B i G LIEoos S o P S e ey

o A e
Sy—— AERE - R 8269

COPY-NGT-T0- BE-RE0YEDF 1 THE TIIRRRY

i
MU I
&Y p
. h ¢
¥ o
Ly &
B iJ ‘3 o O
Ty
\.\'- £« =y ?&

United Kingdom Atomic Energy Authority

HARWELL

Fbrtran subroutines for
handling sparse linear
programming bases

- J. K. Reid .
Computer Science and Systems Division

AERE Harwell, Oxfordshire
January 1976

CERN LIBRARIES, GENEVA

IR

CM-P00068549

p - 1o
TR
Wiy ia i

C13

PRICF £1 RO net fronm H M Statinnerv Office



© — UNITED KINGDOM ATOMIC ENERGY AUTHORITY - 1976
Enquiries about copyright and reproduction should be addressed to the
Scientific Administration Office, AERE Harwell, Oxfordshire, England
OX110RA.




A.E.R.E.-R.8269

FORTRAN SUBROUTINES FOR HANDLING SPARSE LINEAR

PROGRAMMING BASES

by

J.K. Reid

Abstract

In this report we present subroutines that implement a
sparse variant (Reid,1975) of the Bartels-Golub algorithm for
handling linear programming bases. There are separate subroutines
for factorization, solution of Tinear systems using such a
factorization and updating the factorization to correspond to the

replacement of one of the columns of the basis.

Computer Science and Systems Division,
Building 8.9, A.E.R.E., Harwell,
Didcot, Oxfordshire.

January, 1976

HL76/111 (C.13)




1SBN—-0-70-580176-4




“CONTENTS

1. Introduction
2. Data structure

3, Subroutine LAO5A, which performs the original
factorization

4, Subroutine LAO5B, which solves sets of
equations

5. Subroutine LA05C, which updates the factorization

6. Code and specification sheets

References

Page No.

11
16

50




1. Introduction

The purpose of this report is to present three subroutines that
implement a sparse variant (Reid,1975) of the Bartels-Golub algorithm.

The subroutines are

a) LAOSA, which produces a factorization

A=LU (1.1)
of a given sparse nxn matrix A, where L is a matrix whose inverse is held
as the product

LN P (1.2)

r-1

of r matrices Mi that differ from I in just one element, and U is a

permutation of an upper triangular matrix

U=PUQ; (1.3)
b) LAO5B, which solves sets of equations

Ax = b (1.4)

and
A'x = b (1.5)
using the factorization (1.1); and
c) LAO5C which revises the factorization (1.1) when one of the columns
of A is altered.
We expect the main application of these subroutines to be for solving
linear programming problems (see for example Goldfarb and Reid,1976) but

they are also available as a basic tool for use in other optimization

problems.




The algorithm is described by Reid (1975) and some test results on
medium scale problems are also given by Reid (1975). Here we concentrate on
describing the code itself. Although the reader may find it helpful to
read the earlier paper, it is our intention that this report should be
self-contained. In order to make the code more understandable we describe
the algorithm slightly differently and use slightly different notation.

The subroutines presented here are in standard Fortran, and have
been checked by the Bell Telephone Laboratories' Fortran verifier (Ryder,1973),
although those placed in the Harwell Tibrary are variants which use.
INTEGER*2 arrays. To aid readability of the code we avoid any backward
jumps, all loops being programmed with the DO statement; this rule gives
"well-structured” code without departing from standard Fortran. Occasionally
we have needed a "DO WHILE" loop, for instance when looping along a linked
list. In such cases we index the DO loop with an integer called
IDUMMY (or JDUMMY, KDUMMY,...) to indicate that it is not used within the
Toop.

The code itself and its specification sheet are included in Section 6.
So far as seems reasonable we have used comments in the code to explain
its action. The underlying data structure is described in Section 2 and
Sections 3,4 and 5 describe the methods used in LAO5A, LAO5B and LAO5SC.
Besides the code and specification sheets we include in Section 6 some
comments on runs under a preprocessor which made execution counts available.

The author would Tike to thank I.S. Duff for reading a draft of

this report and making some helpful suggestions regarding the

presentation.




2. Data structure

In order to explain our choice of data structure we need to sketch
the algorithm used. Further details of the algorithm are given in later
sections. Immediately after the origina1 factorization (LAO5A) L has

a symmetric permutation
L = pLp”! (2.1)

which is a unit lower triangular matrix, but later (see next paragraph)
it can only be said to be of the form (1.2). U is always a permuted
upper triangular matrix (see (1.3)).

If column m of A is changed to give the matrix A then the

factorization becomes
K =1LV (2.2)
where V differs from U only in column m, and this is L'1 times column
mof K. V may already be a permuted upper triangular matrix, in which
case we take U=V, perhaps revising the permutation matrices P and Q. If
it is not, then further elementary row operations Mr+1""’MF are used to

reduce it to such a form. This gives the new factorization

K-TTU (2.3)

of the same form as previously,and associated permutation matrices P and T.

L only in the possible addition of more

Notice that T ' differs from L~
elementary row operation matrices MF’MFL1""’Mr+1 whereas U differs from
U in having a column replaced and elementary row operations applied.

The factorization (1.1) enables the sets of equations (1.4) and

(1.5) to be written as

x
!

ST IR TR R [ (2.4)

and

=T ) = my...MlUTh) (2.5)

x
|

-4~




It follows that at no stage is access required to the matrices Mi
except in forward or reverse order and that updating need be nothing more
complicated than adding additional matrices Mi' Therefore a sequential
file which can be accessed forwards and backwards is a suitable storage
mode and we have chosen to use the end of the arrays A and IND. The
number of matrices Mi is held in LENL of COMMON/LAO5D/ and they themselves
are held as the operators "add A(K) times component IND(K,1) of a given
vector to component IND(K,2)", for K = IA,IA-1,...IA-LENL+1.

A more complicated storage mode is needed for U because of the un-
predictability of the extra non-zeros (fill-ins) that the row operations
may produce. An early version (LAO3) held each row of U as a Tinked
list. This enables fill-ins to be handled easily but
i)  with INTEGER*2 T1inks on the IBM370 we were limited to about 32000
non-zeros ,

ii) accessing a row is likely to involve accessing well-separated items
in the store, undesirable on a paged machine, and

ii1) the column structure is not available so that replaﬁing column m
requires a scan of the whole of U, for instance.

