

United Kingdom Atomic Energy Authority RESEARCH GROUP Report

FORTRAN SUBROUTINES FOR MINIMIZATION BY QUASI-NEWTON METHODS

R. FLETCHER

BOX-15934

Theoretical Physics Division,

Atomic Energy Research Establishment,

Harwell, Berkshire.

1972

UNITED KINGDOM ATOMIC ENERGY AUTHORITY - 1972 Enquiries about copyright and reproduction should be addressed to the Scientific Administration Office, Atomic Energy Research Establishment, Harwell, Didcot, Berkshire, England.

FORTRAN SUBROUTINES FOR MINIMIZATION BY QUASI-NEWTON METHODS

by

R. Fletcher

Theoretical Physics Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, HARWELL

June, 1972

HL72/2747(C13) /KE

CONTENTS

			Page No.
1.	Intr	roduction	1
2.	The	Method with Derivatives	•
3.	The	Method without Derivatives	5
		APPENDICES	
App.	1	A FORTRAN subroutine VAO9A for minimization when the function and first derivative can be calculated explicitly.	0
App.	2	A FORTRAN subroutine VA1OA for minimization when only the function can be calculated explicitly.	18
		TABLES	
Table	e 1	Comparison of various strategies for updating the approximation to the hessian matrix	3
Table	2	Comparison of VAO9A against other existing library subroutines	5
Table	2 3	Comparison of routines VAO4A and VA1OA	8

ILLUSTRATION

Fig. 1 Linear search subproblem for the no derivative problem

Introduction

This report presents two quasi-Newton subroutines for solving the problem of minimizing a function F(x) of n variables x. It is assumed that the gradient vector $\nabla F(x) = g(x)$ and the Ressian matrix $G = \left[\frac{\partial^2 F}{\partial x_i} \partial x_j \right] = x$. Quasi-Newton methods have achieved a high degree of popularity since they were introduced some 14 years ago. However many such methods have been published since that time and in this paper the recent ideas of Gill, P.E. and Murray, W. ('Quasi-Newton Methods for Unconstrained Optimization', Journal of the Institute of Mathematics and its Applications, Vol. 9, p. 91-108, 1972) will be followed. It is recommended that this report be read in conjunction with Gill & Murray's paper.

The main feature of classical quasi-Newton methods is that an approximation H_k to G^{-1} is stored and used by analogy with Newton's method. That is to say, given an approximation to the solution X_k on the k^{th} iteration, then X_{k+1} is chosen as a point

$$\underset{\sim}{\mathbf{X}}_{\mathbf{k}+1} = \underset{\sim}{\mathbf{X}}_{\mathbf{k}} + \underset{\sim}{\alpha} \underset{\sim}{\mathbf{p}}_{\mathbf{k}} \tag{1}$$

where

$$p_{k} = -H_{k} g_{k}$$
 (2)

 H_k is updated after each iteration by making a change of low rank. The scalar α in (1) is chosen ideally to optimize $F(\underset{\sim}{x_k} + \alpha \underset{\sim}{p_k})$ with respect to α , or in practice so that $\underset{\sim}{x_{k+1}}$ satisfies some criterion of approximate optimality. The total amount of work per iteration is $O(n^2)$ computer operations.

In this paper two problems are referred to, namely that in which both F(x) and g(x) can be calculated explicitly, and that in which only F(x) can be calculated. In the latter case a quasi-Newton method can only be implemented by approximating the derivatives g(x) by differences. These two aspects of the problem are considered in sections 2 and 3 of this paper respectively. The main aim of the work has been to develop FORTRAN subroutines for each of the problems, and these are given in Appendices 1 and 2 respectively together with the specification sheets for the subroutines.

The Method with Derivatives

There are three main problems in implementing a quasi-Newton method when both F(x) and g(x) can be calculated explicitly. The first of these concerns the representation of the approximation which is maintained to the hessian matrix. In early implementations it was convenient to keep an approximation H_k to G^{-1} . Gill and Murray's contribution (loc.cit.)

$$G \approx L D L^T = B$$
 (3)

where L is a lower unit triangular matrix and D a diagonal matrix. An important feature of this method is that the approximation to G is always kept positive definite and it is easy to guarantee this by ensuring $\mathbf{d_{ii}} > \mathbf{0}$ for all i. The product $-\mathbf{B}^{-1}\mathbf{g_k}$ is achieved by making two back substitutions. When a rank one correction is made to B,

$$B^* = B + \underbrace{u}_{\infty} \underbrace{u}^{T} \tag{4}$$

say, then it is possible to update L and D to L*,D* in $3n^2/2 + O(n)$ multiplications. Gill and Murray give two methods for updating D; the first requires more work (including n square roots) and n extra storage locations, but Gill and Murray prefer it because they believe it is easier to ensure positive definiteness in the formulae for obtaining d_{ii} . However the second method which they give has been used here because of its efficiency. The method uses the recurrence

$$d_{ii}^{*} = d_{ii} + v_{i}^{2} \left(\sigma - \sum_{j=1}^{i-1} \beta_{j}^{2} d_{jj}^{*}\right)$$
 (5)

where χ and β are certain vectors, and it is possible that d_{ii}^* could become negative due to accumulation of round off errors, even when it is theoretically predicted to be positive. It is easy to correct for this however, and if a negative d_{ii}^* is found then it is replaced by the smallest positive d_{ii} in any previous matrix D. This is equivalent to making an increase to d_{ii} before applying the recurrence. No problem with round off errors has occurred when using this device. It is worth pointing out that the use of LDL^T representations with rank 2 correction formulae requires $4n^2 + O(n)$ multiplications per iteration whereas the classical method of recurring an approximation to G^{-1} requires only $3n^2 + O(n)$. However this is a minor disadvantage when compared against the ease with which positive definiteness of the representation of G can be assured.

