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1 Introduction

Let M ∈ IRm×m and N ∈ IRn×n be symmetric positive definite matrices, and let A ∈ IRm×n be
a full rank matrix. In the following, we will extensively use the following Hilbert spaces

M = {v ∈ IRm; �u�2M = v
T
Mv} N = {q ∈ IRn; �q�2N = q

T
Nq}

and their dual spaces

M
� = {w ∈ IRm; �w�

2
M−1 = w

T
M

−1
w} N

� = {y ∈ IRn; �y�2N−1 = y
T
N

−1
y}.

We remark that, using the previous notation, the matrix A is an operator between N into M.
In particular, for each fixed q ∈ N we also have that

�v,Aq�M,M� = v
T
Aq, Aq ∈ L(M) ∀q ∈ N . (1.1)

The adjoint operator A� of A can be defined [4] as

�A
�
g, f�N �,N = f

T
A

T
g, A

T
g ∈ L(N ) ∀g ∈ M, (1.2)

and it is linked to the transpose of A. Given q ∈ M and v ∈ N , the critical points for the
functional

v
T
Aq

�q�N �v�M
(1.3)

are the “generalized singular values and singular vectors” ofA. Indeed the saddle-point conditions
for (1.3) are





Aqi = σiMvi v

T
i Mvj = δij

A
T
vi = σiNqi q

T
i Nqj = δij

(1.4)

Hereafter, we assume that σ1 ≥ σ2 ≥ · · · ≥ σn > 0. If we operate a change of variables using
M

1/2 and N
1/2 we have that the generalized singular values are the standard singular values of

Ã = M
−1/2

AN
−1/2

.

The generalized singular vectors qi and vi, i = 1, . . . , n are the transformation by M
−1/2 and

N
−1/2 respectively of the left and right standard singular vector of Ã.

Remark 1.1. We point out that the necessary and sufficient conditions, based on the inf-sup
condition [5, 7, 6], that guarantee both existence and unicity of the solution and the stability,
are equivalent to impose that the generalized singular values σi of A are in the interval (a, b)
with 0 < a < b and a and b independent of the dimensions n and m. This also implies that the

generalized condition number κ(A) =
σ1

σn
is independent of n and m.

In the following, we analyse the use of the generalized Golub-Kahan bidiagonalization algo-
rithm (G-K bidiagonalization) [13] in solving the problem

min
ATu=b

�u�
2
M, (1.5)

where M is a nonsingular symmetric and positive definite matrix.
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Several problems can be reduced to the case (1.5). The general problem

min
ATw=r

1

2
w

T
Ww − g

T
w

where the matrix W is positive semidefinite and ker(W) ∩ ker(AT ) = 0 can be reformulated as
(1.5) by choosing

M = W + νAN
−1

A
T

u = w −M
−1

g

b = r−A
T
M

−1
g.





(1.6)

If W is non singular then we can choose ν = 0.
The paper is organized as follows: Section 2 is dedicated to the properties of the Golub-

Kahan bidiagonalization algorithm, in Section 3, we analyse and describe the stopping criteria,
and finally in Section 4 we validate the theory on selected numerical examples.

2 Generalized G-K bidiagonalization

In [13, 17], several algorithms for the bidiagonalization of a m × n matrix are presented. All
of them can be theoretically applied to Ã and their generalization to A is straightforward as
shown by Bembow [3]. Here, we want specifically to analyse one of the variants known as the
”Craig”-variant (see [17, 20, 19]). Therefore, we seek the upper bidiagonal matrix B such that
the following relations are satisfied






AQ = MV



 B

0



 V
T
MV = Im

A
T
V = NQ

�
B

T ; 0
�

Q
T
NQ = In

(2.7)

where

B =





α1 β2 0 · · · 0

0 α2 β3
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn

0 · · · 0 0 αn





.