Because of these disadvantages we have decided to follow Gustavson (1972)
in holding the rows of Uas a file of packed vectors and the pattern of the
columns of U as a file of lists of integers. The non-zeros of row I,

| say, are held in A(K),A(K+1),... and corresponding column numbers are
held in IND(K,2),IND(K+1,2),..., with K held in IP(I,1) and the number of
elements (non-zeros) held in IW(I,1). We use a completely separate

file for the columns of U; here we do not store the numerical values -
but just the row numbers themselves. For column J these are in IND(K,1),

IND(K+1,1),... where K is in IP(J,2) and the number of entries is 1in

IW(J,2). When a row operation is applied to U we open a new entry for




the changed row and (temporarily) waste the space that the old row
occupied.  Any element in the row that changes to have modulus less than
a given small number (SMALL of COMMON/LAQS5D/) is regarded as a zero and
its entry in the column file is removed after having been interchanged with
the last entry so that space at the end is released. Any fill-ins mean
that an additional entry in the column structure is needed; this is
placed at the end of the stored column if this is possible and if not a
fresh entry is opened for the column and the old space is (temporarily)
wasted. For both files there is a need for occasional "compression" to
release wasted storage. This is done by subroutine LAOSE, which is
called to compress just one of the files whenever this is necessary. They
are not treated together because usually the file of rows will need to
be compressed more frequently since a new entry is made for every row
operation applied to U.  Spaces inside the file of rows are indicated
by zero values of IND(K,2) and similarly zeros values of IND(K,1) indicate
spaces in the column file. The overall length of the files, including
internal spaces, are stored in LROW and LCOL of COMMON/LAO5D/ and a count
of the number of compresses (of either file) since last entry to LAO5A
is held in NCP of COMMON/LAO5D/. We have found it convenient to hold
the elements that are on the diagonal of the upper triangular matrix
G = PUQ as first in their rows and columns; otherwise the entries are
in arbitrary order within the rows and columns.

The actual compression in LAOSE is done by scanning every element
of the old file, inc]udipg\dummies, and moving just the genuine elements
forward. Details bf hdw the pointers are adjusted are given in comments.

It is perhaps unfortunate that we have to look at all the dummies but the

computer time taken here will be small compared with the time taken in

other subroutines when the element is genuine, and this method leads to a




simple subroutine that does not require a sort of the pointers to starts

of entries.

Finally in this section we describe how the permutations P and Q aré
held. IW(I,3) holds the row number in U of row I of U= PUQ and
IN(J,4) holds the column number of column J of U.

3. Subroutine LAO5A, which performs the original factorization

The original factorization is performed using Géussian elimination
with the pivotal strategy of Markowitz (1957), but subject to the stability
requirement that no pivot be less than u (a user-set parameter for which
we have found the value 0.1 satisfactory) times the largest element in its
row. Markowitz' strategy is to use a non-zero with least product of
number of other non-zeros in its row and of other non-zeros in its.
column. To make the search for such an element fast we hold doubly
linked 1ists of all rows having the same number of non-zeros and of all
columns having the same number of non-zeros. This enables us to search
columns of length 1, then rows of length 1 then columns of length 2, etc.,
stopping whenever we know that there cannot be a non-zeko later in the
sequence with better Markowitz cost than the best so far found.

Normally this search will terminate very early. Once the pivot has been
chosen we remove from their linked 1ists all the rows which have a non-
zero in the pivot column and all the columns that have a non-zero in the
pivot row because these may have their numbers of non-zeros changed.

Once the elimination is complete they are inserted in the Tist
corresponding to their new numbers of non-zeros. We choose to search
columns first to give a bias towards placing non-zeros in U rather than

L, because L can only grow in length whereas at a change of basis a

column of U is removed; also the column coming into U at a change of basis
has been produced from the corresponding column of A by operating with

L-], so is likely to have more non-zeros if L has more non-zeros.

-7-




The data structure used during elimination is similar to that used
finally for U (see last section). As each elementary row operation is
performed it is stored in its final position in the sequential file for
L (using arrays A,IND from the end forwards). Initially A is stored in
exactly the same way as U is eventually stored. During the elimination
the row file holds all the rows but the column file contains only the
submatrix of elements that have not been in a pivotal row or column
(i.e. the "active" submatrix). Once the elimination is complete the
column file for U is reconstructed from its row file.

For the user's convenience we require a different format for initial
input of A.  The non-zeros are passed in any order in the array A, with
their row and column numbers in corresponding positions of arrays
IND(-,1) and IND(-,2). The actual sorting of the non-zeros is done by
subroutine MC20A, whose specification sheet is included in the appendix.
It is fast since it handles each item that needs moving exactly three
times. Although designed to order sparse matrices by columns we have
been able to use it here by switching the roles of row and columns.

We do not permit any elements held in the row file to have the value
zero because this Tleads to unnecessary work and use of storage. If any
element has modulus less than SMALL (of COMMON/LAO5D/ with default value
zero) in the original matrix then it is removed beforg the row and
column files are created. If any element with modulus less than SMALL
is created during a row operation it is again removed. We recommend the
user to reset SMALL to a positive value if he can since this will make
underflows much Tess common and will save some storage.

The column file is used when choosing the pivot and in order to know
which rows are active in the elimination itself. In neither case is
there any need for the elements to be in order within their entry. We

therefore make no attempt to order them, always adding any extra element to

-8-




the end of the entry and removing elements by overwriting the unwanted

entry by the old last entry. It might be thought that the entries in the
row file should be ordered so that during a row operation the two rows can
be scanned in phase. We find it convenient to bring the elements of the
pivot column to the front of both rows, but by using a full work vector of
reals we can produce elegant and efficient code without the need for the
remaining elements to be in any particular order. fhe full vector w is
initialized. to zero and is restored to zero after each use. For each row
operation we

a) load the pivot row, excluding the pivot, into w.

b) scan the non-pivot row adding the required multiple of the.
appropriate component of w to each element and resetting the component
of w to zero after its use.

c) scan the pivot row again to see which elements are still in w.
Each that is gives rise to a fill-in.

.....

4, Subroutine LAO5B, which solve sets of equations

Our data structure was chosen with one of its aims fhat the solution
of sets of equations Ax=b and ATx=b should be straightforward and fast.
It very often happens in linear programming applications that b is very
sparse indeed and even x may have few non-zeros, and we want to exploit this
feature. This leads to slightly more complicated code for solving Ax=b
so we describe the solution of ATx=b first.

Because the permutation G = PUQ of U is an upper-triangular matrix,
we may solve UTwéb by a forward substitution process. The presence of the
permutations makes it convenient to use a work vector, so we first

load the input vector b into w and set b to zero, then solve UTb=w by the

forward substitution



b, = ( z b.)/u i=1,2,...,0. (4.7)

w_o- Us ,
P; a3 j#pi Jq; J P;q;

As each non-zero bp. is calculated we run through row p, of U (column
i
P; of UT) performing the operation

W W upikbpi , k#a, (4.2)

which can of course be skipped for zero b K This ensures that at stage i
of the process wqi has been updated fully ;nd we find bpi by dividing by
the pivot upiqi' Since b has been initialized to zero we do not even have
to look up the array containing P4 (pi is held in IW(I,3)) if wqi is

zero (qi is held in IW(I,4)). Notice also how convenient it is to have

the pivot upiqi stored at the row start. Once this process is complete
we apply the sequence of elementary row operations that comprise L'T to b
so that it finally contains the required solution. Here we avoid null

operations but for each operation we need an array look-up and to test for

a zero vector component.

1 to b as a sequence of

When solving Ax=b we begin by applying L
elementary row operations and again avoid null operations.  Because of the
permutations P and Q we next Joad b into w and set b to zero as in the last

paragraph.  Then we use the back-substitution

b =(w, - I u . bj)/up i=n,n-1,...,1. (4.3)

%P gk P i%

Unfortunately we cannot exploit zero components of b directly because U

is held by rows but we do have the sparsity patterns of the columns of U.