The second problem which must be solved when implementing a Quasi-Newton method is in the choice of the correction formula to be used. There is a clear advantage to be gained by maintaining positive definiteness, and this leaves three competing formulae, the DFP formula, the complementary DFP formula, and the switching strategy of Fletcher ('A new approach to variable metric algorithms', Computer Journal, Vol. 13, pp. 317-322, 1970) which chooses either the DFP formula or its complement depending upon the test

$$\delta_{\chi}^{T} \times \chi^{T} H \chi \tag{6}$$

where $\delta = \mathbf{x}_{k+1} - \mathbf{x}_k$, $\chi = \mathbf{g}_{k+1} - \mathbf{g}_k$ and $\mathbf{H} \approx \mathbf{G}^{-1}$. Unfortunately it is not convenient to use this test when (3) is used to represent G because it involves calculating $\mathbf{H}\chi$, a quantity not necessary in the Gill and Murray formulation. However one way of looking at (6) is to consider it to be comparing \mathbf{H} and the true \mathbf{G}^{-1} (because $\delta = \mathbf{G}^{-1}\chi$ for a quadratic function) in the direction χ . A similar test therefore which it is convenient to compute with the Gill and Murray formulation, is to use the DFP formula if

$$\mathcal{S}^{\mathbf{T}} LDL^{\mathbf{T}} \mathcal{S} < \mathcal{S}^{\mathbf{T}} \chi \tag{7}$$

which can be thought of as comparing G and LDL T in the direction δ . Tests have been carried out using all three formulae on a variety of test problems (Table 1), and they show that use of the DFP formula alone is much inferior. The performance of the complementary DFP formula alone and the modified switching strategy is virtually identical, but the latter has been preferred in the FORTRAN subroutine because it is felt to be more flexible.

TABLE 1

Comparison of various strategies for updating the approximation to the hessian matrix

Problem n	DFP f	ormula	Complem DFP fo	Switching formula				
Rosenbrock!	s functi	on						
2	45	48 ^(a)	33	42	34	44		
Chebyquad								
2	3	6	3	6	3	6		
4	9	13	9	13	9	13		
6	22	26	15	18	16	20		
8	31	38	21	26	20	25		
Trigonometr	ic func	tions						
2	9	12	9	12	9	12		
4	30	36	16	22	16	22		
6	14	19	13	18	13	18		
8	15	22	16	23	16	23		
10	18	24	18	24	18	24		
20	71	86	41	5 6	41	56		
3 9	197	215 ^(b) 176 ^(b)	67	85	70	88		
4 0	161	176 ^(b)	81	98	81	97		

⁽a) Entries are No. of iterations, No. of function & gradient evaluations.

⁽b) Low accuracy.

A third problem is that of choosing the parameter α in (1), the so-called linear search subproblem. For rapid ultimate convergence it is expected that a value $\alpha=1$ will be used, but in the early stages when LDL^T is a poor approximation to G, $\alpha=1$ may be too large. In these circumstances a good approximation to make is that the reduction in F is likely to be similar to that obtained on the previous iteration, in which case a quadratic interpolation would give $\alpha=2(F_k-F_{k-1})/g_k^Tp_k$. Thus a likely choice for α is given by

$$\alpha = \min \left\{ 1, \ 2(F_k - F_{k-1}) / g_k^T p_k \right\}$$
 (8)

This strategy requires the user to estimate the likely reduction in F on the first iteration. The linear search can be terminated when a value of α is obtained for which \boldsymbol{F}_{k+1} < \boldsymbol{F}_k and

$$\left| g(x_k + \alpha p_k)^T p_k \right| < \rho(-g_k^T p_k)$$
 (9)

where ρ is a fixed parameter in the range o < ρ < 1. Because it has been shown (Fletcher, loc.cit.) that it is most efficient overall when using Quasi-Newton methods to look for low accuracy in the linear search, a value of ρ = .9 has been used. If $F(x_k + \alpha p_k) \geqslant F_k \text{ or if (9) is not satisfied and } g(x_k + \alpha p_k)^T p_k > 0 \text{ then a new value of } \alpha$ is determined using the well known cubic interpolation formula. If (9) is not satisfied but $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text{ then a new value of } \alpha \text{ is determined by extrapolation assuming a}$ linear behaviour of $g(x_k + \alpha p_k)^T p_k < 0 \text$

Finally the problem of how to terminate the algorithm will be considered. Because the algorithm generally converges rapidly near the minimum, it has been decided to terminate when $\left|\left(x_k-x_{k+1}\right)_{(i)}\right|<\varepsilon_i$ for all i, where ε is a tolerance vector supplied by the user. It is however important not to set ε too large when using this criterion.

