approximated version of the system (5) is equivalent to the following system
of linear equations:

M A U —q
AT 0 p b

where M, A, q, and b are defined as follows

= -1 “We, dX
(M)ese, = [ K we, - wedx, 0
ey = = [ divweg;dx. ©)
@ = [ gowe-nds (10)
O = - [ f@sax. (1)

Let e; be an internal edge, i.e. e;NT # e;, and T, C Q and T, C Q are the two triangles having
e; in common. First of all, we observe that supp(w,,) = T, UT,.. Then, it is straightforward
to prove that the maximum number of nonzero entries in row e; of M is 5 and these entries
correspond to the edges which are identified by T, and T,, and do not lie on I'y. Analogously,
the nonzero entries in row e; of A can only correspond to the triangles T, and T,.. If e; C I'p,
we have only “one” triangle T, C  having e; as an edge. Therefore, row e; of A has only one
nonzero entry which is the one relative to Ty , and the row M,,, has only three nonzero entries
corresponding to the three edges of Téi. Furthermore, we have that the pattern of M is equal to
the pattern of |A||A|”, because the nonzero entries in row M,,, only match the nonzero entries
of the edges of the triangles T, and T,.

Finally, we can fix the direction of the normal vector n., for each e; in the mesh, without
loss of generality: the direction of the flux through the edge will be determined by sign (u;).

Consequently, we have from (6) and (9), applying the Gauss theorem, that the nonzero
entries of A are equal to 1, and, if e; NT'p # e;, Ae;77 + Ae;rv = 0. Therefore, augmenting A
with a vector r having nonzero entries only for the indices e; C FlD and such that ¢, +A€iTei =0,
we obtain the incidence matrix A’ of an edge-triangle graph. The matrix A’ is then “totally
unimodular3” and has rank N7 (Murthy 1992). Moreover, because every submatrix obtained
removing a column of A’ has full rank (Murthy 1992, page 38), A has rank Ny.

3 Null Space Algorithms

To simplify the notation, let us denote N, by n and Ny by m. The matrix M € R™" is a
symmetric and positive semidefinite matrix, and A € R™*™ is a real full rank matrix. The
augmented system (7) has a unique solution because one can show that Ker(AT) N Ker(M) =
{0}, (Brezzi and Fortin 1991).

In this section, we take into account the Null Space classical algorithm, which is described by
Gill, Murray and Wright (1981), for the minimization of linearly constrained quadratic forms.

3A real matrix is totally unimodular if the determinant of every square submatrix of it is either 0, or 1.



We choose a formulation of this algorithm which is based on the factorization of the aug-
mented matrix.

In Section 2, we already stated that A is a full rank submatrix of a totally unimodular
matrix of order n x (m + 1), and its entries are either £1 or 0.

As a consequence of these properties, the LU factorization of A is obtainable without
floating-point operations, through the permutation matrices P and Q:

Ll L1 0
PAQ = = LE, = E,. (12)
Lo Ly 1

with L; a nonsingular lower triangular matrix. In Section 4, we will see how it is possible to
compute P and @) using network programming algorithms. Moreover, without loss of generality,
we can assume that all the diagonal entries in L; are equal to one and the entries outside the
diagonal are zero or —1. This corresponds to a symmetric diagonal scaling of the permuted
augmented system.

For the sake of simplicity, we will omit P and @ in the following and assume that M, A, ¢,
and b have been consistently permuted. Let

M=L"'MLT.

The augmented matrix 2 can be factorized in the following way:

My M I,
L 0 . . LT 0

2 = M M 0
0 I 0 I

I, 0 0

Let Z = L~ TE5. The matrix Z is a non orthonormal basis of the kernel of AZT.
On the basis of the previous discussion, we obtain the following algorithm:
NULL SPACE ALGORITHM:

h = —L g,
hy = Elh,
hy = E¥h.
Solve the block lower triangular system:
I, 0 0 z1 b
Mlg MQQ 0 zZ92 = hz ; (13)
My My I z3 hy
and let
ul B L_T 21 B Ll_T(b - Lqu)
U2 22 U2 ’
p = 23



It follows directly from (12) that us = z2. Frequently, the product L=*M L~ cannot be
performed directly because the complexity would be too high (O(n?)) or because the resulting
matrix would be fairly dense despite the sparsity of M. Nevertheless, in some cases the product
can be performed successfully obtaining a sparse result. Alternatively, in solving the triangular
system (13), we can perform the product of a submatrix of M by a vector in the following way:

My =EI' L' (M(L TEy)), with  (3,5) = (1,2). (14)

This approach has the advantage of performing backward and forward substitution for triangular
matrices, and a sparse matrix-vector product.

In the null space algorithm, we also need to invert My, the projected Hessian matrix.
We have two alternative ways to proceed. If n — m is small (the number of constraints is
very close to the number of unknowns), or My, is still sparse, we can explicitly compute Moy
using the algorithm (14), and then solve the system Magus = s using a Cholesky factorization.
Otherwise, we can solve the linear system Maous = s using a conjugate gradient algorithm (see
Greenbaum, 1997) without explicitly computing My, and using (14) to perform the matrix by
vector products. We observe that the matrix-vector product (14) is backward stable (Arioli
and Baldini 2001). Moreover, we can use an iterative method, which incorporates a stopping
criterion based on the a posteriori componentwise backward error theory (Higham 1996).

If we use the conjugate gradient method, it is quite natural to have a stopping criterion which
takes advantage of the minimization property of this method. At each step j the conjugate
gradient method minimizes the energy norm of the error dus = us — ﬂgj )
The space R"™™ with the norm

on a Krylov space.

1Yl 7y, = (" M)/
induces on its dual space the dual norm
1F gy = (FF M 1))
Therefore, a stopping criterion such as the following:
IF Mo — bl s < nllil g THEN STOP, (15)
with 7 < 1 an a priori threshold fixed by the user and where h = fI(hy — M1, z;), will guarantee

(Arioli, Noulard and Russo 2001b) that the computed solution a9 satisfies the perturbed linear
system:

M22ﬂ2 = E+f7
Wl < llflly e

The choice of i will depend on the properties of the problem that we want to solve, and, in
the practical cases, 1 can frequently be much larger than .
Finally, because ZT Ey = I, we can project the error onto the null space as follows:

(EgLilMLfTEQ)UQ =h+ EQTL*IJq, (16)
with

bq=Faf, |flles <nllbll s < nllwallys,, +OGP) (17)

6



Arioli and Baldini (2001) proved that the solution computed by a more general version of
the Null Space algorithm of Section 3 is backward stable. In our specific case the theorem can
be stated as follows.