Therefore after each non-zero component bq is found we run through the
i

pattern of column q; of U marking those Wy s other than w_ , for which

i




ukqi#o. At a later stage i we know that ji u .jbj is zero if wp.
q; i i

is unmarked and therefore do not need to calculate this sum. The
marking is actually performed by negating the pointers IP(-,1). Notice
that w is left unchanged as L-]b. This is precisely the vector that
is required by LAOSC later if b is to replace an existing column of the
basis. It is not inefficient to use this as the only means of
specifying the incoming column because in linear programming it always
happens that A']b is wanted before it is known which column is to leave
the basis matrix A.

The great sparsity of the vectors that arise in typical Tinear
programming applications led us to consider a condensed storage mode
for them and we even wrote such a variant of LAO5B. However we
eventually decided against using it because the code is significantly
more complicated and would execute faster only when the number of non-
zeros in the output vector is less than about v/n because we have either
to keep the non-zeros in order or perform a search whenever one is
wanted. The loops of length n that are avoided are simple and so likely
to execute rapidly. We did find (see Section 6) that they were
executed a great number of times, often giving the dominant execution
count.

5. Subroutine LAO5C, which updates the factorization

Subroutine LAO5C updates the factorization following the replacement
of column m (MM in the code) of A by b. We begin by removing column

]b, calculated on a previous

m of U and then inserting the vector L~
entry to LAO5B, and stored in array W, as new column m to make the

matrix V of equation (2.2). The permuted matrix

S = PVQ

-11-




is upper triangular except for one column (column M) which corresponds
to the changed column and which we call the spike. The spike is read
into our data structure in row order within S so that its last row
number (in S) may be placed in the variable LAST. We refer to rows and
columns M to LAST as "the bump". An example is shown in Figure 1 (page 15),.
Our first aim is to alter the permutations in such a way that the
length of the spike (size of the bump) is reduced. We begin by
searching columns M+1,M+2,...,LAST looking for a column (which we call
a singleton column) having only one non-zero in the bump.  If column J
is such a column and we apply the symmetric permutation in which rows and
columns M,M+1,...,J-1 are all moved forward one place and row and column
J becomes the new row and column M then the new matrix has exactly
the same form as the old but now the spike is in column M+1 and is
shorter by one component. In our example column 5 is such a column
and the permuted matrix is shown in Figure 2. We can now look for a
further singleton, apply another symmetric permutation and continue until
none are found. It is more efficient, however, to find all the
singletons then apply the composite symmetric permutation. This can
be done by marking (by setting W(J)=1) column M and those of columns
M+1,...,LAST which are not singletons. We begin by marking column M
itself and then marking all columns which have a non-zero in row M, since
these certainly cannot be singletons. We then 100kAat the marks for
columns M+1,M+2,... and for each marked column J we mark the columns
having non-zeros in row J since again these cannot be singletons. In
preparation for the next stage we also perform the symmetric permutation
that places the spike at the end of the bump without altering the
relative order of the other row and columns. The new order of columns

is therefore 1) singletons, in unchanged order among themselves,

-12-




ii) non-singletons, in unchanged ordér among themselves and

iii) spike column., Our example has only one column singleton and its
form at this stage is shown in Figure 3. Because we hold pivots
(diagonal elements of the upper triangular matrix G = PUQ) first in their
row and column we do not need to store both P and Q@ explicitly and here we
are performing a symmetric permutation so pivots remain pivots. We
therefore revise only P and use the storage for Q as workspace.

These permutations leave us with a matrix S = P1VQ1 that is upper
triangular apart from row LAST (which we now call the spike row) and
this has non-zeros starting at co]dmn M1, say, with Mi=M, We refer
to rows and columns M1 to LAST as "the bump", and apply an exactly:
similar process to rows LAST-1, LAST-2,...,M1 looking for rows that are
singletons in the bump as previously when looking for column singletons,
except that here we leave the spike where it is. This leaves us with
a spike in row LAST1, say, with LASTI1<LAST, which commences in column Ml.
Our example (see Figure 3) begins with a row singleton in row 6
(row 7 of original matrix) and dealing with this makes row 4 into a
singleton. Dealing with both of these gives the matrix shown in
Figure 4.

We may be able to reduce the length of the spike still further if
column LAST1 of this new matrix Sz>= P2VQ2 is a singleton in the bump rows
M1 to LASTI. Unless we have the trivial case M1=LAST1 such a
singleton must have its non-zero in row LAST1-1 since otherwise this
would be a row singleton (and row singletorswere all removed by the previous
set of permutations). We therefore perform the unsymmetric |
permutation that makes row LAST1-1 become row M1, column LAST1 become
column M1 and the intervening rows and columns (rows M1+1,...,LAST1-2 and

columns M1+1,...,LAST1-1) all move forward one place. The new hatrix

-13-



has the same structure but the spike now extends from column M1+1 of
row LAST1 (see Figure 5). We repeat the process (see Figure 6),
continuing until the trivial case is reached or a non-singleton is
discovered. Again we may delay thé permutations and perform them
together. Rows I of U that correspond to rows M1 to LAST1 of 52 are
initially marked with W(I)=3. , $0 we can test the last column for being
a singleton. If it is, then we revise JM to point to the new last
column and reset W(I) to 2. for the row being moved forward ready for
the next singleton test. Similar action is taken as later singletons
are found. The permutation P, stored in IW(.,3) is revised when the
process terminates, and M1 is increased to point to the new start of
the spike row.

If these permutations have not reduced the matrix to upper
triangular form (M1=LAST1), then the task is completed by application
of a sequence of elementary Gaussian elimination steps. Each pivotal
step begins with a search of the spike row for a non-zero in the pivot
column. If one is found it is brought to the front of the spike.
Next the pivot row is exchanged with the spike row if the stability
test demands it (leading element of the pivot row less in modulus than u
times that the other leading element) or if the sparseness suggests it
(pivot row has greater number of non-zeros) while the stability test
permits it (leading element of non-pivot row. greater than u times
leading element of pivot row). The actual row elimination is performed
by code identical with that of LAO5A.

Finally the permutation 6'15 constructed from'F, now stored in

IW(+,3), by using the fact that pivotal elements are always first in the

stored rows.




2 3456 7 89 1 52 3 46 7 89

1

X

X

- . - e e e . - . o = - - -

X

XXk

X X

1

X

- - . - - ) e e

After column singleton

Figure 2.

Original matrix

Figure 1.

moved to front of bump

5 36 82 47 9

1

5 346 7 8 2 9

1

X X X X

X

S S S,

X

- - - S . -t W -

After treating row

singletons

Figure 4.

After spike moved to

end of bump

Figure 3.

-15-




152 368479 1
1 X X X X 1 X X X X
5 X X 5 X X
8 X X_ 8 X X
3 XX 1 X 6 X X,
6 g X xg 3 ix x;x
2 PX_ X 2 LX_ X
4 X X 4 X X X
7 7 X X
9 9 X

Figures 5 and 6. After treating first and second singleton spike
column

6. Code and specification sheets

Given in this section is the code itself and its specification
sheet. Also given is the specification sheet of the Harwell subroutine
MC20A which is called by LAO5A to sort the non-zeros by columns.