The new subroutine (identifier VAO9A) has been tested against two other subroutines in the Harwell Subroutine Library, namely VAO1A, a convention Quasi-Newton algorithm using

the DFP formula and an accurate linear search, and VAO6A, a Quasi-Newton algorithm of an unconventional type due to Powell ('A FORTRAN subroutine for unconstrained minimization requiring first derivatives of the objective function' report AERE - R 6469, 1970) which can be guaranteed to converge in exact arithmetic. The results in Table 2 show that VAO9A is superior to both VAC1A and VAO6A in both efficiency and reliability. In particular VAO6A is more affected by the presence of round-off errors, and it was also found difficult to use because of the need to supply a convergence tolerance on the gradient vector. It will be noted that the results for VAO9A do not quite correspond to those for the switching formula in Table 1. This is because the results of Table 1 were obtained with a maximum extrapolation factor of 4 rather than 10.

TABLE 2

Comparison of VAO9A against other existing library subroutines

Problem n	VAO)1A	VAO	SA .	VAO9A					
، Rosenbrock's fu	nction									
2	30	62 ^(a)	42	43	34	44				
Chebyquad										
2	2	7	13	14	3	6				
4	8	22	18	19	9	13				
6	11	26	27	28	16	20				
8	fa	iled	66	67	20	25				
Trigonometric f	functions									
2	7	18 ^(b)	13	14	8	11				
4	14	31	19	20	16	22				
6	11	26	24	25	12	17				
8	12	29	22	23	15	22				
10	17	38	37	38	18	25 ^(b)				
20	_	98	84	85	42	55				
30	_	165	fa	iled	74	92				
40	fa	iled	fa	iled	82	96				

- (a) Entries as for Table 1
- (b) Finds a different minimum.

The Method without Derivatives

When Quasi-Newton methods are modified to use difference approximations to derivatives then a number of additional problems raise their heads. However the means of representing

and updating the approximation to G and of terminating the iteration are no different to the case when derivatives are available, and the recommendations of section 2 have been followed. The new problems lie in the choice of the differencing interval, the choice of finite difference formula, and in the way in which the linear search subproblem is solved.

In the first paper on this subject, Stewart ('A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives', Journal of the ACM, Vol. 14, pp. 72-83, 1967) recommended that the diagonal elements of H⁻¹ be recurred as an approximation to the diagonal elements of G. This could then be used to estimate the truncation error in using the forward difference formula

$$g_{i}(x) = (F(x + he_{i}) - F(x))/h + O(h)$$
 (10)

where e_i is the i-th coordinate vector. The differencing interval h could then be chosen in such a way as to balance the effects of trunation and round off error. However Gill and Murray give good reasons why this strategy should not be used and prefer to set $h=2^{-t/2}$, assuming the variables have been scaled suitably, where t is the number of significant binary digits in F. This choice of differencing interval has been used in the implementation given here.

Another problem is the choice of whether to use the forward difference formula (10) or the central difference formula $\frac{10}{2}$

$$g_{i}(x) = \frac{F(x + he_{i}) - F(x - he_{i})}{2h} + O(h^{2})$$
 (11)

Various strategies were considered for this decision, the most simple being to switch from forward differences to central differences if the step αp is less than the tolerance ϵ required on the solution by the user. This is very similar to the method which Gill and Murray suggest. Gill and Murray also suggest that a return be made to using forward differences in certain circumstances. Typically one might do this if $||\alpha p|| > 100 ||\epsilon||$ say. Unfortunately it was found that on switching to central differences near the minimum the value of $||\alpha p||$ could increase greatly, and it was not easy to pick out a suitable tolerance on a test for returning to forward differences. Thus in the implementation of the strategy given here, the algorithm stays with central differences until convergence, once the switch has been made. An alternative strategy is to estimate $\epsilon_k^T p_k$ to second order accuracy during the linear search process and to switch to central

differences when this estimate of $\mathbf{g}_{\mathbf{k},\mathbf{k}}^T\mathbf{p}_{\mathbf{k}}$ and that obtained directly from the gradient vector fail to agree to a certain accuracy. The switch back to forward differences could be made if $\mathbf{g}_{\mathbf{k}}^T\mathbf{p}_{\mathbf{k}}$ evaluated using the \mathbf{g} from both (10) and (11) agreed to a certain accuracy. Some of these quantities were monitored on some test runs on various problems and it was found that the agreement between the two estimates of $\mathbf{g}_{\mathbf{k}}^T\mathbf{p}_{\mathbf{k}}$ was not always a good indicator of when the switch to central differences ought to be made. It was therefore not decided to implement this more sophisticated strategy, but to use the simple one.

