
2011-1

Numerical Analysis Group Internal Report

C interfaces to HSL routines

J. D. Hogg

Version 1.0
5th December 2011

Copyright (c) 2011 Science and Technology Facilities Council

C interfaces to HSL routines

Jonathan Hogg

December 5, 2011

Abstract

The C programming language is widely used and can be interfaced to almost every serious numerical
computational language in existence. By implementing a C interface to HSL routines the number of
people able to use HSL software is significantly increased.

Interfacing C and Fortran 77 code in a portable fashion is a non-trivial problem that has a number
of established solutions, such as the use of GNU autotools. Fortran 90 introduced modules and derived
types that are not catered for by these approaches. Therefore extra attention is required to allow ready
use of such software from C.

This guide is aimed at HSL developers and both describes how to use standards-compliant interoper-
ability mechanisms for, and recommendations on the implementation of, consistent C interfaces to HSL
routines.

Version Date Notes
1.0 5th December 2011 Original document

1 Outline

To implement a C interface to an HSL routine, the Fortran 2003 mechanism for interoperability with C should
be used. This is described, for instance, in “Modern Fortran Explained”, by Metcalf, Reid and Cohen, and
is supported by all modern Fortran compilers.

To avoid introducing a dependency on Fortran 2003 to the main Fortran code, the C interface is imple-
mented through a separate wrapper. Hence, in addition to the main Fortran code (e.g. hsl ma97d.f90),
the C interface adds two additional files (for each precision):

• A C header file <packagename><prec>.h (e.g. hsl ma97d.h) that specifies the C structures and func-
tion prototypes that form the C interface. It contains no executable code, and performs a function
similar to the .mod file under Fortran (but must be written by hand rather than being automatically
generated).

• A Fortran wrapper file <packagename><prec> ciface.f90 (e.g. hsl ma97d ciface.f90) that con-
tains the Fortran definitions of the interoperable data types and wrapper routines described in the C
header file. It will also often contain a module with helper routines that are used by more than one
wrapper routine.

The C user must include the header in any file that makes a call to a HSL routine (similar to the Fortran
USE statement). The C user must also link against the Fortran wrapper file and main Fortran code. If
the Fortran compiler is not used to invoke the linker, the C user may need to explicitly include any Fortran
compiler libraries in the link command. For C interoperability to work correctly, matching C and Fortran
compilers should be used. If this is not done, the results are undefined.

Arguments and structures for the C interface need not match the Fortran one. This allows some func-
tionality to be omitted from the C interface if desired. However, it is helpful to both the developer and user
if C and Fortran interface naming and usage match as closely as possible.

1

For each routine in the main Fortran code, the Fortran wrapper defines a similar C-interoperable wrapper
routine with the same name. This exactly matches a C function prototype in the C header file. The wrapper
routine will provide any required translation between C and Fortran, and include a call to the Fortran version
of the routine.

While built-in data types such as integer and real can be passed directly through the wrapper function
as an argument of the main Fortran routine, this is not the case for defined types unless they have the bind

attribute. To avoid needing to make any changes to the main Fortran code, the wrapper function defines a
new type for each derived type in the main Fortran code and copies the components to and for, as needed.
This will exactly match a C struct defined in the C header file. This means that there are three locations
where a type with a given name are defined: the C header and Fortran wrapper files (that must match), and
the main Fortran code (that doesn’t have to).

Finally, it should be possible for the C interface to be used in such a fashion that it only adds a small
overhead that is independent of problem size, even if this is not the default (e.g. it may require the use of
Fortran indexing for arrays in C).

2 Additional features required in the C interface

2.1 Additions relating to array indexing

The default for the C interface must be to use 0-based indexing. As HSL packages generally do not alter
original user data, this will often necessitate the time and memory overhead of a copy. One or more
additional members of the (C) control type may be added allowing the user to specify if they wish to use
1-based (Fortran) indexing to avoid these overheads, for example:

C control type

s t r u c t ma97 contro l d {
i n t f a r r a y s ; // I f t rue use 1−based index ing
i n t other param ; // Does something e l s e
. . .