The code given is the single-length standard Fortran version. It
contains comments which allow the Harwell subroutine OEO4 to coﬁvert to
double-length standard Fortran (version labelled D), double-length
IBM Fortran (version I) or single-length IBM Fortran (version J).  These
comments consist of statements labelled with the version to which they
apply. Each is an alternative to the Fortran statement that
immediately follows it.

We have run some linear programming problems, including most of
those by Goldfarb and Reid (1975), after treating the code by a
preprocessor (Harwell subroutine OE02) that inserts additional statements
for counting the number of executions of each statement. We used the
steepest edge simplex algorithm, as described by Goldfarb and Reid

(1975).  The highest counts were invariably in LAO5B.  The simple

-16-




loops of length N (i.e. DO 113, DO 140, DO 303, DO 315) were always
very prominent and particularly so in the sparser cases. That it is

worthwhile to test for zero components in the vectors being operated

]

upon, even in the relatively complicated case of applying U™', was amply

demonstrated. In LAO5C, rather surprising, the heaviest count was
usually in the beginning of the loop DO 110, that is the simple search
for non-zeros in the incoming column. Another high count in LAOSC,
but small compared with those of LAO5B, was often in the simple loop

DO 270 that sets the vector w to zero prior to its use for a sequence
of eliminations. The success of the singleton selection processAWas
indicated by the much higher counts obtained in the first scan of the
bump (looking for singleton columns) than in later scans (looking for
singleton rows and dealing with singleton spikes). A1l the LAO5A
counts were much lower than the high counts of LAO5B and LAO5C. If
execution speed is very important it might be worthwhile to machine code
LAO5B, or parts of it, and the loop that finds the non-zeros in the

incoming column for LAOS5C.

-17-




LAO5A/AD
LAO5B/BD

LAO5C/CD

Harwell Subroutine Library

1. Purpose

This package of subroutines will factorize a matrix, solve
corresponding systems of linear equations and update the factorization when
a column of the matrix is altered, exploiting sparsity in all cases. Its
primary application is likely to be for handling linear programming
bases. It has three entries: .

(a) LAO5A factorizes a given matrix A.

(b) LAOS5B subsequently calculates 7!
vector b, using the factorized A.

b or A"'b for a given

(c) LAO5C modifies the factorization to correspond with the
replacement of a column of the matrix by_the vector b of a
previous LAOSB entry which calculated A-Tb.

2. Argument Lists

CALL LAOS5A(A,IND,NZ,IA,N,IP,IW,W,G,U)
CALL LAO5B(A,IND, IA,N,IP,IW,W,G,B,TRANS)
CALL LAOSC(A,IND, IA,N,IP,IW,W,G,U,M)

- A is a REAL(DOUBLE PRECISION for the D version) array of length IA.
On entry to LAO5A it must be set to contain, in any order, the
non-zeros of A. On exit from LAO5A and on entry to and exit from
LAOSB/C it contains the factors of the current matrix A.

It is altered by LAOSA and C, and must not be altered by the user
except prior to an LAOSA entry.

IND is an INTEGER(INTEGER*2 for IBM versions) array of dimensions (IA,2).
On entry to LAO5A IND(K,1),IND(K,2) must be set to contain the row
and column number of the non-zero held in A(K) for K=1,2,...NZ. It is
altered by LAOSA and C, and must not be altered by the user except

prior to an LAO5SA entry.

NZ  (INTEGER) must be set by the user to the number of non-zeros in A.
It is used by LAO5A only and is not altered by it.

IA  (INTEGER) must be set by the user to indicate the size of arrays
A and IND. Advice on the choice of the size is given in §3.
It is not altered by LAO5A/B/C.

N (INTEGER) must be set by the user to the order of A. For the IBM versions
it may not exceed 32767 because of the use of INTEGER*2 arrays. It

is not altered by LAOS5A/B/C.

IP is an INTEGER work array of length N*2. It must not be altered
by the user except prior to an LAO5SA entry.

LAOSA 1




IW is an INTE@ER(INTEGER*Z for IBM versions) work array of length
N*2 the first half of which must not be altered by the user except
prior to an LAO5A entry. The second half is not used by LAO5B/C.

W is a REAL (or DOUBLE PRECISION in the D version) working array of
length at least N. It is used to transmit information about an
incoming column between an LAO5B entry with TRANS=.FALSE.and a
subsequent LAO5C entry, and therefore should not be altered between

two such entries.

G (REAL or DOUBLE PRECISION in the D version) is used to output
information about the stability of the factorization and error
conditions. After a successful entry G is positive and equal to
the modulus of the largest element in any of the reduced matrices.
This is explained further in section 6. After an unsuccessful
entry it is set negative (see §4 for details).

U ~ (REAL or DOUBLE PRECISION in the D version) is a number set by the
- user in the range 0<U<1 to control the choice of pivots; if

U>] it is reset to 1 and if U<0O it is reset to the relative _
floating-point accuracy. When searching for a pivot any element
less than U times the largest element in its row is excluded.  Thus
decreasing U viases the algorithm towards maintaining sparsity at
the expense of stability and vice-versa. The value 0.1 has been
found satisfactory in test examples. It is used only by LAO5A and
LAO5C.

B is a REAL (or DOUBLE PRECISION in the D version) array of length N
used by LAO5B to input b and output A-Tb (TRANS=.FALSE.) or A-Tb
(TRANS=.TRUE.). It is used by LAO5B only. ‘

TRANS ““is a LOGICAL. variable which must be set to .FALSE. if A b s
required from LAO5B and to .TRUE. if A-Tb is wanted. It is used only
by LAO5B and is not altered by it.

M (INTEGER) is the column number in A of the column to be replaced
in an LAOSC entry. It is used by LAO5C only and is not altered

) by it.

3. Storage considerations

The matrix is factorized into a product LU.  The matrix L is
stored as a product of matrices L; differing from the unit matrix I on
only one element. Each matrix L; is stored in one position of A and
IND and LENL in COMMON (see §5) hd1ds tha number of such matrices. U
is a permutation .of an upper triangular matrix and its number of
non-zeros is held in LENU of COMMON (see §5). It is held in A and IND
as a file containing separate ordered 1ists for each row and column.
This file will need occasional compression to release space used by
altered rows and columns. This compression (actually performed by the
subroutine LAOSE) will not add a significant overhead to the computational
cost if it happens less often than,say, alternate calls of LAOSC. If
it is required more than twenty times in a single call of LAO5C then this
call is aborted and a diagnostic is printed. If such a call follows
a long sequence of LAO5C calls then it can probably be corrected by a fresh

-19-




LAOSA call. Both L and U are held in A and IND so IA (the size of A
and IND) must exceed LENL+LENU (the number of non-zeros in L and U) by a
margin sufficient to avoid overfrequent compression of the file holding
U.  The adequacy of the length IA may be judged by monitoring NCP

(in COMMON, see §5) which accumulates the number of times the U file is
compressed since the last entry to LAOSA.

4. Error diagnostics

After an unsuccessful entry a message is output on the line
printer (unless suppressed or switched to another stream, see §5) and
G is set negative to indicate one of the following conditions.
-1 'N is not positive'.
-2 'Row (or col) j has no elements'.
-3 j 'Element k is in row i and column j' (one of which is out of range).