The augmented system that gives the optimality conditions for (1.5)


 M A

A
T 0







 u

p



 =



 0

b



 (2.8)

can be transformed by the change of variables




u = Vz

p = Qy

(2.9)
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and the relations (2.7) into





In 0 B

0 Im−n 0

B
T 0 0









z1

z2

y




=





0

0

Q
T
b




. (2.10)

From (2.10), it possible to deduce that u depends only on the first n columns of V because z2 is
equal to zero. Thus, we can further reduce (2.10) to the form



 In B

B
T 0







 z1

y



 =



 0

Q
T
b



 . (2.11)

Moreover, the G-K bidiagonalization can be set such that

Q
T
b = e1�b�N−1

and, then, the value of z1 will correspond to the first column of the inverse of B multiplied by
�b�N−1 . By using the first relation of (2.7), we can compute the first column of B and of V;

α1Mv1 = Aq1, (2.12)

such as

w = M
−1

Aq1

α1 = w
T
Mw = wAq1

v1 = w/
√
α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N
−1

�
A

T
vi − αiNqi

�

βi+1 = g
T
Ng

qi+1 = g
�
βi+1

w = M
−1 (Aqi+1 − βi+1Mvi)

αi+1 = w
T
Mw

vi+1 = w/
√
αi+1.

Thus, the value of u can be approximated when we have computed the first k columns of U by

u
(k) = Vkzk =

k�

j=1

ζjvj .

The entries ζj of zk can be easily computed recursively starting with

ζ1 =
�b�N−1

α1
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as

ζi+1 = −
βi

αi+1
ζi i = 1, . . . , n (2.13)

From the first m equations of (2.8) and approximating p = Qy by

p
(k) = Qkyk =

k�

j=1

ψjqj ,

we have that
yk = −B

−1
k zk.

Following an observation made by Paige and Saunders [17, 19], we can easily transform the
previous relation into a recursive one where only one extra vector is required.

First, we observe that

p
(k) = −QkB

−1
k zk = −

�
B

−T
k Q

T
k

�T
zk. (2.14)

From this relation, we have that the matrix

Dk = B
−T
k Q

T
k (2.15)

can be computed recursively taking into account that BT is a lower bidiagonal matrix as follows

d1 =
q1

α1

di+1 =
qi+1 − βi+1di

αi+1
i = 1, . . . , n,

where dj are the columns of D.
Therefore, we have that starting with p

(1) = −ζ1d1 and u
(1) = ζ1v1 the solutions u

(k) and
p
(k) can be recursively computed as

u
(i+1) = u

(i) + ζi+1vi+1

p
(i+1) = p

(i) − ζi+1di+1




 i = 1, . . . , n (2.16)

We want to point out here that the Craig algorithm we have described has an important prop-
erty of minimization. Let V = span {Vk} and Q = span {Qk}. At each step k the algorithm 2.1
computes u(k) such that [19]

min

u
(k) ∈ V

�
A

T
u
(k) − b

�
⊥ Q

�u− u
(k)

�M. (2.17)

It is straightforward to see that the Lagrange conditions of optimality for (2.17 ) are satisfied
from relations (2.7).

The Craig variant of G-K bidiagonalization can then be formulated as shown in Algorithm 2.1.

In the next Section 3, we give error estimates for the errors on u− u
(k) and p− p

(k), and on
the dual norm of the residual r(k) = A

T
u
(k) − b.
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Algorithm 2.1.

procedure [U,V,B,u,p] = G-K bidiagonalization(A,M,N,b,maxit);
β1 = �b�N−1; q1 = N

−1
b/β1;

w = M
−1

Aq1; α1 = w
T
Mw; v1 = w/

√
α1;

ζ1 = β1/α1; d1 = q1/α1; p(1) = −ζ1d1

k = 0; it = 0; convergence = false;
while convergence = false and it < maxit

k = k + 1; it = it+ 1 ;
g = N

−1
�
A

T
vk − αiNqk

�
; βk+1 = g

T
Ng;

qk+1 = g
�

βk+1;
w = M

−1 (Aqk+1 − βk+1Mvk); αk+1 = w
T
Mw;

vk+1 = w/
√
αk+1;

ζk+1 =
βk

αk+1
ζk;

dk+1 = (qk+1 − βk+1dk) /αk+1;
u
(k+1 = u

(k) + ζk+1vk+1; p(k+1 = p
(k) − ζk+1dk+1;

[ convergence ] = check(zk, . . . )
end while;

end procedure.