Theorem 3.1 Let 4 and p be the values of u and p, solutions of (7), computed with the Null
Space Algorithm. If 2ne < 1 then there exist matrices M € R™ " and 6A;, §A; € R™™
and the vector §q € R™ such that

M+06M A+64 | | —(g+dq)
(A+64)T 0 5l b
Furthermore, we have
|0A1] < cre|Al,
|0A4s] < cre|Al-

If we use a conjugate gradient solver with (15) and a threshold n:
|6M| < coe3C(|M| + | L[| M| L|T) I + 0(e?)),
where H = I + E2EY|L7Y|E1E], and
19all -2 5 < el + Or?):

If we denote by A~ = ETL~! a pseudo-inverse of A ((Campbell and Meyer Jr 1979)), and
by P =1 - MZM,,"Z" the oblique projection onto span(A) along span(MZ) (Lancaster and
Tismenetsky 1985), it is easy to verify by direct computation that:

ol _ ZMtZT  PT(A)T 18)
AP —ATPM(A)T |

As normal, ¢ << 7, and it is appropriate to analyse the influence of the perturbation § M
on the error du neglecting the part depending on €. More precisely, we will assume that

—0A1p — M -6
1 1P < Ql_l q
—6Al7 0
o0 o
Thus, we have from (16) and (17) :
Su ZMy' ZTEy f
5p A~PEof

First of all, we need to add, within the conjugate gradient algorithm, some tool for estimating
the value ey = fTM2_21 f. This can be achieved using a Gauss quadrature rule as proposed

7



by Golub and Meurant (1997). In particular, this variant of the conjugate gradient algorithm
produces a lower bound for ey . As suggested by Golub and Meurant (1997) the Gauss
quadrature based lower bound can be made reasonably close to the value of ey ~at the price
of d additional steps of the conjugate gradient algorithm. Golub and Meurant (1997) indicated
d = 10 as a successful compromise, and numerical experiments support this conclusion (Golub
and Meurant 1997, Arioli and Baldini 2001).

Finally, following Arioli and Baldini (2001), we estimate ETMQEIE, taking into account that

iLTMQ_QliL = UgMQQUQ + 0(772).

We replace ue with its current evaluation at step j of the conjugate gradient algorithm if
N 27 TT,
€ir,, <M h"h.
As we bound the backward error f in the energy norm, it is natural to bound some appro-
priate energy norms of du and dp. Arioli and Baldini (2001) suggested two natural choices

loullpr = (Ou” Méu)/?, (19)
I6pllarpr-1a = (5p" AT M Adp)'/2. (20)

Moreover, Arioli and Baldini (2001) proved that

16ullar = [ £l gzt + O(e) < nllwll i, (21)

16pllar ar-1.a < 1llT2l g, (P( Moz By M~ Bp))'/2, (22)

where p(B) is the spectral radius of the square matrix B.

4 Graph and Network properties

First of all, we recall some useful basic definitions relative to graph theory: further information
can be found in Murthy (1992) and Tarjan (1983).

A graph § = {N, A} is made up of a set of nodes N = {7;};=1.. n, and a set of arcs
A = {a;}j=1,..n,- An arc «; is identified by a pair of nodes 7; and 7;: we will denote by
{7, Tk} an unordered pair and the corresponding undirected arc, and by [7;, 7x] an ordered pair
and the corresponding directed arc. Either G is an undirected graph, in which case all the arcs
are undirected, or G is a directed graph, in which case all the arcs are directed. We can convert
every directed graph G to an undirected one called the undirected version of G by replacing each
[7i, Tk] by {7i, 7%} and removing the duplicate arcs. Conversely, we can build the directed version
of an undirected graph § by replacing every {7;, 7} by the pair of arcs [r;, ;] and [1g,7;]. In
order to avoid repeating definitions, we will denote by (7%, 7;) either an undirected arc {7;, 7%}
or a directed arc [7;, 7], using the context to resolve the ambiguity.

The nodes 7; and 74 in an undirected graph § = {N, A} are adjacent if {7;, 74} € A, and we
define the adjacency of 7; by

Ad]ﬂ = {Tj : {TZ’,TJ‘} € A}

Analogously, in a directed graph § = {N, A}, we define

Adjn = {Tj :if [Ti,Tj] € Aor [Tj,Ti] S .A}



We define the adjacency of an arc as follows:
Adjr, iy = {mi, e} € Ay U {7, 7} € A}
for an undirected graph, and
Adjir; ) = {[mi>Te] € A, [k, 7i] € A} U{[1j, 7] € A, [, 7] € A}

for a directed graph.

A path in a graph from node 7; to node 74 is a list of nodes [7; = 75, 7jy,...,Tj, = Tk,
such that (7;;,7;,,) is an arc in the graph G for i = 1,...,k — 1. The path contains node 7; for
i €[l,...,k] and arc (7, 741) for i € [1,...,k] and avoids all other nodes and arcs. Nodes 7;
and 7, are the ends of the path. The path is simple if all its nodes are distinct. The path is
a cycle if k > 1 and 7; = 74, and a simple cycle if all its nodes are distinct. A graph without
cycles is acyclic. If there is a path from node 7, to node 7, then 7, is reachable from 7.

An undirected graph is connected if every node of its undirected version is reachable from
every other node and disconnected otherwise. The maximal connected subgraphs of G are its
connected components.

A rooted tree is an undirected graph that is connected and acyclic with a distinguished node
TR, called root. A rooted tree with k& nodes contains k£ — 1 arcs and has a unique simple path
from any node to any other. When appropriate we shall regard the arcs of a rooted tree as
directed. A spanning rooted tree T = {N,Ag,} in G is a rooted tree which is a subgraph of §
with ny nodes. If 7, and 7, are nodes in Tr and 7, is in the path from 75 to 7, with 7, # 7,
then 7, is an ancestor of 7, and 7, is a descendant of 7,. Moreover, if 7, and 7, are adjacent
then 7, is the parent of 7, and 7, is a child of 7,. Every node, except the root, has only one
parent, which will be denoted by parent(r,), and, moreover, it has zero or more children. A
node with zero children is a leaf. We will call the arcs in Ag, in-tree and the arcs in A \ Ag,
out-of-tree. A forest is a node-disjoint collection of trees.