-4 ‘'There is more than one entry in row i and column j'.

-5  'The matrix was found singular in pivotal step k. Row (or col) j
is dependent on rows (or cols) k,%,...'.

-6 'Singular matrix created by replacement of col m'.
-7 'IA is too small'.

Diagnostics 1 to 5 may result from an entry into LAOSA and 6 or 7 may

" yesult from an LAOSC entry. Also error returns (with G unchanged) may

result-from LAO5B or LAO5SC if G is negative, indicating a previous error
return.

5. Use of Common

The subroutines contain the fqQllowing common block
COMMON/LAOSD/SMALL ,LP,LENL ,LENU,NCP,LROW,LCOL

(called LAOSDD in the D version).

SMALL is a REAL variable (DOUBLE PRECISION in the D version) given
the default value zero by BLOCK DATA.  Its purpose is explained

in §6.

LP is an INTEGER variable, given the default value 6 by BLOCK DATA,
and used for stream’ number for diagnostic messages. Messages
are suppressed if LP=0.

LENL,LENU,NCP are INTEGER variables giving information about use of the
store (see §3).

LAOSA 3

-20-




LROW and LCOL are INTEGER variables used internally by the LAOS
subroutines to hold the lengths of the filec holding U by rows
cnd its structure by columns.

If the user includes a common statement of the above form in his
program then he may alter SMALL and LP from their default values and he .
may inspect LENL, LENU and NCP.

None of the variables LENL,...,LCOL may be altered by the user
except prior to an LAO5A entry.

6. Method and general notes

LAOSA decomposes A into triangular factors using sparse matrix
techniques similar to those of MA18A, documented in AERE Report R.6844.

Changing a column of A corresponds to changing a column of the

~upper triangular factor so that it is no longer a permutation of a -

triangular matrix and further row operations and/or permutations are
needed to restore it to this form.

To control stability all pivots are chosen so that the multiples
of a row that are added to another are always less than 1/U and stability
is monitored by the parameter G, which is set to the modulus of the
largest element in A or any of the upper triangular matrices to which it
is reduced. If € is the relative accuracy of the computation in use
then the solutions obtained will have errors comparable with those of a
perturbed system with matrix A+SA, elements of SA being less than a small
multiple of €G. Any elements of the upper triangular factor that are
less than SMALL (of COMMON, see §4) are reset to zero; this has an
effect comparable with that of making a perturbation to A whose elements
have size about SMALL. We recommend the user to reset this to a
positive value if he can, because this will save most underflow
interrupts and some storage.

-An LAOSA call is normally followed by a long sequence of calls of
LAO5B and C.  The time taken by LAOS5B will grow steadily as the number of
non-zeros in the factors of A grows and eventually it will be more '
economic to call LAO5A with the current matrix A and continue from this.

A further call of LAO5A may also be needed because of instability; Tlarge
values of G are an indication of trouble but a better test is to calculate

r=Ax-b (or ATx-b) where x is the result of a LAO5B call and compare rs

With §|aijxj| (or ?'ajile)‘

7. Other subroutines

This is in fact a package of subroutines whose names are LAO5A,
ILAO5B, LAO5C and LAOSE.

December, 1975

4 LAO5A

-21-




c /
MC

"
——— 1 i e

YA =~

v JA'- /;_ ¢
s TS l‘:‘n»':‘,‘/

Harwell Subroutirie Library

NC

Purpose

a) MC20A: To sort the non-zeros of a sparse matrix from arbitrary
order to column order, unordered within each column.

b) MC20B: To sortthe non-zeros within each column of a spavrse
matrix stored by columns,

Argument lists

CALL MC20A(NC,MAXA,A,INUM,JIPTR,JNUM, IDISP)

CALL MC20B(NC,MAXA,A, INUM,JPTR)

(INTEGER) must be set by the user to the number of matrix columns, and for
the IBM versions it must not exceed 32767+JDISP. It is not altered by MC20A/B.

MAXA (INTEGER) must be set by the user to the number of matrix non-zeros.

INUM

JPTR is an INTEGER avray of length NC. It is not reguired to be set

It is not altered by MC20A/B.

is a REAL (DOUDLE PRECISION in D version) array of length PAXA,

For entry to MCZOA the user must set it to contain the non-izerces '
in any order. On exit from MC20A they are reordered sg that colurs i
precedes column 2 which precedes column 3, etc, but the order within
columns is arbitrary. This format is required for entry te HCZ0U.
On exit from MCZ0B the non-zeros are also ordered within each coliumi.

is an INTEGER(INTEGER*2 for IBM versions) array of length MAXA.  On entry
to and exit from MC20A/B the absolute value of INUM(K) is the row number of
the element in A(K). The values, including signs, are moved so the user

is at liberty to use these signs as flags attached to the non-zeros.

r ~
P I T L e
BXa IR ST

for entry tc MC20A.  On exit from MCZ0A and on entvy to and exit
MC20R it contains the position in A of the {irst element of columm
J,Jd=1,2,...NC.

JNUM  is an INTEGER(INTEGER*2 for IBM versions) array of length MAXA. On entry

to MC20A JNUM(K)+JDISP is the column number of the element held in A(K).
It is destroyed by MC20A.

JDISP (INTEGER) must be set by the user to his requiréd disp]acement for

column numbers, in the range [0,32767]. Normally zero will be suitable,
but positive values permit matrices with up to 65534 columns to be
handled by the IBM versions for which JNUM is an INTEGER*2 array.

JDISP is not altered by MC20A. '

MePnA /LD
[ R ORI Y B

L EFaEATARN Ry AN
i‘au/,ul:/u‘.‘;

-22-




3. Notes

. 4

It is expected that this subroutine will be called by other library
subroutines but not oy the user directly. There are no checks on the
validity of the data and no error exits.

4. Method ; .

MC20A is an in-place sort algorithm which handles each item to he
sorted exactly 3 times, sc¢ it is of order MAXA.,  The nurber of elements
in each colunn is first cbtained by a counting pass.  The space necded by
each column is allacated.  Each element in turn is made the “"current
element" and examined to see if it is in place. If not, it is put into
the next location allotted for the column it occurs in, and the element
displaced made the current element.  This chain of displacing elements
continues until the first element exemined in the chain is located end
stored.  Then the next item is examined. A flag prevents an element being
moved twice. :

MC20B is a pairwisc interchange algorithm of maximum order r(r-1)/2,
for each column, where r is the number of eluwents in the column.