Finally the problem of how to implement the linear search subproblem must be solved. The method used is described by the flow diagram of figure 1, and some features of this will be discussed in more detail. Firstly note that as in section 2, equation (8) is used to determine α initially. It is important however to ensure that a small $F_k - F_{k-1}$ does not cause a small α_k and hence a small $F_{k+1} - F_k$ and so on. To prevent this, provision is made for an extrapolation phase with at least two function evaluations per iteration. A second point is that for efficiency the extrapolation loop is only continued while it is predicted that good progress will be made. This is quantified as follows: if F^- , F and F^+ are three values of F(x) at equally spaced points x^- , x^- , x^+ on the extrapolation phase, where $x^+ = x + \alpha p = x^- + 2\alpha p$, then it may be possible to predict a point, x^- min say, which is the minimum of a quadratic function which interpolates the F^+ s. If the point x^+ + $2\alpha p$ lies on the opposite side of x^- min to x^+ then it is decided not to examine $F(x^+ + 2\alpha p)$ and the extrapolation phase is stopped; this is done by setting INT=2 as indicated in figure 1. To prevent this decision causing premature termination, the termination test is not carried out if an exit is made from the linear search with INT=2.

In fact alternatives to this linear search have been considered and a version was programmed in which an extra interpolation was carried out in the lower FINISH block. However numerical tests suggested that this change made the method less efficient. Hence the version described in figure 1 was finally implemented.

The method was implemented in a FORTRAN subroutine VA10A and was compared against the Harwell subroutine Library routine VA04A which is based on Powell's conjugate direction technique. Both methods were applied to the solution of various problems with a tolerance of .00005, and the results are shown in Table 3. In fact this tolerance was only achieved on the smaller problems due to the effects of round off error. However the smallest function value obtained by each method is shown in the table.

TABLE 3

Comparison of routines VAO4A and VA10A

Problem n		VAO	4A		VA1 QA							
Rosenbrock	's functi	on				- 						
2	32	178	.9 ₁₀ -10 ^(a)	35	172	•7 ₁₀ -10						
Chebyquad												
2	8	35	·7 ₁₀ -11	12	55	•1 ₁₀ -10						
4	32	104	•6 ₁₀ -12	12	84	•5 ₁₀ -9						
6	114	369	·4 ₁₀ -10	20	191	•2 ₁₀ -8						
8	400	868	·2 ₁₀ -6	27	402	•1 ₁₀ -8						
Trigonomet	ric funct.	ions										
2	10	55	•3 ₁₀ -7	12	91	·4 ₁₀ -6						
4	40	137	•5 ₁₀ -6	14	121	i						
6	102	349	•910-6	12	145	•3 ₁₀ -5						
8	152	500	·3 ₁₀ -5	13	238	•1 ₁₀ -5						
10	200	7 01	·8 ₁₀ -4	21	365	•3 ₁₀ -5						
20	500	1872	·2 ₁₀ 1	38	1235	·1 ₁₀ -4						
30	1360	4038	•5 ₁₀ 0	59	2809	•710-4						
40	920	3340	•2102	86	4949	.910-3						

(a) Entries are 'No. of linear searches', 'No. of function evaluations', and 'difference between the final F(x) and its minimum value'.

Although VAO4A performs better on some of the two variable problems, VA1OA becomes progressively better as n increases. Only VA1OA manages to get reasonable accuracy on the large problems of 20 variables and more, and VAO4A essentially fails on these problems. The results of the comparison are such that it has been decided to recommend the use of VA1OA in the first instance when solving general minimization problems without derivatives.

APPENDIX 1

A FORTRAN subroutine VAO9A for minimization when the function and first derivative can be calculated explicitly

1. Purpose

To find the minimum of a function $F(\underline{x})$ of several variables, given that the gradient vector $(\partial F/\partial x_1, \partial F/\partial x_2, \ldots, \partial F/\partial x_n)$ can be calculated. The subroutine replaces VAO1A to which it is superior in various ways (see section 5), and should be used whenever derivatives can be evaluated readily. It should however not be used either if storage space is at a promium (use VAO8A) or if the function is a sum of squares (use VAO7A). The subroutine complements VAO6A, the latter requires four times the storage, and some comparisons (R. Fletcher, A.E.R.E. Report, in preparation) indicate that VAO6A is marginally slower and more affected by round off error. As VAO6A is more difficult to use, it is suggested that VAO9A should be used in the first instance on any problem. If VAO9A fails then VAO6A should be tried as it is guaranteed to converge if the effect of rounding errors can be neglected.

2. Argument List

CALL VAO9A (FUNCT, N, X, F, G, H, W, DFN, EPS, MODE, MAXFN, IPRINT, IEXIT)

FUNCT An IDENTIFIER of the users subroutine - see section 3.

- N An INTEGER to be set to the number of variables $(N \ge 2)$.
- X A REAL ARRAY of N elements in which the current estimate of the solution is stored. An initial approximation must be set in X on entry to VAO9A and the best estimate obtained will be returned on exit.
- F A REAL number in which the best value of $F(\underline{x})$ corresponding to X above will be returned.
- G A REAL ARRAY of N elements in which the gradient vector corresponding to X above will be returned. Not to be set on entry.
- H A REAL ARRAY of N*(N+1)/2 elements in which an estimate of the hessian matrix $\partial^2 F/(\partial x_i \partial x_j)$ is stored. The matrix is represented in the product form LDL where L is a lower triangular matrix with unit diagonals and D is a diagonal matrix. The lower triangle of L is stored by columns in H excepting that the unit diagonal elements are replaced by the corresponding elements of D. The setting of H on entry is controlled by the parameter MODE (q.v.).
- W A REAL ARRAY of 4*N elements used as working space.