Finally, we define the depth(7;) of a node 7; in a rooted tree recursively by depth(7g) = 0
and depth(t;) = depth(parent(r;)) + 1. Similarly, we define the height(r;) as follows:

height(r;) = 0, if 7; is a leaf,
height(r;) = max{height(1y,) : Ty is a child of 7;} + 1, otherwise.

The subtree rooted at node 7; is the rooted tree consisting of the subgraph induced by the
descendants of 7, and having root in 7;. The nearest common ancestor of two nodes is the
deepest node that is an ancestor of both. A node 7; is a branching node if the number of its
children is greater than or equal to two. For each out-of-tree arc [}, 7], the cycle of minimal
length or the fundamental cycle is the cycle composed by [7},7;] and the paths in Tg from 7;
and 7, to their nearest common ancestor.

We can now associate with the triangulation Ty a graph § = {N, A} as follows. Let & :
%y — N be a bijective function such that 7; = ®(T;): the arc (7;,7;) € A if and only if the
triangles T; and T; have a common edge e;. Furthermore, we add to N a node 7 that represents
]R'2 \ Q’

N=NU{7r},

and, for each triangle T} having the edge ey lying on I'p, we add the arc (7, ®(T})). The
incidence matrix A’ of the graph G is a totally unimodular matrix (Murthy 1992, Tarjan 1983)



and its rank is n. If we remove from A’ the column corresponding to the root, we obtain the
matrix A of problem (7). Moreover, every spanning tree of § with root in 7 induces a partition
of the rows of A in in-tree rows and out-of-tree rows. If we renumber the in-tree arcs first and
the out-of-tree arcs last, we can permute the in-tree arcs and the nodes such that (Murthy 1992)
the permuted matrix A has the form

Ly
PAQ = ,

Ly

where L; € R™" is a lower triangular and non singular matrix.

As the matrix A is totally unimodular then the matrix L' is also a matrix with entries
—1,0,1. Moreover, the matrix Lng_1 has entries —1,0, 1 and its rows correspond to the out-of-
tree arcs. The number of nonzeros in one of its rows, will be the number of arcs in the cycle of
minimal length which the corresponding out-of-tree arc forms with the in-tree arcs. We recall
(see Section 3) that, without loss of generality, all the diagonal entries in L; can be chosen
equal to 1 and, therefore, the entries outside the diagonal are 0 or —1. This signifies selecting
the directions of the arcs in Ag, as [1;, parent(r;)], V7;. Given the out-of-tree arc [}, 73], the
values of the nonzero entries in the corresponding row of Lng_l will be 1 if both the nodes of
the in-tree arc corresponding to the nonzero entry are ancestors of 7, and will be —1 if both
the nodes of the in-tree arc corresponding to the nonzero entry are ancestors of 7;.

We now give some basic results the proof of which is straightforward.

Lemma 4.1 Let 7, be a branching node with k children. The descendants of T, can be parti-
tioned in k sets N1,...,Ny such that N;NN; = 0, for i # j. Each (1;,7;) € A with 7, € N; and
7j € Nj is an out-of-tree arc.

If we define the adjacency of a set of nodes Sy C N and the adjacency of a set of arcs S4 C A
as follows:

Adj(Sn) = | Adjr, Adji(8a)= |J Adigqy,

T €8N (Ti,Tj)ESA

we have the following Corollary.

Corollary 4.1 Let 1, be a branching node with k children and N1, ..., Ny such that N;NAN; = 0,
for i # j be the partitioning of the descendants of 7,. Let (14,7;) € A and (1,,7;) € A be
out-of-tree arcs, with 7p,7; € Ny, and 74,75 € Ny,. The minimal length circuits C, .y C
Ay U{(1g,75)} and C(r 1,y C Ag, U{(7p,7i)} are disjoint:

Clrmirs) N Cirgyr) =0,

and

Clrpir) N Adj (Ciryiry) =0, Adj(Cry ) N Cryry) =0 -

Proof. From Lemma 4.1 the descendants of the children of the branching node 7, form
disjoint subtrees. If the two circuits C(;, -,y and €(;, -y have an arc in common this would be
simultaneously in both the subtrees and it would close a circuit on the ancestor 7,. This is in
contradiction with the definition of tree.

10



Similarly, if C(;, ) and Adj(C(, ,Tj)) have a common arc this must be an in-tree arc because
it lies on €, 7.y N Ag,. This is in contradiction with the results of Lemma 4.1 because this arc
connects two disjoint sets. O

Finally, if the root T of the spanning tree is a branching node with & children 7 , i =
1,...,k, the subtrees having 7 as roots form a forest. Therefore, the matrix L; can be
permuted in block diagonal form with triangular diagonal blocks.

We refer to the work of Murthy (1992), Tarjan (1983), and Gallo and Pallottino (1986), for
surveys of different algorithms for computing spanning trees. An optimal choice for the rooted
spanning tree is the one minimizing the number of nonzero entries in the matrix Z = LT E,
the columns of which span the null space of A”. Deo, Prabhu and Krishnamoorthy (1982)
proved that the equivalent problem of finding the tree for which the sum of all the lengths of
the fundamental circuits is minimal, is an NP-complete problem. Berry, Heath, Kaneko, Lawo,
Plemmons and Waed (1985), Coleman and Pothen (1986), Coleman and Pothen (1987), Deo et
al. (1982), Gilbert and Heath (1987), Itai and Rodeh (1978), and Pothen (1989) have proposed
several algorithms which select a rooted spanning tree reducing or minimizing the number of
nonzero entries in Z.

In this paper, we propose two different approaches based on the introduction of a function
cost defined on each arc of the graph and describing some physical properties of the original
problem.

From Corollary 4.1 it follows that a rooted spanning tree, having the largest possible number
of branching nodes, normally has many disjoint circuits. The columns of Z corresponding to
these disjoint circuits are structurally orthogonal, i.e. the scalar product of each pair is zero,
independent of the values of the entries.

Moreover, we choose the function cost : A — R4 in the following way:

cost(a) =0 if 3, a = (1, 7
Va e A ( ) (R z) (23)
cost(a) = My, otherwise

Using the cost function, we can compute the spanning tree rooted in 7 solving the Shortest
Path Tree (SPT) problem (Gallo and Pallottino 1986) on the graph. In particular, we have
chosen the to implement the heap version of the shortest path tree algorithm (see the SHEAP
algorithm in Gallo and Pallottino, 1986).