November, 1975

 MC2CA/AD

WC20E/ED

2

-23-




=1
SNWNT0D GNV SMOY NI SUIN3IW3ITN3 INNDD *S3ITYINI 1IVWS LnO HSN

O=(r*TIMI
s*1=r ¢ 0a
*0=(I)M
N*1=1 ¢ 0d
*0=9
025 0L 09(T*LI°N)3I
Sd3=N(Sd3*L11°N) 43I
*1=0(°T* 19°N) 3l
/ 9-30°1/Sd3 viva
NOILVLINdWOD INICJ-9NILVOTId 40 ADVWNIIY 3IAILVIIY 3HL SI Sd3
/10 /91-3€°2/Sd3 v1va
/THT*OHT* JHT*MHT*OHT *4H1 / 1
(€°2)0Y°(Z°2)04 (1°2)D0¥  (E°T)2U*(Z*T1)DY*(T*T1)I4 VLVG
T007¢MOYT*EIN*ANIT*INT T4 dT* TIVWS/ QSOVT/NOWWOD
*9NI1¥30¥0 IVIOAId 3HL NI I 702/MOY 40 NOILISOd
30 NOILVI3IN QT0H (9*IIMI*(S*IIMI TWIOAId N338 3AVH LVHL S107/SMOY ¥04
*3NCN 41 O¥3Z ¥0 *ISIT SII NI
I 100/M0Y 4313V 10D/MOY 40 YIGWNN 10D/7MO¥ QI0H (B8IIMI ¢(L°I)MI
*3NON 41 0¥3Z ¥0 “1SI1 SLI NI
I 103/M0Y¥ OL ¥OI¥d T0I/MOY 40 $ISWNN 10I/MOY QI0H (9CIIMI (S*I)M]
*INGN 33V 3¥3HL 41 0¥37 40
SOYIZ-NON I 3AVH O1 NWNI0I/MOY LS¥Id QTOH (4 TIMIC(E*TIM]
*SNWNI0J 3HL ¥0d SLSIT WVIIWIS GTOH (84°)MI*(9¢°)MI*(H**)M]
*S0¥3Z-NON 30 SY3IEWNN TVAD3 3AVH ONV IVIGAId N338 LON
3AVH 1IVHL SMOY 40 SLSIT G3WNIT A18N0C GI0H GL Q3SN 3¥V (Le° IMI
“€S*°IMI*(E°°)MI SYOLD3A 3HL 3NILNOWENS SIHL 40 AGGE NIVW 3HL 9NI¥AQ
*I 102/MOY NI SOY3Z-NON 40 ¥3GWAN 3HL OTOH (Z*TIMIS(T *I )HI
*1 102/M0Y 40 1¥VLS 3HL OL INIOd (2¢1)dI*(T°I)dl

/10 TOITMOYTCdINCNNITCTINI T4 dT1* 1TVWS /QASOVTI/NOKWKGD
INIMETTIVRS N O WY NV XYWV (VI)V TV3Y

/10 (NIM*TIVRS*NO WV NV XYWV (VIIV NOISID3dd 318004

(B*NIMI*(Z*VI)ONI 4393LNI

/f1 (8N)MI*(Z*VI)IANI Z%¥393iNI

(€°2)Jd*(Z*N)dI Y¥393INI

(N*O*MeMI*AI*NVI“ZN*ANI*V) VSOV 3INILNOYENS

/14 (N*O*M*MI*HI*N*VI*ZIN*ANI*V)AVSOV1 3INILNOYENS
SNOISY3A HIONIT 319NIS OGNV 318N0G NVEL¥0d QYVANVIS 33V S ONV g
/41IFS SNOIS¥3A HION3T 3TINIS ONV 319N0CG NVHL¥0d WEI 34V ¢ aGNV I

2
J
S

(S (S LQOLLLLOLLLLVLOOLOLOLL

LD O

L ——

-24-




G31INYLSNOD ATMIN 3H4 ONISN ITIHM S3ITUINI 376N00 ¥GI NI3IHI I
/10 (OCCT*TIONICGIC(Z TIONTICVANIT*NIQGVOZIKW 11TV J
SMOY A9 d¥30¥03Y 2
3NNIINDOD 8¢
08¢ OL 0O9(0°3T°(T¢dIIMI)AI
¢*1=1 8¢ 0a
A=(Z*dl)dl
(CdlIMIN=N
N¢T=¥I 8¢ 0OG
=M%
*033¥01S 34 2
TIM vV J0 T NWNT0D 40 IN3NODWOD LSV 3IHL 3d43IHM ONOA3E isnfe J
INIBd 0L (Z°¢I)dl 3ZITVILINI GONV NWNTI03 30 MOY TINN ¥0d4 MNI3HD I
0=dIN
(0Z°*0T/N)OXVW=dIW
*S1TNS3Y NYNL3Y d0ud3 2
NV 3¥0338 Q3LLIWd3d S3ISSIYIWOD 3D ¥IGWNN WAWIXVW 3HL SI dIW 2
MO¥1=1001
NN31=M0Y¥1
0=TIN3T se

-25-

T=-NN3T1=NN3T 0¢
(Z*NAN3T)IANI=(Z*T)ONI
(T*ANITIANI=LT «T)ONI

(NN3INV=(N)V

A=1 61
6Z 0L 09

T+(2F IMI=(2*F)IMI 01
T+H(TCIIMI=(T*TIMI
0%s 01 O9(N®19°r °¥0°® T°L1°r)4I
0%5 01 O9(N°19°1 *¥0°® T°171°1)4]
(D€ EAIVISAY JTIXVWVY=9

/10 : (O¢ L(N)V)ISEVA)ITIXVYWA=9 J
(C*NIANI=F
(T*M)IANI=]
ST 0L O9(T1IVRS 3T ((M)IV)ISaY )dl
/1d ST OL O9(MIVWS*3T°((M)V)S8vVa)JII J

AN3T*I=X 01 Ga

6Z 0L 09(NN3T°19°1)dI
IN* T=AWWNAI 02Z 0C
IN=0ON3T




(¢¢r)dI=di
€el 01 09(0°*37°ridl
N¢T=AWWNGI TE€T OQ

*SOY3Z-NON ZN HLIM SNWNI0J HIYV3S I

(#*INIMI=C
€81 0L 09(<Z*»(1-ZN)}*37°LSCIr)dl
N¢T=ZN 66T OQ

G3HOYV3S 38 01 NWNIOJ 30 HI9N3T NO d0O07

N*N=1S0Or
*dff NWNTOD OGNV ddI MOY NI SI HIIHM

*¥vd 0S GNNOd4 LOAId 1S3dV3IHD dO 1SOD ZLIMONYVW SI LSOJf °*LlOAId ONIZ

N*I=Adl 08% 04

*d0O07T NJIILVNIWIT3 NIVW 40 1¥ViS

I=(H+7*NIIMI(O°3N°"NI)JI
O=(%+7°1)IMI]
NI=(9+7*I)IMI
I=(C+1*IN)IM]
(Z+T*INIMI=NI

(1T IMI=ZIN

N¢I=1 001 Ga@

¢*1=1 001 0OG

OO QO (&)

00

*SOY3IZ~-NON 40O SY3GWNN TVND3I HLIM S10D ONV SMOY¥ 40 SASIT G3IXNIT dn 135 I

T=dXd=1A

YI=(T*YN)IONI

UA=(Z¢r)dl

I-(Z*F)dI=uN

dI=(S*rIMI

006 OL GO(YI®DI*(SMIMINAI

(Z*AIONI=C

Biedd=% 0e 0a

(1¢¥I)dI=d%

IT-T+N=YdI

N¢T=I1 0% Oa

ANITI=TH

(OC(T*T)IANICdIC(Z*TIONI*V*NNIT*N) VOZIW 1TVD

“iNIW3IN3 LSYI3 JHL OL 9INIINIOD 1T 3AV3T ATWWIOILIVWOLNY 3M a3sn SI
1T 3WIl HOVI (Z*F)dI ONISVYIAUI3IG ANV SAYVMIIVE NI S3IYINI 3IHL
ONILlNd A€ LIVHLI 310N *371d3 NWNI0D 3HL LONYLISNCD 0L 3714 MOY