DFN

A REAL number which must be set so as to give VAO9A an estimate of the likely reduction to be obtained in F(x). DFN is used only on the first iteration so an order of magnitude estimate will suffice. The information can be provided in different ways depending upon the sign of DFN which should be set in one of the following ways:

DFN>O the setting of DFN itself will be taken as the likely reduction to be obtained in F(x).

DFN=O it will be assumed that an estimate of the minimum value of $F(\underline{x})$ has been set in argument F, and the likely reduction in $F(\underline{x})$ will be computed according to the initial function value.

DFN<O a multiple |DFN| of the modulus of the initial function value will be taken as an estimate of the likely reduction.

EPS A REAL ARRAY of N elements to be set on entry to the accuracy required in each element of X_{\bullet}

MODE An INTEGER which controls the setting of the initial estimate of the hessian matrix in the parameter H. The following settings of MODE are permitted.

MODE=1 An estimate corresponding to a unit matrix is set in H by VAO9A.

MODE=2 VAO9A assumes that the hessian matrix itself has been set in H by columns of its lower triangle, and the conversion to LDL form is carried out by VAO9A. The hessian matrix must be positive definite.

MODE=3 VAO9A assumes that the hessian matrix has been set in H in product form. This is convenient when using the H matrix from one problem as an initial estimate for another, in which case the contents of H are passed on unchanged.

MAXFN An INTEGER set to the maximum number of calls of FUNCT permitted.

IPRINT An INTEGER controlling printing. Printing occurs every |IPRINT| iterations and also on exit, in the form

Iteration No, No of calls of FUNCT, IEXIT (on exit only) Function value

X(1),X(2),...,X(N) 8 to a line (5 in VAO9AD) G(1),G(2),...,G(N) 8 to a line (5 in VAO9AD)

The values of X and G can be suppressed on intermediate iterations by setting IPRINT<0. All intermediate printing can be suppressed by setting IPRINT=MAXFN+1. All printing can be suppressed by setting IPRINT=0.

An INTEGER giving the reason for exit from VAO9A. will be set by VAO9A as follows

IEXIT=0 (MODE=2 only). The estimate of the hessian matrix is not positive definite.

The normal exit in which |DX(1)| < EPS(I) for IEXIT=1 all I=1,2,...N, where DX(I) is the change in X on an iteration.

 $G^TDX>0$. Not possible without rounding error. IEXIT=2 Probable cause is that EPS is set too small for computer word length.

IEXIT=3 FUNCT called MAXFN times.

User Subroutine 3.

The user must provide a subroutine headed

SUBROUTINE XXX(N,X,F,G)

REAL X(1),G(1)

(REAL*8 in VAO9AD)

where XXX is an identifier chosen by the user.

This subroutine should use the variables \underline{x} supplied in X(1), X(2),...,X(N) to evaluate the function and gradient vector and place them in F and $G(1), G(2), \ldots, G(N)$ respectively. XXX must be passed to VAO9A as VAO9A's first argument, see section 2, and appear in an EXTERNAL statement in the program that calls VAO9A.

General 4.

Use of COMMON:

none

Workspace:

N*(N+1)/2 words + 4N words provided by the user in

H and W.

Other routines: none

Input/Output:

controlled by the user through IPRINT. A11

output is on stream 6 (line printer).

Restrictions:

none

System dependence:

none

Date of routine:

April, 1972.

5. Method

The method used is a quasi-Newton method described by Fletcher (Computer Journal, Vol. 13, p.317, 1970), and is a modification of earlier methods of this type, such as that implemented by VAO1A. The method is superior to that of VAO1A on three counts.