The resulting spanning tree has an interesting interpretation: in the presence of islands of
very low permeability in €, (i.e. the values of X~! are very large there), the paths from the root
to a node corresponding to a triangle lying outside the islands of low permeability, will be made
of nodes corresponding to triangles also lying outside the islands. The path “circumnavigates”
the islands. Therefore, the set of these paths identifies the lines where the flux will be bigger,
with a reasonable approximation.

Owing to the fact that we chose the cost as zero for the arcs containing 7, both strategies
will give a forest if the number of zero cost arcs is greater than one.

We observe that we do not need to build the matrix A explicitly: the tree (or forest) can be
computed using the graph only. Moreover, the solution of the lower and of the upper triangular
systems can be performed taking advantage of the parent function alone. This results in a very
fast and potentially highly parallel algorithm.
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For a problem with only Dirichlet conditions and an isotropic mesh (i.e. the number of
triangles along each direction is independent from the direction), we can have a forest with a
number of trees proportional to b !, and, therefore, the matrix L; has O(h~!) diagonal blocks
of average size O(h ).

Finally, we point out that most non-leaf nodes in the SPT have two children.

5 Preconditioning and quotient tree

In the presence of islands of very low permeability in 2, the values of X can differ by many
orders of magnitude in the different regions of the domain. In this case, the projected Hessian
matrix My has a condition number which is still very high. It is then necessary to speed up the
convergence of the conjugate gradient by use of a preconditioner. Obviously, it is not usually
practical to explicitly form May to compute or identify any preconditioner.

In this section, we will show how we can compute the block structure of My, using only the
tree and the graph information. We will then use the block structure to compute a precondi-
tioner.

Denoting by H the matrix L2L1_1, the projected Hessian matrix My can be written as
follows:

My = ZT'MZ = Myy + HM 1 HY — (Mo HY + HM,). (24)

The row and column indices of the matrix My, correspond to the out-of-tree arcs. Moreover,
we recall that the matrix H has entries —1,0, 1, its row indices correspond to the out-of-tree
arcs, and the number of nonzeros in one of its rows will be the number of arcs in the cycle of
minimal length which the corresponding out-of-tree arc forms with the in-tree arcs.

Lemma 5.1 Let a and 3 be two out-of-tree arcs, and Co, C Ag,Ua and Cg C Ag, U be their
corresponding circuits of minimal length, then

My #0 = o, f € Adj, N Adjg (25)

ea N Adj(eﬁ) 7é @

CaNCs#0 +—=
€ N Adj(Ca) # 0

(26)

Proof. Because the orientation of the arcs in the graph is arbitrary and will be determined
by the sign of the solution, we will use the undirected version of the graph. Let a = (7, Tw)
and f = (74,7y), where we have 7, = ®(T1), 7, = ®(T2), 7, = ®(I3), and 7, = P(Ty).
Moreover, « corresponds uniquely to the common edge e;5 between the triangles 77 and 75,
and S corresponds uniquely to the common edge e34 between the triangles T3 and T, From (8),
we have that M, # 0 if and only if supp(We,,) N supp(We,,) # 0. Since supp(we,,) = T1 U Th
and supp(We,,) = T3 U T}, then M, # 0 if and only if the two supports have a triangle in
common. Assuming, without loss of generality, that 77 = T3 is this common triangle, (25)
follows from the definition of Adj.

In (26) the = is trivial.

We give a proof ab absurdo for the <.

First of all, we note that the cardinal number of Adj,, is less or equal than 3, V7; € A (a
triangle has three edges).

12



If we assume that C, N Adj(Cg) # 0, Cs N Adj(Csr) # 0 and C, N Cg = B, there must exist
a node 7; such that 7; belongs to both the paths in the tree linking 7, to 7, and 7, to 7y
respectively. Because each node in the path has only one parent and one child , the Adj,
contains the parent and the child of the first path and those of the second path. Because we
assumed that C, N Cg = @ the cardinal number of Adj;; would be 4 which is in contradiction
with the upper bound on the cardinal number. 0

Thus, from (24) and the previous Lemma, 5.1, we have the following Corollary.

Corollary 5.1 Let o and B be two out-of-tree arcs, and C, C Ay, Ua and Cg C Ay, UB be
their corresponding circuits of minimal length, then

Maﬂ = Maﬂ + Z Z HVQHﬂﬂM’W
Y€CLNALj(C) pECNALf(Cq)

- Z HyoMyp — Z H,s Mg,
’)’E(‘?aﬂAdjﬂ ’)’E(‘fgﬂAdja

and
CaNCs=0 = My =0 (27)

Proof. The first part of the Corollary follows directly from the expansion of (24). The
implication (27) follows from Lemma 5.1 taking into account that C, N Adj(Cs) 2 Co N Adjg,
Cs N Adj(Ca) 2 CpN Adja, and Adjo N Adjg # 0 = €4 NCs # 0. O

Corollary 5.1 gives the complete description of the pattern of Mas in terms of the rooted
spanning tree. However, we observe that the results (26) and (27) rely on the 2-D structure of
the mesh and they cannot be generalized to a mesh in 3-D.

In the second part of this section, we build the block structure of My using the Quotient
Tree concept, without explicitly forming the matrix Moy.

In the following, we process the root node separately from the other nodes. The root node
will always be numbered by 0, and if it is a branching node with k£ children the tree will
contain k subtrees directly linked to the root. Given a rooted spanning tree Tp = {N, As,},
let B C N\ {0} be the set of the branching nodes in Tg, and let L C N\ {0} be the set of the
leaves in Tr. We define the set

y =BUul :{Tl,...,Tk}.
IfY =N\ {0}, then Tg is a binary tree. Otherwise, we can compute the following paths:
V1, €Y
or, = {1, parent(r;), parent(parent(r;)), ..., parent®(7;)} and p,, NY = {r;}.

The path g, connects 7; to all its ancestors which are not branching nodes, and it can contain
7; alone.
The set B = {pr,,.-.,pr} U{0} is a partition of N:

(S

or; N7, = 0, U prn =N.
=1

13



Therefore, we can build the quotient tree

T/B={B, &}, (pn, PTJ-) € & < Adj |7 (pr;) N P #0,

and the quotient graph

S/PB={B, €}, (pr,0r) € € = Adj(pr;) N pr; # 0,

where Adj |5 is the restriction of the Adj operator to the graph 7.