J
0%
ce

-26-




(T-(2*CIMI)x(T-ZN)=1SOI
(C*AVANI=C
061 01 09(nve LI ({N)VISAY )3l ,
/10 0ST 01 09NV LIt (X)V)SEva) 3l 2
. _ *1S31L ALITIEVLS Wd04¥3d 2
I edd=N 0aT 04
NxXVWV=NV
(XVWV S E(X)V)ISEY ) IXVHY=XVWY O0%1
/10 (XVWV *((N)V)ISEVA) IXVHA=XVYWY 041D
IRedd=% 0%T 0Q
MOY 3HL NI IN3W313 1S394v7 ONIJd D
T=(T*TIMI+dN="DA
(T*I)dI=dX
*0=XVWV
6s1 01 09(0°3° 114l
N*¢T=AWWNGI 161 0Oa
(E*INIMI=I cel
*SOY3Z-NON ZN HLIIM SMOY HIOYV3S 2
(8l IMI=r T€T
3NNIINOD OET
€81 OL O9(C**(T-ZN)*37°LS02r)3I
f=dr
I=ddl
LSOIN=1S02r 6?21
Ot OL OO(NxxXVWVLT*((fN)IV)SAY 131
/10 OtT OL O9(N*XVWV LT ((rA)V)ISEVa)I J
*4S31 ALITIGVLS WY0d4¥3d D
AN=CHAC*03° (2 AN)IANT I 31 0c1
CCODIIVISEY *XVHV) IXVWV=XVWV
(COMIVISEVAXVIWY) IXVWO=XVWV J
SHETH=MN 021 ©a
T-TH+{T1* I IMI=CM
(T¢I)dI=TH
*0=XVWV
*10AId TVIAIN3LIO0Od 40 MO¥ NI IN3W3T3 L1S394v1I ONId 3
621 0L CO9(1°D3°IN)4I
0€1 Ol 09€LSOJr°39°1S0IN)4I
(T=(T*TIIMI)*(T-ZN)=1SOD
(T*N)ANI=I1
INedd=N 0e1 0C
T={ZCIMI+DI=TDH

/10d

_27-




A=WH(dr*D3I*ridl 612
0=(T*2)ANI
(T*2IHIONI=(T*INIAGNI 912
3NNIINOD 612
912 0L 09((T*INIANI*D3*ddI )4l
IIN*IdN=I¥ S1Z aa
(Z4FIMI+IdN=DTH
T-(2Z*TIMI=(Z*FIMI
(2°r)dI=2d)
(Z*M)ONI=r
Medd=% 61Z aa
*3714 MOY NI 10AId GNI4 ONV 3714 NWNTIO3 WOYd MOY TVLOAId 3LVNIWITE 9D
AdI-=( 9*drIMI
AdI-=(G*ddIIMI
L10AId 3¥0iS 2
T-(T*dd IKI+d¥=1 61
(1*dd1)dI=dM
M=(+TNIIMI(0°19°NII4I Q6T
NI=(Z+T*INIMI
(1*I1IMI=ZN  g8T
061 0L 09
NI=(9+71% 11 IM]
S8T 0L 09(0°D3*1I1)4l
(9+1 I IMI=NI
(941 1IMI=11]
(FENIANI=I
M d¥=% 06T 0Q
2*1=1 s61 0a
T-dA+(Z*df IMI=T)
(Z2¢dl)dI=d% €81
*SY0LI3A ONIYIOUO WOUS NOILVNIWITI NI G3ATOANI SNWNTOD ANV SMOY 3JACW3IY 2
*GNNO4 L1OAId 9
)
3NNILINOD 661
(L*TIMI=I 161
INNIINGD  0ST
€81 OL 09 (2%*(T-IN)*37°1S0IF) 41
r=dr
I=ddl
1S02%=1S020
0ST Ol 09(1SOJr°39°L1S0IN)4I

-28-




(N)V=(FIM  G¥E
(Z¢M)ONI=F
TdX*D¥=) S¥E 0CQ
0S€ 0L D9(1dX*19°DN)4I
*M NI (473SLI IOAId ONIOGNTIX3) MOY LOAId 32V7id 2
, T-(T*dd1IMI+ddN=Td)
T+d3=0Y
T-(T*YIIMI+UN=Td%  O%E
(T*¥I)dI=8)
(1¢ddI)dI=d)
(*3N¥L°®* VICMISN*dI*(Z*TIONI*V) 350V 1IVD
/14 (*3N¥L°* VI*MI*N*dI*(Z*T)ANI*V)Q3SOVT 11¥D J
G09 0L 09(VI®L9°INITH(T*ddIIMI+{T*SIIMI+NNIT “¥O* dOW*39°dIN) LI
0%€ 01 09(VI®3TINI T+ (T ddIIMI+ (T HIIMI+MOdT) 4]
*MOY M3N ¥0d WOOY SI 3¥3IHL LVHL NIV1¥3D SI LI SS3INA 3114 MO¥ SSIYdWOD D
(AN IV/ (AN IV ==nV
df=(2Z*¥%)aNI
(Z*UNIANI=(Z* INY)ONI
WY=(d%) Y
(dN)V=(dNM )Y
(dNY)V=WV  0OE
*MO¥ SLI 40 LNO¥4 Ol G3ILVNIWIT3 38 Ol IN3W313 ONIug D
INNILNOD 062
00€ 0L U9((Z*dNMIONI*D3*dr)4l
T WN=dNY 062 0
T=(T*¥IIMI+WI=Tu)
| (T1¢d1)dI=u
*03LVNIWIT3 38 OL IN3W313 ¥0d4 MOY LOAIJ=-NON HIYV3S 2
(T*I%)ONI=Y¥I
T-ON+(2°df)dI=2)
JIN*1=IN L9% 0C
894 UL 09(0°*D3*JZN)4I
, {ZedrIMI=DIN
*NWN109 10AId NI SO¥3Z-NON NO 9NIdOO1 *473SLI NOILVNIWITI wWd0du3d 2