} ;

Main code Fortran control type

type ma97 control
i n t e g e r : : other param = de f au l t

end type ma97 control

2.2 Additions for control type initialisation

C does not offer any mechanism for setting default values of structure members. Therefore an additional
routine must be added to the interface for a control type that sets its default values. This should be named
<packagename> default control. See Section 5.1 for further information.

3 The header file

The header file specifies the interface to the C compiler. Additional short comments should be included to
allow its use as a reference by the user.

Generally it consists of the following sections:

Copyright statement

Permission has been obtained to distribute the header files (only) under a modified BSD licence. This allows
users to distribute them with their code and dynamically load HSL routines from a shared library if they
are available. This functionality is exploited by Ipopt.

The copyright statement at the start of the file states these permissions.

#include guard

The C preprocessor lines

2

#i f n d e f HSL MA97D H
#d e f i n e HSL MA97D H
. . .

#e n d i f

are referred to as a #include guard. They ensure that, if the header file is included more than once by the
user, symbols are not multiply defined.

#define symbol remapping

C does not allow generic calls in the same way as Fortran. Each routine must therefore have a unique name.
HSL data types and functions therefore have an underscore followed by a single letter appended to their
name indicating their type (e.g. d for double precision).

The typical user will only require to use a single precision variant within their code. In this case, and to
simplify documentation, it is useful to omit the precision specifying suffix. This is achieved by creating an
alias through the use of the C pre-processor’s #define directive, and only affects the C header file and user’s
program. By placing these directives in an #ifndef block we ensure only the first header file encountered
defines these aliases.

While it is possible to exploit the fact that the first encountered header file is the one to define these
aliases, it is not recommended. Instead, best practice for the user is to always use the explicit suffix in mixed
precision codes.

/∗ Order o f header f i l e i n c l u s i on determines meaning o f ma97 contro l
and ma97 de f au l t c on t r o l () ∗/

#inc lude ” hsl ma97d . h”
#inc lude ” hsl ma97s . h”

struct ma97 control dcont ro l ; /∗ same as ma97 contro l d ∗/
struct ma97 contro l s s c o n t r o l ;

ma97 de f au l t con t ro l (dcont ro l) ; /∗ same as ma97 de f au l t c on t r o l d ∗/
m a 9 7 d e f a u l t c o n t r o l s (s c o n t r o l) ;

Typedefs

To minimise differences between header files for different precisions in a package, C typedefs should be used
to provide an alias to define the package types. These names end with an underscore to indicate that they
are expected to be internal to the header file.

Struct definitions

The structure definitions must match, in both order and types of members, the corresponding type definition
in the Fortran interface file. The name of the structure and the names of its members need not match; this
removes the need to append precision suffixes to types in the Fortran wrapper file, even though it is required
in the C header file.

Function definitions

The C function prototype must match in data type and name the corresponding procedure definition in the
Fortran interface file. Corresponding argument names may differ, but for ease of maintenance should be
made to match.

3

Example

Listing 1 shows a skeleton C header file.

Listing 1: Skeleton of a C header file
/∗
∗ COPYRIGHT (c) 2011 Science and Technology Fa c i l i t i e s Council (STFC)
∗ Origina l date 20 September 2011
∗ Al l r i g h t s reserved
∗
∗ Written by : Jonathan Hogg
∗
∗ THIS FILE ONLY may be r ed i s t r i b u t e d under the modified BSD l i c ence below .
∗ Al l other f i l e s d i s t r i b u t e d as part of the HSL MA97 package
∗ requ ire a l i c ence to be obtained from STFC and may NOT be r ed i s t r i b u t e d
∗ without permission . Please r e f e r to your l i c ence for HSL MA97 for f u l l terms
∗ and condi t ions . STFC may be contacted via h s l (at) s t f c . ac . uk .
∗
∗ Modified BSD l i c ence (t h i s header f i l e only) :
∗
∗ Redis t r i bu t ion and use in source and binary forms , with or without
∗ modif icat ion , are permitted provided tha t the f o l l ow ing condi t ions are met :
∗ ∗ Redi s t r i bu t ions of source code must re ta in the above copyr ight
∗ notice , t h i s l i s t o f condi t ions and the f o l l ow ing disc la imer .
∗ ∗ Redi s t r i bu t ions in binary form must reproduce the above copyr ight
∗ notice , t h i s l i s t o f condi t ions and the f o l l ow ing disc la imer in the
∗ documentation and/or other mater ia l s provided with the d i s t r i b u t i on .
∗ ∗ Neither the name of STFC nor the names of i t s con t r i bu tor s may be used
∗ to endorse or promote products der ived from th i s sof tware without
∗ s p e c i f i c pr ior wri t ten permission .
∗
∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
∗ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
∗ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
∗ ARE DISCLAIMED. IN NO EVENT SHALL STFC BE LIABLE FOR ANY DIRECT, INDIRECT,
∗ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
∗ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
∗ OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
∗ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
∗ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
∗ EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
∗
∗/