For the sake of clarity in the following, we will call the quotient tree nodes Q-nodes. The
root of the quotient tree is still the node 0, and each subtree rooted at its children has a binary
quotient tree.

5.1 Data structures and separators

We use a data structure for the representation of the graph G which is based on the matrix A.
We assume that we have access to both row and column entries of A by the compressed sparse
collection of row and column data structures as they are described by Duff, Erisman and Reid
(1989). Every time we renumber the nodes in the graph, we assume that the data structure
describing the rows of A will be consistently updated. The use of the double representation
of A facilitates and speeds up the implementation of all the algorithms we will use in the
following. Moreover, in our specific case where the matrix A is the incidence matrix of a graph
representing a bidimensional mesh, the row and column compressed data structure can be easily
implemented using vector arrays as follows: Each column of A has at most 3 nonzero entries,
then, we store for each node (i.e. triangle) 7 the 3 arcs (i.e. edges) indices consecutively in
position ¢, 1+ 1, ¢ + 2. If the node corresponds to a triangle having an edge on the Neumann
boundary, we explicitly store a 0 which means that that triangle has the root as a neighbour.
Analogously, because each row j of A has only 2 nonzero entries, we store the 2 nodes (i.e.
triangles) describing the arc j in position j and j + 1 of a vector. Again, we need to explicitly
store some 0 values for the Dirichlet edges. The overhead of the explicit storage of the 0 is
less than the one we will have for storing the pointers within the classical row and column
compressed forms because the number of the boundary edges is of the order of the square root
of the number of triangles in the mesh.

A tree can be easily described by using a vector where in the entry 7; we store parent(r;).
In our implementation, we use a slightly more complex data structure. For each node 7;, we
know the parent(r;) and the list of its children. Descending the tree with a depth first search,
we renumber the nodes and we build the chains. Therefore, we associate with each node the
following objects:

e parent,

children list,

chain index,
e depth.

In Figurel, we give a simple example of a tree and, in Table 1, we list the labels of each node. It
is relevant to observe that the reordering obtained by the depth first search of T renumbers the
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Node index | Parent | Children list | Chain Index | depth
0 0 1,21,31 0 0
1 0 2 1 1
2 1 3 1 2
3 2 4 1 3
4 3 5,10 1 4
5 4 6 2 5
6 5 7 2 6
7 6 8 2 7
8 7 9 2 8
9 8 2 9
10 4 11 3 5
11 10 12 3 6
12 11 13 3 7
13 12 14,17 3 8
14 13 15 4 9
15 14 16 4 10
16 15 4 11
17 13 18 5 9
18 17 19 5 10
19 18 20 5 11
20 19 5 12
21 0 22 6 1
22 21 23 6 2
23 22 24 6 3
24 23 25,28 6 4
25 24 26 7 5
26 25 27 7 6
27 26 7 7
28 24 29 8 5
29 28 30 8 6
30 29 8 7
31 0 32 9 1
32 31 33 9 2
33 32 9 3

Table 1: Labels of nodes in the tree of Figure 1.
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Figure 1: Example

nodes such that the nodes forming a chain are consecutive. Therefore, we can directly access
the list using vector arrays.

After the identification of the chains, we build the quotient tree, and, descending the quotient
tree T/P with a depth first search, we renumber the nodes and build its data structure. In the
new data structure, we associate with each Q-node the following objects:

e Q-parent in T/,

e first and last node in T of the chain corresponding to the Q-node,

e depth in T/,

o (Q-last, the last Q-node of the subtree rooted in the current Q-node,

e (Q-star, the list of the out-of-tree arcs in § which have one extreme belonging to the
Q-node,

o (Q-children, the list of the Q-nodes children of the Q-node.

In Figure 2, we give the quotient tree relative to the example of Figure 1, and in Table 2,
we list the labels of each Q-node.

Taking advantage of the data structures described above, we can order the out-of-tree arcs in
the following way. Firstly, we identify the Q-nodes which are children of the external root (node
0), and the subtrees rooted in each of these Q-nodes. Then, we separate each of the subtrees
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Figure 2:

Quotient tree relative to the tree of Figure 1

Q-node | Q-parent | First, last Depth | Q-last | Q-star Q-children
node of chain

1 0 1,4 1 5 4,8 2,3

2 1 5,9 2 2 1,2,5,6,7

3 1 10,13 2 5 5,6,8 4,5

4 3 14,16 3 4 7,9,10

5 3 17,20 3 5 3,9,10

6 0 21,24 1 8 4,11 7.8

7 6 25,27 2 7 13,14

8 6 28,30 2 8 12,13,14

9 0 31,33 1 9 11,12

Table 2: Labels of the Q-nodes in Figure 2.
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from the others marking the out-of-tree edges that connect it to the others. The out-of-tree arcs
lying within one of these subtrees cannot have fundamental cycles with the out-of-tree arcs lying
within one of the others, because of Corollary 4.1. This corresponds to a one-way dissection
applied to Mas. Then, within each of the subtrees, we seek the out-of-tree arcs that separate
the two subtrees rooted in the Q-nodes children of the Q-node root of the subtree containing
both of them. This is equivalent to a nested dissection strategy applied to one of the diagonal
blocks resulting from the previous one-way dissection phase.

Before starting the one-way phase, we visit the tree and identify in each Q-node the out-of-
tree arcs that are within the Q-node and the arcs directly linking the external root (node 0) to
a Q-node. These arcs are stored in sep.list which is a queue data structure. The phase relative
to the one-way dissection can be described by the following algorithm:

Algorithm 5.1
procedure root.sep.count(sep.size)
for each i € children(0) do
Qi = chain(i); sep.size(Q;) =0 ;
for Qr = Qi:Q-last(Q;), do
for each £ = (p,q) € Q-star(Qy) with chain(p)= Q do
if ¢ > last(Q-last(Q;)) or q < first(Q;) then
sep.size(Q;) = sep.size(Qi) + 1;
end if;
end for each;
end for;
end for each;
end procedure.

procedure sep.tree (sep.list,sep.size, Qroot,mask)
Jor Qx = Qroot:Q-last(Qroot), do
for each £ = (p,q) € Q-star(Qy) with chain(p)= Qy do
if mask(£) =0 and {q > last(Q-last(Q;)) or q < first(Q;)} then

insert £ in sep.list ;

mask(£) =1 ;
sep.size = sep.size + 1;
end if;
end for each;

end for;
end procedure.

procedure one.way.dissection(sep.list,sep.size,mask)
root.sep.count(sep.size)
sort Q-children(Qro0t) in decreasing order of sep.size ;
for each child € Q-children(Qroot) do
sep.tree (sep.list, sep.size(child), child, mask);
end for each;
end procedure.
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Because each out-of-tree arc can be counted only twice, the complexity of Algorithm 5.1 is
0(2¢), where ¢ is the number of nonzero entries in the submatrix Lo and is equal to twice the
number of the out-of-tree arcs.