3 Stopping criteria and error estimates

Taking into account the expression of u(k) and (2.9), we have from theM-orthogonality properties
of V that the M norm of the error e(k) = u− u

(k) is

�e
(k)

�
2
M =

n�

j=k+1

ζ
2
j =

���
���z−



 zk

0




���
���
2

2
. (3.18)

Moreover, the dual norm of the residual

r
(k) = A

T
u
(k)

− b

can easily computed. From (2.9) we have

A
T
u
(k)

− b = A
T
V



 zk

0



− b = NQB
T



 zk

0



−NQe1�b�N−1 = βk+1ζkNQek, (3.19)

and, thus, from (1.3) and (1.4), the dual norm is

�A
T
u
(k)

− b�N−1 = |βk+1 ζk| ≤ σ1|ζk| = �Ã�2|ζk|. (3.20)

Finally, a bound on the N-norm of the error p− p
(k) can be obtained from (2.9) and (2.14)

�p− p
(k)

�N =
���
���QB

−1



z−



 zk

0








���
���
N

≤
�e(k)�M

σn
. (3.21)

Remark 3.1. We observe that, owing to the non singularity of both M and N, all βi and αi,
(i = 1, . . . , n) are strictly positive. The expression of the M norm of the error on u (3.18) and
the minimization property (2.17) entail that the sequence �e(k)�M decreases strictly.

5



3.1 A lower bound estimate

From Remark 3.1, we can apply the same strategy used in [1] and proposed by Hestenes-Stiefel
in [15] for testing the convergence of the conjugate gradient method. Given a threshold τ < 1
and an integer d, we can estimate �e(k)�2M by

ξ
2
k,d =

k+d+1�

j=k+1

ζ
2
j < �e

(k)
�
2
M. (3.22)

The procedure “check(zk, . . . )” in Algorithm 2.1 can then specialized as

procedure [ convergence ] = check(zk, k, d, τ)
convergence = false;
if k > d then

ξ
2 =

�k
j=k−d+1 ζ

2
j ;

if ξ ≤ τ then;
convergence = true;

end if;
end if;

end procedure.

Although the vale of ξk,d is a lower bound, it has two advantages:

• ξk,d measures the error at the step k − d but because all the following u
(k) minimise the

error, we can safely use the last ones;

• |ζj | ≤ ξk,d j = k − d+ 1, . . . , k and, thus, we have that u(k−1) will satisfy

�A
T
u
(k−1)

− b�N−1 ≤ �Ã�2 |ζk−1| ≤ �Ã�2 τ.

Furthermore, let T = B
T
B. T is a tridiagonal matrix of entries





T1,1 = α
2
1

Ti,i = α
2
i + β

2
i i = 2, . . . , n

Ti,i+1 = Ti+1,i = αiβi i = 1, . . . , n

0 otherwise

(3.23)

and T is a nonnegative positive definite matrix. The �z�22 is then equal to

�b�
2
N−1

�
T

−1
�
1,1

the (1, 1) entry of the inverse of T. Thus, we have

�e
(k)

�
2
M =

n�

j=k+1

ζ
2
j = �b�

2
N−1

��
T

−1
�
1,1

−
�
T

−1
k

�
1,1

�
, (3.24)

where Tk is the k × k principal submatrix of T.
Following [14] exposition, the estimate of the error can then be interpreted as a Gaussian

quadrature process for approximating the integral of a function with respect to a Stieltjes measure
defined by the singular values of B. In [14, Ch. 6], it is shown as this gives an estimate that is a
lower bound of the exact integral.
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3.2 An upper bound estimate

Despite being very inexpensive, the estimator (3.22) is still a lower bound of the error. It would
also be useful to have an upper bound estimator of the error. Taking into account the observa-
tion at the end of the previous section, we can use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one described in [14, Ch. 6].

Let 0 < a < σn a lower bound for all the singular values of B. We can then compute the
matrix T̂k+1 as

T̂k+1 =



 Tk αkβkek

αkβke
T
k ωk+1



 , (3.25)

where ωk+1 = a
2 + δk(a2) and δk(a2) is the k-entry of the solution of

�
Tk − a

2
I
�
δ(a2) = α

2
kβ

2
kek. (3.26)

We point out that the matrix
�
Tk − a

2
I
�
is positive definite and that T̂k+1 has one eigenvalue

equal to a
2.