#ifndef HSL MA97D H
#define HSL MA97D H

#ifndef ma97 de fau l t con t ro l
#define ma97 control ma97 contro l d
. . .
#endif

typedef double ma97pkgtype d ;
typedef double ma97rea l type d ;

struct ma97 contro l d {
int f a r r a y s ; /∗ Use C or Fortran numbering ∗/
int ac t i on ; /∗ Continue on s i n gu l a r i t y i f !=0 (true) ,

otherwise abort ∗/
ma97rea l type d u ; /∗ Pivot ing parameter ∗/
. . .

} ;

/∗ Set d e f au l t va lues of contro l ∗/
void ma97 de f au l t con t ro l d (struct ma97 contro l d ∗ con t r o l) ;
void ma97 enqu i re inde f (void ∗∗keep , ma97pkgtype d d []) ;
. . .
#endif

4

4 Fortran interface file

An example of a skeleton Fortran wrapper file is given in Listing 2.

Listing 2: Skeleton of a Fortran wrapper file
module hs l ma97 doub l e c i f a c e

use i s o c b i n d i n g
use hsl ma97 double , only : &

f ma97 akeep => ma97 akeep , &
. . .
f ma97 cont ro l => ma97 control

implicit none

integer , parameter : : C DOUBLE

type , bind (C) : : ma97 control
integer (C INT) : : f a r r a y s ! true (!=0) or f a l s e (==0)
real (wp) : : u

end type ma97 control

. . .

contains

subroutine c opy con t r o l i n (ccont ro l , f c on t r o l , f a r r a y s)
type (ma97 control) , intent (in) : : c c on t r o l
type (f ma97 cont ro l) , intent (out) : : f c o n t r o l
logical , intent (out) : : f a r r a y s

f a r r a y s = (c con t r o l%f a r r a y s . ne . 0)
f c o n t r o l%u = ccon t r o l%u

end subroutine c opy con t r o l i n

end module hs l ma97 doub l e c i f a c e

subroutine ma97 de f au l t con t ro l d (c c on t r o l) bind (C)
use hs l ma97 doub l e c i f a c e
implicit none

type (ma97 control) , intent (out) : : c c on t r o l

type (f ma97 cont ro l) : : f c o n t r o l

c c on t r o l%f a r r a y s = 0 ! f a l s e
c c on t r o l%u = f c o n t r o l%u
. . .

end subroutine ma97 de f au l t con t ro l d

. . .

4.1 Code organisation

To minimise the amount of repeated code used to remap names in the use statements and to specify derived
types a module should be used to allow reuse of this code in the wrapper. It should have the name of the
Fortran module it is wrapping with ciface appended (e.g. hsl ma97 double ciface). This module may
also contain subroutines that copy data between the types used in the main Fortran and the interoperable
types used in the wrapper, along with any other common code.

4.2 Symbol naming conventions

Note that all names of routines and derived types that are imported from the main Fortran code in the USE

statement are renamed to include the prefix f . This avoids confusion as to which routine or data type we
are using.

Variable names start with a c or f to indicate whether they refer to the C or Fortran variable (which
may in fact be pointers to the same bit of memory). Where the C and Fortran references for a variable are
the same (for example, those that will be INTEGER, INTENT(IN) dummy arguments of the Fortran routines)
no prefix is used.