From Corollary 4.1, Corollary 5.1, and Lemma 5.1 it follows that each block ¢, of size
sep.size(i), contains out-of-tree arcs that have fundamental cycles intersecting each other.
Therefore, each of these blocks corresponds to a full diagonal block in Msy. The order of
the diagonal block is equal to the corresponding value of sep.size. The out-of-tree arcs in
sep.list form the external separator. The external separator identifies a curve on the mesh.
Thus, because the graph is planar, the size x of the external separator will be O(y/m) (m is the
number of triangles in the mesh).

Finally, we renumber the out-of-tree arcs, such that the arcs in the external separator are
the last ones and the arcs lying within a descendant subtree of root are consecutive. This is
equivalent to permute the rows of the matrix Lo so that we have a block diagonal submatrix
followed by a block of rows connecting the previous diagonal blocks.

In Figure 3 (a) and (b), we show the results of the one-way dissection on the matrix A when
root has only 3 descendant subtrees. We observe that each subtree is now disconnected from
the others. We can now perform the nested dissection phase on each of the subtrees which are
rooted at the children of the root. Each of these subtrees is a binary tree and it can be identified
by the Q-node on which is rooted. Firstly, we visit each subtree and we reorder the Q-children
list of each Q-node such that the first child is the root of the subtree with the least number
of nodes, and the other children are sorted in increasing order with respect to the number
of nodes in their respective subtrees. In the following Algorithm 5.2, we denote by Qo0 the
root of one of the Q-subtrees obtained from the one-way dissection phase. Moreover, we label
each out-of-tree arc £ with the quotient tree ancestor @QT-ancestor(£), the Q-node closing the
fundamental cycle of £ in the spanning tree.

By means of QT-ancestor and by the data structure of the spanning tree, we can implicitly
describe the structure of the null space matrix Z.

Algorithm 5.2
procedure nested.sep(sep.list, sep.size, Qroot, mask, QT-ancestor)
if Q-children(Qproot) # 0 then
Q1 head of Q-children(Qroot) list;
Q2 tail of Q-children(Qproot) list;
sep.tree(sep.list, sep.size(Q), @1, mask);
sep.size(Q2) = 0;
for each £ € Q-star(Qyoot) do
if mask(€) = 0 then
insert £ in sep.list ;
mask(l) = 1 ;
sep.size(Q2) = sep.size(Qa) +1;
QT-ancestor(l) = Qroot;
end if
end for each;
nested.sep(sep.list, sep.size, Q1, mask);
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nested.sep(sep.list, sep.size, Q2, mask);
end if;
end procedure

Algorithm 5.2 takes advantage of the binary structure of the quotient subtree and of the
reordering of the Q-children list whose first entry has the least number of descendants.

These two properties allow the possibility of separating the two subtrees rooted in the
children of the current Q.o visiting only one of them and the Q-star of Qot-

Moreover, at each recursion we visit and separate a subtree which, in the worst case, has half
of the nodes of the tree in it. Let Ng be the number of nodes in one of the subtrees obtained
after the one-way dissection phase. The Nested Dissection phase applied to this subtree will
visit all the levels of the tree. For each level, algorithm 5.2 will separate the subtrees with the
least number of descendants. In the worst case, when the number of nodes in each subtree is
half of the nodes of the previous subtree which contains it, the number of levels is O(log Ng).
Thus the worst complexity of algorithm 5.2 is O(Ng log Ng).

If the tree is unbalanced, i.e. only one of the two children of a Q-node is a branching Q-node,
the complexity of algorithm 5.2 is O(Ng).

Using the sep.size and sep.list, we can build the data structure ND, which is composed of
ND.list and ND.pointer. ND.list contains the entries of sep.list in reverse order. ND.pointer(Q;)
contains the pointer to the first entry in ND.list of the separator of the tree rooted in Q;. In
the following algorithm, we denote by N,,: the number of out-of-tree arcs. We point out that
the number of entries in sep.list is equal to Nyy;.

Algorithm 5.3
procedure nested.dissection(sep.list, sep.size, ND, QT-ancestor)
for £ = 1:Nyys do
ND.list(Noys - £ +1) = sep.list(l);
temp = QT-ancestor(Nyy - £ +1);
QT-ancestor(Nyys - £ +1) = QT-ancestor(l);
QT-ancestor(l) = temp;
end for;
size = 0;
for Qi = Qroot : Q'laSt(Qroot) do
size = size +sep.size(Q;);
ND.pointer(Q;) = Noyt - size + 1;
end for;
end procedure

The ND.list gives the permutation that will reorder rows and columns of My, in a nested
dissection order.

Finally, we can build the pattern of the upper triangular part of Mas by using the following
algorithm 5.4, which takes advantage of the consecutive order of the Q-nodes forming a tree,
obtained by applying a depth first search on T /3, and of the nested ordering of the out-of-tree
arcs in ND. We point out that, for each Q;, the rows and the columns with indices between
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ND.pointer(Q;) and ND.pointer(;+1) form a full diagonal block in Moy. This pattern of the
Mp; is described by the usual compressed row collection data structure (irow,jcol) where for
the row i of My is stored in jeol(irow(i):irow(i+1)-1).