Analogously to what is done in [14] for the conjugate gradient method, we can recursively com-
pute δ(a2)k and ωk+1 by using the Cholesky decomposition. Therefore, we obtain the following
realization of the procedure “check(zk, . . . )” in Algorithm 2.1;

procedure [ convergence ] = checkGR(zk, k, d, τ, a, �b�N−1 ,Bk)
convergence = false;

if k = 1 then
d̄1 = α

2
1 + β

2
1 − a

2;
else

d̄k = α
2
k + β

2
k −�k−1;

end if;

�k = a
2 +

α
2
kβ

2
k

d̄k
; ϕk =

β
2
kζ

2
k�

d̄k + a2 − β
2
k

;

if k > d then

ξ
2 =

�k
j=k−d+1 ζ

2
j ; Ξ2 = ξ

2 + ϕk;

if ξ̄ ≤ τ then;
convergence = true;

end if;

end if;
end procedure.

The procedure “checkGR” is the practical realization of a Gauss-Radau quadrature that uses
the matrices T̂k. Therefore, from [14, Theorem 6.4], we can derive that ξ̄ is an upper bound for
�e(k)�M.

The major drawback of the Gauss-Radau approach is the need for an accurate estimate of the
smallest singular value of B. This can be very difficult in general, however, in special cases, it
can be done. In particular, taking into account Remark 1.1, if the problem is the approximation
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of a variational problem by mixed (hybrid) finite-element methods, and the inf-sup condition
is satisfied [5, 7] a good estimate can be derived from the physical properties of the underlying
continuous model. In [14], adaptive strategies are proposed in order to improve the estimate of
a.

Another difficulty arises from the choice of the delay d. Again, this is very much problem
dependent and M and N dependent. If M and N can be chosen such that the generalized singular
values of A become bounded in an interval independent of n and m, the delay parameter d can
be quite small.

In the next section, we analyse the connections of the proposed stopping criteria for the
mixed/hybrid finite element method.

Remark 3.2. We presented here only the upper bound for the Gauss-Radau for the sake of
simplicity. As illustrated in [14], it is possible to obtain another upper bound based on Gauss-
Lobatto integration theory. In this case, we need both a lower bound a and an upper bound b for
the singular values of B, i.e. a ≤ σn and σ1 ≤ b.

3.3 Mixed finite-element

In this section, we apply the results of Section 3.1 and Section 3.2 to the solution of continuous
saddle-point problem [5, 7]. The aim is to have error bounds merging the approximation error
for the mixed finite-element method and the algebraic errors introduced by the generalized G-K
bidiagonalization method. Let H and P be two Hilbert spaces, and H� and P � the corresponding
dual spaces. Let

a(u, v) : H×H → IR b(u, q) : H× P → IR

|a(u, v)| ≤ �a(u, v)�| �u�H �u�H ∀u ∈ H, ∀v ∈ H

|b(u, q)| ≤ �b(u, q)� �v�H �q�P ∀u ∈ H, ∀q ∈ P

be continuous bilinear forms. Given f ∈ H� and g ∈ P �, we seek the solutions u ∈ H and p ∈ P

of the system

a(u, v) + b(v, p) = �f, v�H�,H ∀v ∈ H

b(u, q) = �g, q�P �,P ∀q ∈ P.

(3.27)

We can introduce the operators M , A and its adjoint A�

M : H → H�
, �Mu, v�H�×H = a(u, v) ∀u ∈ H, ∀v ∈ H

A
� : H → P �

, �A�
u, q�P �×P = b(u, q) ∀u ∈ H, ∀q ∈ P

A : P → H�
, �u,Aq�H×H� = b(u, q) ∀u ∈ H, ∀q ∈ P

and we have

�A
�
u, q�P �×P = �u,Aq�H×H� = b(u, q).