- (1) It uses a formula to update the hessian approximation H which has proved to be more efficient and reliable.
- (2) It uses a 'crude' line search which has been shown to be more efficient than an 'accurate' line search.
- (3) It represents H by the product LDL^T, which enables the positive definiteness of H to be guaranteed, even in the presence of round-off error.

```
10/58/28
   DATE = 72123
      VAC9A
```

```
SUBROUTINE VASSA(FUNCT, N, X, F, G, H, W, DFN, EPS, MODE, MAXFN, IPRINT,
                              REAL X(1),6(1),H(1),W(1),EPS(1)
|F(IPRINT.NE.0)PRINT 1000
                                              FORMAT('1ENTRY TO VACGA'/)
                                                                                                                                                                                                                                                                                                                                                               F(H(IJ).LE.D.)RETURN
                                                                                                                                                                                                                                                                                                                                      H(JK)=H(JK)-H(IK)*ZZ
                                                                                                                               IF(MODE.EQ.3)60T015
IF(MODE.EQ.2)60T010
                                                                                                                                                                                                                                                IF(Z.LE.O.)RETURN
                                                                                                                                                                                                                                                                                            Z/([])H=([])H
                                                                                                                                                                                                                                                                                                                       DO 12 K=I+J
                                                                                                                                                                                                                                                                           N. I=L II 00
                                                                                                                                                                                                                                DO 11 I=2,N
                                                                                                                                                                                                                                                                                                                               JK= JK+NP-K
                                                                                                                                                           00 5 I=1 N
                         IEXIT)
                                                                                                                                                                   00 6 J=1.I
                                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                    ([])H=ZZ
                                                                             NN=N*NP/2
                                                                                                                                                                                                              10 CONTINUE
                                                                                                                                                                                                                                        ([1]H=Z
                                                                                                                                                                                     6 H(IJ) =0.
                                                                                                                                                                                              5 H(IJ)=1.
                                                                                                                                                                                                                                                                                                                                                 [K=1K+1
                                                                                                                                                  I 7= NN+1
                                                                                                                                                                                                                                                           [+[]=[]
                                                                                                                                                                             1-61=61
                                                                                                               B= I V+N
                                                                                                                        EXII≖0
                                                                                                                                                                                                      60T015
                                                                                                                                                                                                                                                                                                      JK=1 J
                                                            I +N=dN
                                                                                                         Z + Z = Z
                                                                                                                                                                                                                                                                                                               [K=1]
                                                                    N = N - 1
                                                                                                                                                                                                                                                                   11=11
                                                                                                                                                                                                                        1=[1
                                                                                              V=0.1
                                                                                       Z=S
                                                                                                                                                                                                                                                                                                                                                                            15
                                                    1000
FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                                                                                                            0.038
                                                                                                                                                                                                                                                                                                                                                                     0.039
                                                                                                                                                                                                                                                                                                                  0.033
                                                                                                                                                                                                                                                                                                                                  9035
                                                                                                                                                                                                                                                                                                                                            9600
                                                                                                                                                                                                                                                                                                                                                   0.037
                                                                                                                                                                                                                                                                      0.028
0.029
0.030
                                                                                                                                                                                                                                                                                                         9032
                                                                                                                                                                                                                                                                                                                           9034
                                                                                                                                                                                                                                   0024
0025
                                                                                                                                                                                                                                                     0.026
                                                                                                                                                                                                                                                                                                0031
                                                                                                                                                                                                                                                             0.027
                                                                                                                                                                                        0019
                                                                                                                                                                                                  0700
                                                                                                                                                                                                         0021
0022
0023
                                                                                                                                                                                0.018
                                                                                                                                                               9100
                                                                                                                                                                      0.017
                                                                                                                                                     0015
                                    000 2
000 3
000 4
                                                                                                  6000
                                                                                                                           2100
                                                                                                                                    0013
                                                                                                                                             4100
                                                                                                          00100
                                                                       9 00 0
                                                                                         8000
                                                                                                                   9011
                                                                                0.000
                   1000
                                                                                                                                                                                                                 13
```

```
PAGE 0992
    10/58/29
   DATE = 72123
  VA09A
 2
FORTRAN IV G LEVEL
```

```
IF(MOD(ITN,IPRINT).NE.0)GOTO21
                                                                                                  IF(DFN.EQ.J.)DF=F-Z
IF(DFN.LT.J.)DF=ABS(DF*F)
IF(DF.LE.O.)DF=1.
CONTINUE
                 IF(H(IJ).GE.DMIN)G0T016
                                                                                                                                                                                                             PRINT 1002, (G(I), I=1,N)
                                                                                                                                                                                                     PRINT 1002+(X(I)+I=1+N)
                                                                                                                                       IF(IPRINT.EQ.0)G0T021
                                                                                                                                                                                            IF(IPRINT.LT.D)GOT021
                                             IFIDMIN.LE.O.) RETURN
                                                                         CALL FUNCT(N,X,F,G)
                                                                                                                                                         PRINT 1001, ITN, IFN FORMAT(2415)
                                                                                                                                                                                                                                                                                                                         (NN) H/ (N) M= (N+SI) M
                                                                                                                                                                          PRINT 1002, F
FORMAT ((8E15.71)
                                                                                                                                                                                                                                                                                             ([]M*([])H-Z=Z
         DO 16 I=2,N
                                                                                                                                                                                                                                                                                     DO 23 J=1,11
                                                                                                                                                                                                                                                                                                                                           00 25 I=1,N1
                                                                                                                                                                                                                                                 DO 22 I=2,N
                            OMIN=H(I)
                                     I-dN+CI=CI
                                                                                                                                                                                                                                         W(1) = -G(1)
 ( I ) H=N IWO
                                                                                                                                                                                                                                 I +N L I = N L I
                                                                                                                                                                                                                                                                                                       U-N+[ ]=[ ]
                                                                                                                                                                                                                       CONTINUE
                                                                                           DF=DFN
                                                                                                                                                                                                                                                                             (1)9 = 2
                                                                                                                                                                                                                                                                                                                                                     I J= I J-1
                                                                                                                                                                                                                                                                                                                 Z=(I)#
                                                                                                                                                                                                                                                                   [1=I-1]
                                                               C=N1 I
                                                                                 I FN=1
                                                                                                                                                                                                                                                                                                                                  NN = 0
                                                                                                                                                                                                                                                           ] =f I
                                     16
                                                                                                                             2
                                                                                                                                                                 1001
                                                                                                                                                                                   1002
                                                                                                                                                                                                                       21
                                                                                                                                                                                                                                                                                                        23
                                                    0048
0049
                          0.04.5
                                  0047
2000
        2043
                 0044
                                                                       0.050
                                                                               0051
0052
0053
                                                                                                           0054
0055
                                                                                                                            0056
0057
0058
                                                                                                                                                       0.059
                                                                                                                                                                0060
0061
0062
                                                                                                                                                                                          0063
0064
0065
0066
                                                                                                                                                                                                                                                00070
00070
00071
00072
00074
00076
                                                                                                                                                                                                                              0067
0068
                                                                                                                                                                                                                                                                                                                                 9078
                                                                                                                                                                                                                                                                                                                                           6200
                                                                                                                                                                                                                                                                                                                                                   0800
                                                                                                                                                                                          14 -
```

```
ç
N
```

```
F(ABS(GYS/6S0).LE..9)60T050
                                                                                                                                                                                                                                                                                                                                       IF(GS.LT.6YS) Z=GYS/(GS-GYS)
IF(Z.GT.10.) Z=10.
                                                                                                                                                                                                                        IF(ABS(Z).GE.EPS(I))ICON=1
VACCAV
                                        26 IJ=IJ-I
25 W(IS+N-I)=W(N-I)/H(IJ)-Z
                                                                                                                           IF( AL PHA.GT. I. ) AL PHA=1.
                                                                                                                                                                         IF(IFN.EQ.MAXFN)GGT092
                                                                                                                                                                                                                                           CALL FUNCT(N, X, FY, W)
IFN=IFN+1
                                                                                                                                                                                                                                                                                 (I+SI) M*(I) M+SA9=SA9
                                                                                                                                                                                                                                                                                                             TFLGYS.GT.0.1G0T040
                             (f-dN+SI) M*(fI) H+Z=Z
                                                                                              IF(65.6E.A.)60T092
                                                                                                                                                                                                                                                                                           IF(FY.GE.F)GUT040
                                                                           (1)9*(1+S1)M+S9=S9 62
                                                                                                                 ALPHA=-2. *DF/GS
                                                                                                                                                                                                                 Z=ALPHA*W(IS+I)
                                                                                                                                                                                                                                                                                                                       TOT = TOT + ALPHA
                                                                                                                                                                                                                                                                                                                                                             ALPHA=AL PHA*Z
                                                                                                                                                                                                                                                                                                                                                                                                             00 41 I=1 N
                                                                                                                                                                                                                                                                         DO 32 I=1,N
                                                                                                                                                                                                        DO 31 I=1,N
                                                                                                                                                                                                                                    Z+(I)X=(I)X
                                                                   Nº I=1 62 00
                    DO 26 J=1,I
                                                                                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                       30 CONTINUE
                                                                                                                                                                  [EXIT=3
                                                                                                                                                                                              1EXIT=1
                                                                                                                                                                                                                                                                                                                                                                                          G0T030
                                                                                      IEXIT=2
                                                                                                                                                                                                                                                                                                                                                                                 6.5=6YS
                                       1-[1=[1
                                                                                                                                                                                                                                                                GYS=0.
                                                                                                         6 SD = GS
                                                                                                                                               TOT=0.
                                                                                                                                                                                      I CON=0
                                                                                                                                                                                                                                                                                                                                                                        ≯∃=∃
                                                            6S=0
                                                                                                                                      DF=F
                                                                                                                                                                                                                                                                                                                                                                                                     6
                                                                                                                                                                                                                                                                                   32
                                                                                                                                                                                                                                     2
  FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                                                                                                                                             01150
                                                                                                                                                                                                                                                                                                                                                                0117
                                                                                                                                                                                                                                                                            0108
0109
                                                                                                                                                                                                                                                                                                                                    0114
                                                                                                                                                                                                                                                                                                                                             0115
                                                                                                                                                                                                                                                                                                                                                       ŋ 11 ¢
                                                                                                                                                                                                                                                         0106
                                                                                                                                                                                                                                                                                              0110
                                                                                                                                                                                                                                                                                                                           0113
                                                                                                                                                                                                                                                                                                                                                                          0118
                                                                                                                                                                                                                   0102
0103
0104
                                                                                                                                                                                                                                                                                                                 0112
                                                                                                                                                                             8600
                                                                                                                                                                                       6600
                                                                                                                                                                                                0100
                                                                                                                                                                                                                                               0105
                                                                                                                                                                                                                                                                                                        0111
                                                                                                                                                                                                          1010
                                                                                                                                                 9600
                                                                                                                                                          9600
                                                                                                                                                                    1650
                      0.08.2
0.08.3
                                                  0.085
                                                            9800
                                                                               0.088
                                                                                        0.08.9
                                                                                                  0660
                                                                                                           1666
                                                                                                                     092
                                                                                                                              6000
                                                                                                                                        4600
                                         0.084
                                                                      C870
                                                                                                                                                                                                                                          15
```