5

5 Handling HSL derived types and unsupported situations

In general, developers should refer to existing C interfaces or language reference materials to see how basic
types are handled. This section covers HSL standard ways of handling our derived types and some common
situations that are not supported under currently available standards.

5.1 A control type

An HSL control type is used to pass parameters that affect how an algorithm behaves. It has intent(in)
with no allocatable components. For example, the main Fortran definition might be as follows:

type ma97 control
log ica l : : action = . true .
integer : : nemin = 8
integer , dimension (2) : : lpage = 2∗∗12
double precision : : u = 0 .01

end type ma97 control

A new interoperable data type is created that has a Fortran definition in <packagename> ciface.f90:

type , bind (C) : : ma97 contro l d
use i s o c b i n d i n g
integer (C INT) : : action
integer (C INT) : : nemin
integer (C INT) , dimension (2) : : lpage
real (C DOUBLE) : : u

end type ma97 contro l d

and a C definition in <packagename>.h:

struct ma97 control {
int ac t i on ; // 0 i s true , 1 i s f a l s e
int nemin ;
int lpage [2] ;
double u ;

} ;

Since (pre-C99) there is no logical data type in C, an integer is used instead, following the C convention that
0 is false and non-zero is true. Further, C has the concept of reserved words that may clash with component
names. If this is the case, an underscore is appended to the name in the C version only. For example,
control.static matches control%static.

A simple Fortran routine can translate between the interoperable and main data types:

subroutine c o p y c o n t r o l i n (ccont ro l , f c o n t r o l)
type (ma97 control) , intent (in) : : c c o n t r o l
type (f ma97 cont ro l) , intent (out) : : f c o n t r o l

f c o n t r o l%action = (c c o n t r o l%action . eq . 0)
f c o n t r o l%neim = c c o n t r o l%nemin
f c o n t r o l%lpage (:) = c c o n t r o l%lpage (:)
f c o n t r o l%u = c c o n t r o l%u

end subroutine c o p y c o n t r o l i n

For each routine a wrapper may then be written:

subroutine ma97 do something d (c c o n t r o l) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (ma97 control) , intent (in) : : c c o n t r o l

6

type (f ma97 cont ro l) : : f c o n t r o l

ca l l c o p y c o n t r o l i n (ccont ro l , f c o n t r o l)
ca l l f ma97 do something (f c o n t r o l)

end subroutine ma97 do something d

with a C prototype of

void ma97 do something d (const struct ma97 control ∗ c o n t r o l) ;

To set default values a new routine is implemented in the Fortran wrapper file:

subroutine ma97 de f au l t con t ro l d (c c o n t r o l) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (ma97 control) , intent (out) : : c c o n t r o l

type (f ma97 cont ro l) : : f c o n t r o l

i f (f c o n t r o l%action) then
c c o n t r o l%action = 0 ! t rue

else
c c o n t r o l%action = 1 ! f a l s e

endif
c c o n t r o l%nemin = f c o n t r o l%nemin
c c o n t r o l%lpage (:) = f c o n t r o l%lpage (:)
c c o n t r o l%u = f c o n t r o l%u

end subroutine ma97 de f au l t con t ro l d

This copies the defaults from the original Fortran type to future proof against any changes to them. We give
it the following C prototype:

void m a 9 7 c o n t r o l i n i t i a l i z e d (struct ma97 control ∗ c o n t r o l) ;

6 An info type

An HSL info type is used to return statistical information to the user. It has intent(out) and no allocatable
components. They can be handled in a very similar fashion to control variables, except that there are no
default values. For example, there might be the following definition of the main Fortran type:

type ma97 info
integer (s e l e c t e d i n t k i n d (1 8)) : : n f a c t o r
integer : : nsup
double precision : : d e t l og

end type ma97 info

The interoperable type will have the following C header file entry

struct ma97 info d {
long int n f a c t o r ;
int nsup ;
double det l og ;

} ;
void ma97 ge t s ta t s d (struct ma97 info d ∗ i n f o) ;

and the Fortran wrapper file will look similar to:

7

module h s l m a 9 7 d o u b l e c i f a c e
use hsl ma97 double , only : : f ma97 in f o => ma97 info , &

f m a 9 7 g e t s t a t s => ma97 get s ta t s
use i s o c b i n d i n g
implicit none

type , bind (C) : : ma97 info
use i s o c b i n d i n g
integer (c l ong) : : n f a c t o r
integer (c i n t) : : nsup
real (c double) : : d e t l og

end type ma97 info
contains

subroutine c o p y i n f o o u t (f i n f o , c i n f o)
type (f ma97 in f o) , intent (in) : : f i n f o
type (ma97 info) , intent (out) : : c i n f o

c i n f o%n f a c t o r = f i n f o%n f a c t o r
c i n f o%nsup = f i n f o%nsup
c i n f o%det l og = f i n f o%det l og

end subroutine c o p y i n f o o u t
end module h s l m a 9 7 d o u b l e c i f a c e

subroutine ma97 ge t s ta t s d (c i n f o) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (ma97 info) , intent (out) : : c i n f o

type (f ma97 in f o) : : f i n f o

ca l l f m a 9 7 g e t s t a t s (f i n f o)
ca l l c o p y i n f o o u t (f i n f o , c i n f o)

end subroutine ma97 ge t s ta t s d

7 A keep type

A keep variable is characterised as one used to preserve information between calls to routines of a package.
Typically these store large amounts of data that the user should not alter. Further, the data layout is not
made available to the user as it is complex and subject to future change, so is not documented to a standard
suitable for publishing in a user guide. Often these data types have allocatable components that are not
interoperable with C under currently available standards.

Handling these data types using a mixture of the techniques above for control and info variables may
be feasible, but is undesirable because of potentially much larger copying overheads at run time in addition
to increased demands on the programmer. Instead the private nature of the data type can be exploited as
described below.

Consider the following typical example of a Fortran definition

type ma97 keep
private
integer : : nnodes
type (ma97 node) , dimension (:) , allocatable : : nodes

end type ma97 keep

that is not interoperable, but does consider its components to be private. It can be treated as a black box

8

by the user, and as such an untyped pointer (void *) is used to store the location of the type in C. As C
does not know the size of the structure or the format of its descriptor, it can only be allocated on the Fortran
side. This means that the user must pass a pointer to this void * variable (i.e. a void **) so that it may
be set by the Fortran code. As such a typical call may have the following prototype

void ma97 analyse d (void ∗∗keep , const struct ma97 contro l d ∗ cont ro l ,
struct ma97 info d ∗ i n f o) ;

while the Fortran side looks like this

subroutine ma97 analyse d (ckeep , c cont ro l , c i n f o) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (c p t r) , intent (out) : : ckeep
type (ma97 control) , intent (in) : : c c o n t r o l
type (ma97 info) , intent (in) : : c i n f o

type (f ma97 keep) , pointer : : fkeep
type (f ma97 cont ro l) : : f c o n t r o l
type (f ma97 in f o) : : f i n f o

ca l l c o p y c o n t r o l i n (ccont ro l , f c o n t r o l)
allocate (fkeep) ; ckeep = c l o c (fkeep)

ca l l f ma97 ana lyse (fkeep , f c o n t r o l , f i n f o)

ca l l c o p y i n f o o u t (f i n f o , c i n f o)
end subroutine ma97 analyse d

On subsequent calls where keep has intent(inout) and is already allocated we may replace the allocate
with a pointer association such as in the following:

subroutine ma97 fa c t o r i s e d (ckeep , c cont ro l , c i n f o) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (c p t r) , intent (inout) : : ckeep
type (ma97 control) , intent (in) : : c c o n t r o l
type (ma97 info) , intent (in) : : c i n f o

type (f ma97 keep) , pointer : : fkeep
type (f ma97 cont ro l) : : f c o n t r o l
type (f ma97 in f o) : : f i n f o

ca l l c o p y c o n t r o l i n (ccont ro l , f c o n t r o l)
ca l l c f p o i n t e r (ckeep , fkeep)

ca l l f m a 9 7 f a c t o r i s e (fkeep , f c o n t r o l , f i n f o)

ca l l c o p y i n f o o u t (f i n f o , c i n f o)
end subroutine ma97 fa c t o r i s e d