In order to make the following discussion simpler, we assume that a(u, v) is symmetric and
coercive on H

0 < χ1�v�H ≤ a(u, u). (3.28)

8



However, [7] the coercivity on the Ker(A�) is sufficient. We will also assume that ∃χ0 > 0 such
that

sup
v∈H

b(v, q)

�v�H
≥ χ0�q�P\Ker(A). (3.29)

Under the hypotheses (3.28), (3.29), and for any f ∈ H� and g ∈ Im(A�) then there exists (u, p)
solution of (3.27) [7, Theorem 1.1]. Moreover, (see [7, Theorem 1.1]) u is unique and p is definite
up to an element of Ker(A).

Let now Hh �→ H and Ph �→ P be two finite dimensional subspaces of H and P. As for
the problem (3.27), we can introduce the operators Ah : Ph → H�

h and Mh;Hh → H�
h. We also

assume that





Ker(Ah) ⊂ Ker(A)

supvh∈Hh

b(vu, qh)

�vh�H
≥ χn�qh�P\Ker(Ah)

χn ≥ χ0 > 0.

(3.30)

Under the hypotheses (3.28), (3.29), and (3.30), ([7, Proposition 2.1 and Theorem 2.1]), we have
that ∃(uh, ph) ∈ Hh × Ph solution of

a(uh, vh) + b(vh, ph) = �f, vh�H�
h,Hh

∀vh ∈ Hh

b(uh, qh) = �g, qh�P �
h,Ph

∀qh ∈ Ph.

(3.31)

and

�u− uh�H + �p− ph�P\Ker(A) ≤

κ

�
inf

vh∈Hh

�u− vh�H + inf
qh∈Ph

�p− qh�P

�
, (3.32)

where κ = κ(�a�, �b�,χ0,χ1) is independent of h.
Let {φi}i=1,...,m be a basis for Hh and {ψj}j=1,...,n be a basis for Ph. Then, the matrices M

and N are the Grammian matrices of the operators M and A. In order to use the latter theory,
we need to weaken the hypothesis, made in the Introduction 1, that A be full rank. In this case,
we have that

• s generalized singular values will be zero;

• however, the G-K bidiagonalization method will still work and it will compute a matrix B

of rank n− s.

On the basis of the latter observations, the error �e(k)�M can be still computed by (3.18) and
the bounds (3.20) and (3.21) hold. Finally, we point out the (3.30) imply that for h ↓ 0 the
generalized singular values of all A ∈ IRmh×nh will be bounded with upper and lower bounds
independent of h, i.e.

χ0 ≤ σnh ≤ · · · ≤ σ1 ≤ �a�.

We can then prove the following Theorem.

Theorem 3.1. Under (3.28), (3.29), and (3.30), and denoting by u
∗ one of the iterates of

Algorithm 2.1 for which �e(k)�M < τ , we have

�u(x)− u
∗(x)�H + �p− p

∗(x)�P\Ker(A) ≤

κ̌

�
inf

vh∈Hh

�u− vh�H + inf
qh∈Ph

�p− qh�P + τ

�
, (3.33)

9



where u
∗(x) =

�nh
i=1 φiu

∗
i ∈ Hh, p∗(x) =

�nh
j=1 φip

∗
j ∈ Ph and κ̌ a constant independent of h.

Proof.

�u(x)− u
∗(x)�H + �p− p

∗(x)�P\Ker(A) ≤

�u(x)− uh�H + �p− ph�P\Ker(A) +

�uh − u
∗(x)�H + �ph − p

∗(x)�P\Ker(A).

From (3.21), we have

�uh − u
∗(x)�H + �ph − p

∗(x)�P\Ker(A) ≤

�
1 +

1

σn

�
�e

(k)
�M,

and from (3.29) �
1 +

1

σn

�
≤

�
1 +

1

χ0

�
.

Thus, (3.33) follows with

κ̌ = max

�
κ,

�
1 +

1

χ0

��
.

The inequality (3.33) gives an easy way to choose the threshold τ . In practice, separate upper
bounds for

infvh∈Hh �u− vh�H, and infqh∈Ph �p− qh�P ,

can be obtained both a priori [7] or a posteriori [16], and τ can be chosen as a scalar of the same
order.

Finally, we point out that the Algorithm 2.1 convergence rate will not depend on the dimen-
sions of the problem.