Algorithm 5.4
procedure insert.columns(ND, QT, irow, jcol, jcount, count)
for Qr = QT+1:Q-last(QT) do;
for each £ = (p,q) € Q-star(Qx) with chain(p)= Qr do
if ¢ > last(Q-last(Q;)) or q < first(Q;) then
jeount = jcount + 1;
jeol(jeount) = £;
count = count + 1;
end if;
end for each;
end for;
end procedure;
procedure May-pattern(ND, QT-ancestor, irow, jcol)
irow(1) = 1; jeount = 0;
for i = 1:Nyy do
count = 0;
@1 head of Q-children(QT-ancestor(i)) list;
Q2 tail of Q-children(QT-ancestor(i)) list;
for k = i:ND.pointer(Q,+1) - 1 do
jeount = jcount + 1;
jeol(jecount) = ND.list(k);
count = count + 1;
end for;
let (ps, qi) the ends of arc i;
Qp; = chain(p:); Qqi = chain(q:);
if QT-ancestor(i) # Qp; and QT-ancestor(i) # Qq; then
insert.columns(ND, QT-ancestor(i), irow, jcol, jeount, count)
irow(i+1) = irow(i) + count;
else
if i > last(Q-last(Q1)) or q; < first(Q1) then
insert.columns(ND, Q1, irow, jcol, jcount, count);
irow(i+1) = irow(i) + count;
else
insert.columns(ND, @2, irow, jcol, jcount, count);
irow(i+1) = irow(i) + count;
end if;
end if;
end for;
end procedure

Finally, we observe that the final value of jcount gives the total number of nonzero entries
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of the upper triangular part of 1@22. Therefore, without the explicit computation of the real
values of the nonzero entries in My we can predict the total amount of memory we need for
storing the matrix.

5.2 Preconditioners

The a priori knowledge of the structure of My, allows us to decide what kind of preconditioner
we can afford. If we are subjected to a strong limitation of the size of the memory in our
computer, we can choose among several alternative preconditioners.

We have a choice ranging from the diagonal matrix obtained by using the diagonal part
of My, and the block Jacobi preconditioner using the diagonal blocks corresponding to the
separators.

The possibility of using the simplest choice of the diagonal of Mo is sensible because the
SPT algorithm places on this diagonal the biggest entries of the diagonal of M.

In Section 6, we will give numerical evidence that this choice is very efficient for several test
problems.

Nevertheless, in the presence of strong discontinuities and of anisotropies in the permeability
function X, we are obliged to use either the diagonal Jacobi preconditioner or a block diagonal
Jacobi.

Finally, by algorithm 5.4, we are able to decide about the feasibility of building and factor-
izing Myo by a sparse direct Cholesky algorithm.

6 Numerical experiments

6.1 Test problems

We generated the test problems using four different domains. The first two are square unit
boxes and in the second one we have four rectangular regions where the tensor X assumes
different values. In Figure 4, we plot the geometry of Domain 1 and the boundary conditions.
In Figure 5, we plot the geometry of Domain 2 and the boundary conditions. The values of the
tensor X are chosen as follow

(1 xea\ {2 uQ U U,
0.5 xe€Q,
K(x) =14 107 x € Qo,
107% x € Qs,
\ 1078 x € Q.

The two remaining domains have an L-shape geometry. In Figure 6, we plot the geometry and
the boundary conditions of the Domain 3. In Figure 7, we plot the geometry of the fourth
and last Domain 4 and the relative boundary conditions: within the domain, we have four
rectangular regions where the tensor X takes the same values defined for the second domain in
(28).
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In (2), we take the right-hand side f(x) = 0 in all our test problems. For the domains one
and three, the tensor X in (1) is isotropic. For a given triangulation, its values are constant
within each triangle and this value is computed following the law:

Ky, =107%%  i=1,... Nr

where r; € [0,1] are numbers computed using a random uniform distribution.

For each domain, we generated 4 meshes using TRIANGLE (Shewchuck 1996). In Tables 3
and 4, we report, for our domains, the number N7 of triangles, the number N of edges, the
number Ny of vertices of each mesh, the number M.nnz of nonzero entries in the matrix M,
the number A.nnz of nonzero entries in matrix A, and the corresponding value of §.

Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4

Np 153 1567 15304 | 155746
Ng 246 2406 23130 | 234128
Ny 94 840 7827 78383
M.nnz 1164 11808 | 114954 | 1168604
A.nnz 429 4599 45601 | 466319
b 0.2090 | 0.0649 | 0.0225 0.0069

Table 3: Data relative to the meshes for domains 1 and 2.

Mesh 1 | Mesh 2 | Mesh 3 | Mesh 4

Nt 156 1494 | 15206 | 150033
Ng 251 2305 | 23102 | 225599
Ny 96 812 7843 75567
M.nnz 1187 | 12269 | 114662 | 1125797
Annz 442 4386 | 45462 | 449281
b 0.1625 | 0.0590 | 0.0186 0.0063

Table 4: Data relative to the meshes for domains 3 and 4.

6.2 Practicalities

We analysed the reliability of the stopping criterion when we change the parameter d. In
Figures 8 and 9, we display the behaviour of the estimates of the true relative energy norm of
the error for Mesh 3, Domain 3 and Domain 4: for the other cases the behaviour is similar. The
results show that the choice d = 10 is the best compromise between reliability and cost. When
convergence is slow and there are regions where the slope changes rapidly, the choice d = 5
can be inaccurate. We reserve for future work the study of a self-adaptive technique which will
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change the value of d with the slope of the convergence curve. In Section 3, we discussed the
opportunity of starting the estimate of the relative error only when ey; < n?hTh. This allows
a reduction of the number of additional matrix-vector products. Both figures show an initial
phase where the estimates have not been computed because of the introduction of this check
on the absolute value of the error.

Moreover, to avoid an excessive number of additional matrix-vector products in the stopping
criterion, we choose to update the value of the denominator Hgk)TMQQHgk) every 10 steps of the
conjugate gradient method. The energy norm of ﬂgk) converges quite quickly to the energy

norm of the solution and this justifies our choice. In Figures 10 and 11, we see that, after 25%
Il iz,

of the iterations, the ratio 22—
2 (7o

is greater than 0.9.

6.3 Numerical results

We generated and ran all our test problems on a SPARC processor of a SUN ENTERPRISE
4500 (4CPU 400 MHertz, 2GByte RAM). In our test runs, we compare the performance of our
approach with the performance of MA47 of the HSL2000 library (HSL 2000). The package
MA47 implements a version of the LDL? decomposition for symmetric indefinite matrices
that takes advantage of the structure of the augmented system (Duff, Gould, Reid, Scott and
Turner 1991). The package is divided into three parts corresponding to the symbolic analysis
where the reordering of the matrix is computed, the factorization phase, and the final solution
using the triangular matrices.