J

-29-

df=(Z*dXJUNI
(Z*dM)ANI=(2Z*YAIONI
nv=(dX)Vv
(dAIV=0aN)IV
(IIv=nv
*MOY TVLIOAIg 40 INOYd 0L LOAId 9NIN¥E D




r=(2*MOYUTIANI
nv=(MoY1)YV
T+MOY 1=M0 ¥
0€% OL 39(1IVWS*31°(NV)SaY )31
/1a 0€% 0L D9(T1TVWS*31°(NV)Sava) 4l 0]
(F ) M*WY=NY
(Z*SY)ANI=F
VN ON=SH 0E¥ 0Q
GEY 0L 09(TdX°L9°DNI4I 08¢
*ST1I4 ¥0d MOY IOAId NVIS 9D
J
~*0=(rIM 0LE
0=(T*IM)anI
(T*IIANI=(T*¥H)}ONI  29€
INNIINOD * 99€
L9€ OL 09(¥I°D3I* (T*W¥)ONI)AI
U= 99E OC
S ON=TH=(ZEFIMI
T-(Z*FIMI+N=T
(2*r)dl=H
*3714 102 WO¥3 IN3W313 3JAOWIY 9
1-NN31=NN31  §9¢
0LE 0L 09
£=(2*MOYT)ONI
nv=(MO¥ 1)V
T+M0Y 1=M0Y1
(ENV)SBY *9)TXVHY=9
/10 ( (NV)SEVQ*9) TXVHA=9 o)
S9€ OL D9{ITVWS*I1°(NV)S8Y )4l
/1a S9€ 0L 39(T1IVWS*31°¢NY)Sava) 4l o)
*N WO¥4 LI 3AOW3Y 1IVWS A¥3IA ST INIW313 41 D
0=(Z*SY)ANI
(FIMaWV+(SH) V=NV
(Z*SY)IONI= F
TYH¥N=SN OLE 0Q
08€ OL 09 (T¥N* L9*¥N) 3]
T+d%=u)
0=(Z*¥%)ANI
*SIN3W313 Q314100W YIJSNVYUL 2
6
T+MOYTI=(1°¥1)dI  OGE

-30-




009 0L 09(dIW°39°dIN)JI

*AYVYSS323N JI 3714 103 SSIIdAWOI I
06y CL 09(VI*3T7°T+702T+IN3T 4]

43 IT4ILTINW 3¥0LS D

J

(T+dI)dI-T+MOYI=(T AT IMI Sey

*0=(r)M Ot¥
T+IN=(C*FIMI

((NV)SBY ¢O)TXVWV=O Gl¥%

/10 ((NV)SEVQ*9)TXVWA=9 SZ%)
. d4I=(T1¢71037)ANI
1+1027=1031

*IN3W3T3 M3N 4Qav 2

0=(T*XX)ANI o0cY
(TODIANI=(T*T02T)0ONI
1+10271=10201
IHN=NN 02y Oa

1+7021=(2*M)dl 0l%

*M3N OINI AYIN3 Q70 d434SNY¥l D

T=ZN+%=
, (2r)dl=M
(°3STVd**  VIC(ZCTIMI*N*(Z*T)dI*ANI*V} 350V 1IVI
/14 (°3STVE*e  VICH(ZCTIMI*N(2°T)dI*ANI*V)IA3S0VT 1TV¥D J

009 O1 O9(VI®3I9TH+ZN+INITHNAN3T *¥0°* dIW°*3IO*dIN)II
*AYINI M3IN 04 WOIY ION SI 3¥3HL 31 3713 NWNTIOD SSI¥dW0OI I
01% 0L O9(VI®LT°T+ZN+TINIT+TI031)41 (ol
*G34v3¥D 39 0L SVH AYLN3 M3N 2
s¢y 0L 09
dI=(T*T+INIANI G6¢t
00% OL OOC(O°INT(T*T+IAIANI)II oet
s6¢ 01 09
1+102371=1031
00% UL 09(VI*39°IN3T+I021)3I
06¢ GL 09(T027°IN*M)II
*AYIN3 IN3S3ud 40 OGN3 1V LN3IW3T3 M3N 30¥1d 3791SS0d 41 2
T=ZN+X=T)
(Zer)dI=MN
(2 IMI=IN
3714 NWNI03 NI 714 31vV3Yd D
J
T+AN3T=NN3T

-31-




T=d3+ (T TIMI=TH
(T*1)dI=d%
N*T=I 8% 0Q
0=(Z*IIMI 8%
I=(eCIM]
(9¢ I IMI==F
=(E*LIMI
(G*1)MI-=F
N*1=1 28% 0C
(Y**IMI*(E€**IMI NI ¥3A¥0 1V1OAId 2
NI SY3IGWNN T10D/MOY 390LS GNV N 0L ¥343¥ 0L 3714 NWN1OD 13S3¥ w
Z-TH+(T*dd1IMI=Z%  08%
T+(1°ddI)dI=TN  Gl¥
WI=(H+TNIIMI(O°INNIIII  OLY
W1=(Z+1*IN)MI
0= (4+ T YT NI
NI=(9+1¢4IIMI
(Z+7*INIMI=NI
0€9 0L 09(0°371°ZN)4I
(7441 )MI=7N
O=(T*®¥)ANI(T*D3I* I
(T*%)aNI=31
N TH=X% 0LY 00
SLY% OL 09(TN*11°Z) 4]
Z*1=1 08% 0a
0=(Z*drIMI
T-TH+(2* dF IMI=2)
(2¢df)dI=TIN 894
*SO¥3Z-NON 30 SYUIGWAN T¥Nd3 40 7
SLSIT G3%NIT NI NOILVNIWIT3 NI G3ATOANI SNWNI0OD OGNV SMOY 1¥3ISNI 2
6
INNILNGD 9%
1-ANIT1=NNIT
¥I=(Z*3)ANI
ddI=(T1*¥)QNI
WY=(X)V
T+IN3T=INIT
INII-VI=N Og%
(°3STV3°*  VI*(Z*TIMIN*(Z*TIdI*GNI*Y) 350V 1IV)
/14 S 4*3STVEe VIC(ZCTIMICN*(2*T)4I*ANI*V)GISOVT 11V 3

-32-

*




00L 0L 09
*L-=9
(1TVWS 00L ST VIHST*X%€//)1VAWY0d 019
(019¢d1) 3L 1UM(0°19°dT) I 009
. 00L 01 09
*¢=-=9
(SINSW3T3 ON SVH HOT1*SI*TIVE*XYE//)1ivVWYCT 06s
dIC e T=1¢(1*T)2U) (065¢dT1)ILTYM(C*LO°dT} 4] 08¢
00L 04 09
‘e-=9
(STCNWNTI0D ANV HIT*SI*MCOY NI SI HOT*LICINIWITIHLXYE//)LIVWSOS uss
CeI*N(05S54dN)3LIEM(0°19°dT) 4] 0%s
004 04 09
*1-=9
(3AILISOd 10N SI NHLTI*X¥€//)iVAdCA (0 3
(0ES*dT)3LTUMI0°L9%dT) 3l cés
00L 0L 09
*H-=9
(SI*NWNTO0J ANV HIT 1
¢G1*MOY NI AYIN3 dINO NVHLI 3d0k SI 3Y3IHLHSE*XYE//)iVWYOd 01¢
redI(015dT)3LIYM(0°L9°d1) 3T 00s
*SLIX3 3¥NTIVd 3H1 UIN3W3TEWI SNOILONYISNI INIMOT104 3HL J

-33-

0c¢L 01 09
I=(T*NMIONI ce%
NA=(Z*T)dI
T={(Z*r)dI=Ni
(Z*H)IANI=F
ITHedA=X 06% 04
T=dd+(T*IIMI=T
(1¢I)dI=dA
(E*I1IMI=]
N*TI=11 O6&% GdQ
T-%=17021
A=(Z2*1)dl L8Y
(CeTIMIMN=N
N¢T=I (8% QG
=X
T+(ZTIMI={C*FIMI S8y
(Z*AXIANI=
Ti*<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>