Obviously, Fortran will need to free the memory as C has insufficient information to do so. This can often
be handled transparently in the finalise routine:

subroutine m a 9 7 f i n a l i s e d (ckeep) bind (C)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

9

type (c p t r) , intent (inout) : : ckeep

type (f ma97 keep) , pointer : : fkeep

ca l l c f p o i n t e r (ckeep , fkeep)

ca l l f m a 9 7 f i n a l i s e (fkeep)

deallocate (fkeep) ; ckeep = c n u l l p t r
end subroutine m a 9 7 f i n a l i s e d

Note that we could use a void * rather than void ** pointer after the first call. Instead, we maintain
the void ** data type to avoid confusion.

8 Nested types

Nested (interoperable) types are supported in the obvious fashion:

! Fortran
type , bind (C) : : i nner

integer (C INT) : : data1
end type i nne r
type , bind (C) : : outer

type (inner) : : inner1
integer (C INT) : : data2

end type
. . .
outer%inner1%data1 = 1

/∗ C ∗/
s t r u c t inner {

i n t data1 ;
} ;
s t r u c t outer {

s t r u c t inner inner1 ;
i n t data2 ;

} ;
outer . inner1 . data1 = 1 ;

9 Optional arguments

Under Fortran 2003, interoperability of optional arguments is not supported. While a supplemental technical
report to Fortran 2008 is under development to support this, this issue must be worked around at present.

For a Fortran routine with optional arguments there are three choices:

1. Do not support optional arguments in the C interface.

2. Use the convention on the C side that a NULL pointer means argument not present. The Fortran side
will then need to test each argument before attempting to associate it. This may not be a good option
if an argument has intent(out) and is not of interoperable type.

10

3. Offer different names in C for different combinations of optional arguments. Again, the Fortran side will
need to handle this, but can do so using Fortran-style optional arguments and a non-C interoperable
main routine that does most of the work.

e.g.
Main Fortran routine

subroutine opt eg (arg1 , arg2)
integer , intent (inout) : : arg1
integer , optional , intent (in) : : arg2

arg1 = arg1 ∗∗2
i f (pre sent (arg2)) arg1 = arg1 + arg2 ∗∗2

end subroutine opt eg

Fortran interface with optional argument omitted.

! vo id op t e g (i n t ∗arg1) ;
subroutine opt eg (arg1) bind (C)

use mymodule ci face

integer (C INT) : : arg1

ca l l f o p t e g (arg1)
end subroutine opt eg

Fortran interface with optional argument via C convention

! vo id op t e g (i n t ∗arg1 , cons t i n t ∗arg2) ;
subroutine opt eg (arg1 , carg2) bind (C)

use mymodule ci face

integer (C INT) : : arg1
type (C PTR) , va lue : : carg2

integer (C INT) , pointer : : f a r g2

nul l i fy (f a rg2)
i f (C ASSOCIATED(fa rg2)) ca l l C F POINTER(carg2 , f a rg2)

i f (a s s o c i a t e d (f a rg2)) then
ca l l f o p t e g (arg1 , arg2=fa rg2)

else
ca l l f o p t e g (arg1)

endif
end subroutine opt eg

Fortran interface with different names for with and without

! vo id op t e g w i t h ou t (i n t ∗arg1) ;
subroutine opt eg wi thout (arg1) bind (C)

use mymodule ci face

integer (C INT) : : arg1

ca l l f o p t e g (arg1)
end subroutine opt eg wi thout

! vo id o p t e g w i t h (i n t ∗arg1 , i n t arg2) ;
subroutine opt eg wi th (arg1 , arg2) bind (C)