FORTRAN IV G LEVEL	. 29 VA09A		DATE = 72123	10/58/28	PAGE 0004
~	(I + S I) - ALPHA*W(I S + I)				
-	1F(ICUN.EQ.∩)GUTU92 7≈3.*(F-FY)/ALPHA+GYS+GS				
	ZZ=SQRT(Z**2-GS*GYS)		-		
-	Z=1(GYS+ZZ-Z)/(2.*ZZ+GYS-GS	-GS)			
.	ALPHA=ALPHA*Z				
12.7	GOLGSC CONTINUE				
131	ALPHA=TOT+ALPHA				
13.2	F=FY				
133	IF(ICON. EQ. 0)G0T090				
134	0F=0F=F				
135	065=6YS=6S?				
0 r	LINK=1 15/0004A184A4000 CT 0 1001052	630			
- ac	17(060+AEFTA+6000+61+0+1601	260			
139	(1)9-(1)M=(1+01)M				
041	SIG=1./(ALPHA*DGS)				
141	601070				
142 5;	CONTINUE				
143	ZZ=ALPHA/(DGS-ALPHA*GS9)				
0144	Z=DGS#ZZ-1.				
[45	DO 53 I=1,N				
0146	(I)M+(I)=X+C(I)				
.	SIG=1./(ZZ*DGS**2)				
847	601070				
7 C L	CONTINUE TANKED				
رم (Nº 12 1 1 1 1 1 N				
Š					
53	IF(06S+ALPHA*GS0.6T.0.160T062	0.62			
ις.	SI3=1./6Sn				
55					
اركا					
rČ i	77-=5IS				
اب ا					
ď,	CONTINUE				
	1 99 00				
C 4					
70					
n	5				