4 Numerical experiments

4.1 Test problems

We have four classes of test problems:

• The Poisson problem with mixed boundary conditions on Ω = (0, 1)× (0, 1):

−∇ ·∇u = f in Ω, (4.34)
∂u

∂n
= 0 on ∂NΩ = {0× (0, 1)} ∪ {1× (0, 1)} , (4.35)

u = 0 on ∂DΩ = {(0, 1)× 0} (4.36)

u = 1 on ∂DΩ = {(0, 1)× 1} . (4.37)

where n is the external normal to the domain.

• The Poisson equation with Neumann zero boundary conditions [18] on a domain Ω =
(0, 1)× (0, 1):

−∇ ·∇u = f in Ω, (4.38)
∂u

∂n
= 0 on ∂Ω (4.39)

where n is the external normal to the domain and f has zero mean.
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• The Stokes problem on a domain with a step: Ω is the L-shaped region generated by taking
the complement in (1, L)× (1, 1) of the quadrant (1, 0]× (1, 0].

• A set of Darcy’s problems supplied by the Dept. of Mathematical Modelling in DIAMO, s.e.,
Straz pod Ralskem, Czech Republic, that represent fluid flow in porous media: these test
problems [8] can be downloaded from http://www.cise.ufl.edu/research/sparse/matrices.

Poisson with mixed finite-element approximation Following [7], the Poisson problem is
casted in its dual form as a Darcy’s problem:






Find w ∈ H = {�q | �q ∈ Hdiv(Ω), �q · n = 0 on ∂N (Ω)} , u ∈ L
2(Ω) s.t.

�
Ω �w · �q +

�
Ω) div(�q)u =

�
∂D(Ω) uD�q · n ∀�q ∈ H

�
Ω div(�w)v =

�
Ω fv ∀v ∈ L

2(Ω).

We subdivided Ω with a uniform mesh of triangles, see Figure 4.1. Then, we approximated the
spaces H and L

2(Ω) by RT0 and by piecewise constant functions respectively using the Matlab
software described in [2]. The matrix N is the mass matrix for the piecewise constant functions
and it is a diagonal matrix with diagonal entries equal to the area of the corresponding triangle.
The matrix M has been chosen such that each approximation Hh of H is

Hh =
�
q ∈ IRm

�q�
2
Hh

= q
T
Mq

�
.

Therefore, denoting by W the mass matrix for Hh, we have

M = W +AN
−1

A
T
.

We point out that the pattern of W is structurally equal to the pattern AN
−1

A
T . In Table 4.1,

we give the dimensions, the value of h, the number of nonzero entries in A and in the upper
triangular part of M for each generated mesh.

Moreover, the discrete norm of q is equal to theH norm of the corresponding finite dimensional
function given by the linear combination of the basis functions with q. With the chosen boundary

Figure 4.1: An example of uniform triangulation

conditions, it is easy to verify that the continuous solution u is u(x, y) = x.

11



h = 2−k m n nnz(M) nnz(A)

2−6 12288 8192 36608 24448

2−7 49152 32768 146944 98048

2−8 196608 131072 588800 392704

2−9 786432 524288 2357248 1571840

Table 4.1: Poisson with mixed b.c.data and RT0 (nnz(M) is only for the symmetric part)

Neumann problem Following [18], we introduce the function �w(x) = −∇u and, then we
rewrite equation (4.38) in Darcy form

�w(x) +∇u = 0

∇ · �w(x) = f




 . (4.40)

As in [18], we partition the domain by
√
n ×

√
n uniform mesh, where n = 4k for a fixed k and

approximate the derivative by finite differences. The Neumann boundary conditions imply that
w = 0 outside Ω. After scaling, the finite dimensional problem has the following structure:



 Im E

E
T 0







 w

u



 =



 0

b



 .

Given the bidiagonal matrix C ∈ IR
√
n−1×

√
n

Ci,j =






−1 i = j,

1 j = i+ 1,

0 otherwise,

the matrix E is

E =
1

√
n− 1



 I√n ⊗C

C⊗ I√n



 ,

and the vector b has entries equal to the values of the function f in the nodes divided by
√
n.

We point out that the matrix E is not full rank (the product of E by a vector with all equal
entries produces the zero vector). We chose the following values for k

k = {5, 6, 7, 8, 9} .