11

use mymodule ci face

integer (C INT) : : arg1
integer (C INT) , va lue : : arg2

ca l l f o p t e g (arg1 , arg2=arg2)
end subroutine opt eg wi th

10 Strings

While the C and Fortran char and character(len=1) types are interoperable, the char * and character(len=*)
types require more work. The following code may be of use:

module h s l m a 9 7 d o u b l e c i f a c e
use i s o c b i n d i n g
implicit none

interface
integer (c s i z e t) pure function s t r l e n (c s t r) bind (C)

use i s o c b i n d i n g
implicit none
type (c p t r) , value , intent (in) : : c s t r

end function s t r l e n
end interface

contains
function c s t r t o f c h a r (c s t r) result (f cha r)

type (c p t r) : : c s t r
character (kind=c char , len=s t r l e n (c s t r)) : : f cha r

integer : : i
character (c char) , dimension (:) , pointer : : temp

ca l l c f p o i n t e r (c s t r , temp , shape = (/ s t r l e n (c s t r) /))

do i = 1 , s ize (temp)
f cha r (i : i) = temp (i)

end do
end function c s t r t o f c h a r

end module h s l m a 9 7 d o u b l e c i f a c e

subroutine ma97 open d (cname)
use h s l m a 9 7 d o u b l e c i f a c e
implicit none

type (c p t r) , intent (in) : : cname

character (kind=c char , len=s t r l e n (cname)) : : fname

fname = c s t r t o f c h a r (cname)

. . .
end subroutine ma97 open d

12

11 Documentation

A separate version of the user documentation should be produced for C programmers. This should involve
relatively minor changes to the Fortran spec sheet. In particular the following changes should be made:

• Care should be taken as C is case sensitive. HSL style is that all C names must be in lower case.

• C structs have members not components. Members are denoted by struct.member not type%component.

• A new subsection entitled “C interface to Fortran code” should be added as the first subsection of
the “How to use” section. Its wording should be similar to the following:

2.1 C interface to Fortran code
This package is written in Fortran and a wrapper is provided for C programmers. This wrap-
per implements a subset of the full functionality described in the Fortran user documentation.
The wrapper will automatically convert between 0-based (C) and 1-based (Fortran) array in-
dexing, so can be used transparently from C. This conversion involves both time and memory
overheads that may be avoided by supplying data that is already stored using 1-based index-
ing. The conversion is disabled by setting the control parameter control.f arrays=1 and
supplying all data using 1-based indexing. With 0-based indexing, the matrix is treated as
having rows and columns 0, 1, . . . n−1. In this document, we assume 0-based indexing.

The wrapper uses the Fortran 2003 interoperability features. Matching C and Fortran
compilers must be used, for example, gcc and gfortran, or icc and ifort. If the Fortran
compiler is not used to link the user’s program, additional Fortran compiler libraries may
need to be linked explicitly.

• All LOGICAL variables should be replaced with C int variables. A value of 0 indicates false and any
other value indicates true. The values of true or false should be explicit in the documentation, e.g. “If
check!=0 (i.e. evaluates to true) ...”.

• The section describing USE statements should be replaced with one describing header files. The use of
multiple precisions simultaneously may be stated as unsupported to simplify the description.

• The need to call particular routines to deallocate memory must be specified while describing any calls
that leave memory allocated upon return.

• If the package handles multiple precisions these may be dealt with using a section such as the following:

Package types
The complex versions require C99 support for the double complex and float complex types.
The real versions do not require C99 support.
We use the following type definitions in the different versions of the package:
Single precision version

typedef float pkgtype

Double precision version
typedef double pkgtype

Complex version
typedef float complex pkgtype

Double complex version
typedef double complex pkgtype

Elsewhere, for single and single complex versions replace double with float.

• Portability descriptions should be updated to reflect dependence on Fortran 2003’s C interoperability.
The HSL standard wording for this is “Fortran 2003 subset (F95 + TR15581 + C interoperability)”.

13

• In the specification of subroutines, a function prototype should be specified rather than specifying “a
call of the following form”. Since this defines the types and intents, these should be removed from
argument descriptions.

For example,

call ma97_analyse(check,n,ptr,row,akeep,control,info[,order])

becomes

void ma97_analyse(int check, int n, const int ptr[], const int row[],

void **akeep, const struct ma97_control *control, struct ma97_info,

int order[])

• Fortran types should be replaced with their C equivalents.

• Optional parameters should be specified instead as “may be NULL”. The wording “not present” replaced
with “is NULL” and “present” with “is non-NULL”. To improve clarity, it may be necessary to reword
to avoid double negatives.

Acknowledgments

We would like to thank John Reid and Nick Gould for their comments on drafts of this report.

14