Similarly, the null space algorithm which we implemented, can be subdivided into three
phases: a first symbolic phase where the shortest path tree and the quotient tree are computed, a
second phase where the projected Hessian system is solved by the conjugate gradient algorithm,
and a final third phase where we compute the pressure. This enables us to compare the direct
solver M A47 with the null space approach in each single phase.

Generally, in the test runs that we will present, we fix the parameter d in the stopping
criterion to the value of 10. Nevertheless, we will show the influence of different choices on the
parameter d on the stopping criterion using Mesh 3.

In Table 5, we give the CPU times (in seconds) and the storage (in MByte) required by
MAA47 and the CPU times (in seconds) of the null space algorithm where we use the diagonal
of M2 to precondition the projected Hessian matrix within the conjugate gradient algorithm.

From Table 5, we see that the null space algorithm performs better in the case of random
permeability which can be a realistic simulation of an underground situation. Nevertheless, the
global CPU time of the null space algorithm can be 10 times more than the CPU time of the
direct solver. We point out that the ML A47 storage requirement for the L and D factors grows
with the size of the problem whereas the null space algorithm needs only the storage of the
matrices M and A. We forecast that this will become even more favourable to the null space
algorithm when we want to solve 3D simulations: for these problems the ML A47 storage could
become so large that we could be obliged to use an out-of-core implementation.

In Table 6, we display the behaviour of three different preconditioners on the conjugate
gradient iteration number. We fixed the mesh (Mesh 3) and we use as a preconditioner one
of the following matrices: diag(May), diag(Msy) (the classical Jacobi), and blockdiag(Moy)
(block Jacobi) which has been computed using the quotient tree of the shortest path tree (see
Section 5). For each preconditioner and each domain, we display the number of conjugate
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(in seconds) and storage (in MBytes).

CPU times

Table 5: M A47 vs null space algorithm
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gradient iterations, the CPU time (in seconds) for the building of the matrix, and the CPU
time (in seconds) spent by the conjugate gradient algorithm to solve the projected Hessian linear
system. From the results of Table 6, we conclude that the simplest preconditioner diag(Mas) is

Domain | Preconditioner | CG #Iterations | CPU Time (in seconds)
Building CG solve
1 diag(Ma3) 41 0.026 4.681
1 diag(Mas) 28 13.60 3.212
1 blockdiag(Mas) 19 15.06 2.854
2 diag(Ma3) 101 0.025 11.63
2 diag(Maz) 79 13.16 8.859
2 blockdiag(Ma) 69 12.13 10.18
3 diag(Mao) 44 0.025 5.049
3 diag(May) 26 13.94 2.954
3 blockdiag(Moy) 19 15.63 3.122
4 diag(Ma3) 106 0.025 12.06
4 diag(Maz) 92 13.10 10.04
4 blockdiag(Mas) 79 13.23 12.37

Table 6: Comparison between the preconditioners: CPU times and # Iterations of conjugate
gradient algorithm.

faster even if the conjugate gradient algorithm does more iterations than the conjugate gradient
algorithm using the other preconditioners. The Jacobi and the block Jacobi preconditioner
building cost is very high and overwhelms the good performance of the conjugate gradient
algorithm.

In Table 7, we report the CPU time (in seconds) spent by our implementation of the Al-
gorithms 5.1, 5.2, and 5.3. These algorithms build the nested dissection structure of My and
the null space matrix Z. In particular, the nested dissection structure can be useful in building
a parallel version of the matrix-vector products involving the implicit form of the matrix Mps.
Moreover, it is possible to use the structure for the evaluation of the complexity of the explicit
computation of the null space matrix Z. We observe that, comparing Table 7 and Table 5, the
computational cost of Algorithms 5.1, 5.2, and 5.3 is comparable with the cost of the M A47
symbolic phase. Algorithms 5.1, 5.2, and 5.3 are the basis on which it is possible to build
a parallel version of the matrix-vector computation (14). In particular, it is possible to use
Algorithm 5.3 to generate a suitable data structure for the solution of the triangular systems
involving the matrices L and L”.

7 Conclusions

We have analysed a variant of the Null Space algorithm that takes full advantage of the relation
between the structure of the augmented system and the network programming structure of the
mixed finite-element approximation of the Darcy’s equations. We remark that this method can
be applied to any diffusion equation.
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Mesh | Domain | CPU Time (in Seconds)
Algorithms 5.1,5.2,5.3
1 1 0.001
1 2 0.001
1 3 0.002
1 4 0.001
2 1 0.025
2 2 0.009
2 3 0.022
2 4 0.006
3 1 1.225
3 2 0.159
3 3 0.982
3 4 0.178
4 1 29.89
4 2 4.775
4 3 28.53
4 4 5.118

Table 7: CPU Time (in seconds) for the computation of nested dissection structure for null
space matrix Z .

We compared the performance of our prototype version of the algorithm with a well estab-
lished direct solver and we concluded that even if our implementation can be 10 times slower
than the direct solver, the absence of fill-in makes our code competitive for large problems.

In particular, we want to highlight that the absence of fill-in is promising when we need to
solve Darcy’s equations in 3D domains. It is reasonable to expect that the fill-in and complexity
of a direct solver, applied to the augmented systems related to the approximation of Darcy’s
equations in 3D domains, will grow as O(m?/3) and O(m?) respectively. Our algorithm will
instead have no fill-in and its complexity will only depend on the condition number of the scaled
projected Hessian matrix Z7 M Z. We can reasonably assume that this condition number will
not change with the dimension of the domain €2, analogous to the behaviour of the classical finite-
element method. Therefore, the stopping criterion will stop the conjugate gradient algorithm
after a number of steps which will not depend on the dimension of the domain 2. We reserve
for future work the analysis of the performance of our algorithm for three dimensional domains.

We did not implement a parallel version of our algorithm. Nevertheless, we are confident
that a parallel version will speed up the performance. In particular, the matrix-vector product
involving ZT M Z can largely benefit from the parallelization, where the block structure of L;
can be exploited.

Finally, the method we propose could also be generalized to the solution of nonlinear prob-
lems with linear equality constraints, where it would be possible to build a specialized version
of the nonlinear conjugate gradient algorithm taking advantage of the total unimodularity of
A.
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