In all the 5 cases, the right hand side b has been chosen with entries

bi =





−1 i ≤

n
2 ,

1 i >
n
2 .

In all test problems, we modified the (1, 1) block adding to it the matrix EE
T and, then, corrected

the right-hand side consistently with (1.6). In Table 4.2, we give the dimensions, the number of
nonzero entries in A and in the upper triangular part of M for each generated mesh.
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name m n nnz(M) nnz(E)

NFD1 1984 1024 7748 3968

NFD2 8064 4096 31876 16128

NFD3 32512 16384 129284 65024

NFD4 130560 65536 520708 261120

NFD5 523264 262144 2089988 1046528

Table 4.2: Poisson with Neumann b.c. data (nnz(M) is only for the symmetric part)

Stokes problems The Stokes problems have been generated using the software provided by
ifiss3.0 package [9, 10]. We use the default geometry of “Step case” and the Q2-Q1 approxi-
mation described in [22, page 27]. In Table 4.3, we give the dimensions, the number of nonzero
entries in A and in the upper triangular part of M for each generated mesh.

name m n nnz(M) nnz(A)

Step1 418 61 2126 1603

Step2 1538 209 10190 7140

Step3 5890 769 44236 30483

Step4 23042 2945 184158 126799

Step5 91138 11521 751256 518897

Table 4.3: Stokes problems data (nnz(M) is only for the symmetric part)

DIAMO problems The DIAMO problems have been downloaded. As for the Poisson problem,
we added to the (1,1) block the matrix AA

T and modified the right-hand side following (1.6).
We have the original right-hand side only for the DEN2 problem. For all the remaining ones, we
use a value of b similar to the one used for the Poisson problems.

In Table 4.4, we give the dimensions, the number of nonzero entries in A and in the upper
triangular part of M for each generated mesh. Moreover, we indicate if A has full rank.

4.2 Numerical results

For all the experiments, we report the summary of the results obtained using a Matlab version
of Algorithm 2.1, where the matrices M and N are factorized using the Matlab function chol

([R, err, S] = chol(X), X = M or Q). For the dual formulation of the Poisson problem (4.34), we
chose f = 0 and, thus we could compare the error on the computed solution exactly. In Table 4.5,
we display the number of iterations, �e(k)�2 for the velocity field, the residual AT

u − b, and
�p− p

(k)�2 for τ = 10−8. The number of steps is independent of the value of h. The number of
iterations in the table includes the extra d steps.

13



name m n nnz(M) nnz(A) Is A full rank.

DAN2 63750 46661 220643 127054 yes

d pretok 129160 53570 627272 258320 no

olesnik0 61030 27233 280575 122060 no

turon 133814 56110 184158 126799 no

Table 4.4: DIAMO problems data (nnz(M) is only for the symmetric part)

h = 2−k # Iter.s �e(k)�2 �AT
u
(k) − b�2 �p− p

(k)�2 κ(B)

h = 2−6 10 2.8e-12 2.9e-16 4.1e-11 1.05

h = 2−7 10 9.7e-12 3.0e-16 2.6e-10 1.05

h = 2−8 10 2.5e-11 3.0e-16 7.9e-10 1.05

h = 2−9 10 2.9e-10 2.8e-16 1.3e-08 1.05

Table 4.5: Poisson with mixed b.c. data and RT0 problem results (d = 5, τ = 10−8).

In Figure 4.2, we display the convergence behaviour for the problem corresponding to h = 2−8.

Figure 4.2: Convergence behaviour for Poisson with mixed b.c. data and RT0 problem (h = 2−8,
d = 5, τ = 10−8).

For the Stokes problems, we have a well defined Hilbert space H for the velocity filed:

H = H
1(Ω)×H

1(Ω).

Moreover, the pressure (or potential) is defined in P = L
2(Ω). The package ifiss3.0 gives the

possibility of supplying the mass matrix N for the approximation of the norm on L
2(Ω). Thus, we

can compute the generalized G-K bidiagonalization using the correct approximation of the norms
for H and P. It is not surprising that, in agreement with the results of [24, 21, 10], Algorithm 2.1
computes the solutions of the problem in a number of steps independent of the size of the mesh.
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In Table 4.2, we report the summary of the results, where the tolerance τ was fixed at τ = 10−10

and the value of the delay d was five. The number of iterations in the table includes the extra d

steps. On this set of problems the Gauss-Radau upper bounds are very close to the lower bounds.
In Figure 4.2, we display the convergence behaviour for problem Step5.

name # Iter.s �e(k)�2 �AT
u
(k) − b�2 �p− p

(k)�2 κ(B)

Step1 30 6.8e-16 5.1e-16 1.1e-13 7.6

Step2 32 5.4e-14 5.4e-14 5.0e-12 7.7

Step3 34 3.8e-14 2.7e-14 1.0e-11 7.8

Step4 34 5.0e-13 1.3e-13 1.4e-10 7.8

Step5 35 1.8e-13 3.1e-14 1.7e-10 7.8

Table 4.6: Stokes problems results (d = 5, τ = 10−10).

Figure 4.3: Convergence behaviour for problem Step5 (d = 5, τ = 10−10).

In Table 4.2, we display the results for the Neumann problems with τ = 10−8 and d = 5.
For these problems, the value of the pressure is known minus a constant and we do not give the
true error value in the table. The convergence rate of Algorithm 2.1 is independent of n in these
problems. The number of iterations in the table includes the extra d steps. In Figure 4.4, we
display the convergence behaviour for problem NFD5.

Finally, in Figure 4.5, we display the convergence behaviours for the DIAMO set of problems.
In these cases it was impossible to have a reasonable evaluation of the norm of P and we used
1/n2 by the identity of order m as an approximation of the norm. In all the cases, the value of
τ has been chosen as τ = 1

n2 .

5 Conclusions

Several authors have discussed the relations between G-K algorithm and Minres algorithm [17,
3, 19]. Moreover, the use of block diagonal preconditioners as optimal preconditioners for Krylov
methods has been proved in [21, 10] for systems arising in the solution of fluid-dynamic problems.
It is known that Minres can exhibit some form of stagnation every other step, i.e. after one step
where the global residual of the system decreases, the successive step does not.
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name # Iter.s �e(k)�2 �AT
u
(k) − b�2 κ(B)

NFD1 9 1.5e-12 3.3e-12 5.5e+04

NFD2 9 1.2e-12 3.1e-13 8.2e+03

NFD3 9 4.7e-12 2.5e-12 4.4e+04

NFD4 9 2.0e-11 2.2e-12 1.7e+04

NFD5 9 9.0e-11 1.2e-13 6.0e+03

Table 4.7: Poisson with Neumann b.c. problems: results (d = 5, τ = 10−8).

Figure 4.4: Convergence behaviour for problem NFD5 (d = 5, τ = 10−8).

Here, we have generalized the Craig version of G-K bidiagonalization to the augmented system.
Taking advantage of the inf-sup conditions, we have shown that the problem can be transformed
into an equivalent one where the proposed algorithm converges with a rate independent of the
dimension of the problem itself.

We point out that the cost of one iteration of Algorithm 2.1 is the same of one step of Minres
with a block diagonal preconditioner made with M and N. At each step the error �e(k)�2M
decreases and the additional steps necessary to estimate the convergence can be very moderate
if we choose the correct norms.

We proposed both a lower and an upper bound estimator of the error that are reliable and
computationally inexpensive. Their properties follow easily from the results of [14]. The upper
bound can be computationally problematic for problems where the matrix A is rank deficient
as we have noticed in solving the Neumann test problems. However, the lower bound has been
always very accurate.

Finally, we observe that Algorithm 2.1 cannot be extended straightforwardly to the stabilized
version of augmented systems such as



 M A

A
T −N







 u

p



 =



 0

b



 .

The matrix governing the system is now symmetric quasi-definite [11] and in this case an LDL
T

factorization without pivot can be a viable alternative [12, 23]. Moreover, in this case, it would
be appropriate to investigate the use of a conjugate gradient-like algorithm.
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(a) DAN2 (b) d pretok

(c) olensk0 (d) turon

Figure 4.5: DIAMO problems results (d = 5, τ =
1

n2
).
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