DATE =				ē																																					
																		•																							
29 VA09A	I) x = (I)	F(ICON. EQ. C	3.*(F-FY)/	Z=SQRT (Z**2	[GYS+ZZ	Z*VHQ	601030	CONTINUE	ALPHA=TOT+ALPHA	F=FY	IF(ICON. EQ. 0) GOT090	0F#0F=F	06S=6YS-6S?	LINK=1	IF(DGS+ALPHA*GS0.GT.0.1GDT052	-	•	SIG=1./(ALPHA*DGS)	601070	CONTINUE	ZZ=AL PHA/(DGS-ALPHA*GS9)	Z=DGS*ZZ-1.	DO 53 I=1*N	$M(I \cap + I) = Z * C(I) + M(I)$	SIG=1./(ZZ*DGS**2)	601070	CONTINUE	7	-	(1)=(1)	F(06S+AL	SI3=1•/6Sn	0T 0 7	ONTI	77-=SIS	601070	CONTINUE	00 66 I=1,9N	(1)M=(1)9	601020	CONTINUE
LEVEL	41							50									51			55				53			60			61				9			9		99		7.0
۱۸ ۱۷																·																							•		
FORTRAN	9123	0124	0125	0126	2127	0.128	0129	0130	0131	0132	1133	2134	0135	0136	0137	0138	0139	0140	0141	3142	0 14	1 0144	014	0.14	714	0148	0149	0110	0151	0152	0153	0154	2155	v 156	0157	0158	0159	1161	9161	9162	0163

```
(1+\Lambda I)M*(\Gamma I)H-(\Gamma+\Pi I)M=(\Gamma+\Pi I)M
                                                                                                                                                                                                                              (C+01) M*(I+81)M+(CI)H=(CI)H
                                                                                                                                                                                                                                                                                                IF(IPRINT.EQ.O)RETURN
PRINT IOOI,ITN,IFN,IEXIT
PRINT IOO2,F
                                                                                                                                                                                                                                                                                                                             PRINT 1002, (X(I), I=1,N)
PRINT 1002, (G(I), I=1,N)
                                                                                                      Z=*(I+AI)M*9IS+([I]H=Z
                                                                                                                                           Z/9IS*(I+AI)#=(I+8I)M
                                                                                                                                                     218=818-W(18+1)**2*Z
                                                                                                                         IF(Z.LT.DMIN)DMIN=Z
                                                                                                                 IF( 2. LE. 0.) Z=DMIN
                                                                                                                                                                                                                                                   GOTO(69,65), LINK CONTINUE
                                                         (\Gamma + \Lambda I) M * (\Gamma I) H - Z = Z
W(IV+1)=W(IU+1)
                                                                                                                                                                                                               DO 80 J=11+N
                                                                                                                                                                                   DO 80 I=1+N1
                                                                                                                                                                                                                                                                        N+1=1 16 00
                                               DO 72 J=1,11
                                                                                              N41=1 52 00
          N+2=1 17 00
                                                                                                                                                                 I-dN+fI=fI
                                                                                                                                                                                                                                                                                 (1) = M(1)
                                                                                                                                                                                                                                                                                           CONTINUE
                                                                  f-N+f 1=f 1
                                      (I+0I)M=Z
                                                                            Z = (I \wedge AI) M
                                                                                                                                                                                                                                            I+[I=[I
                                                                                                                                     Z= (f I) H
                                                                                                                                                                                             I +f I =f I
                                                                                                                                                                                                       I = I + 1
                             11=1-1
                                                                                                                                                                             [ = ]
                                                                                       17=1
                    I =[ I
                                                                                                                                                                                                                                                                                   91
                                                                                                                                                                                                                                              Ć
G
                                                                                                                                                                                                                                                                 Ç
G
                                                                                                                                                                   75
                                                                                                                                                                                                                                                                                                                                     0198
                                                                                                                                                                                                                                                                                                                                             6610
                                                                                                                                                                                                                                      0188
                                                                                                                                                                                                                                                                                                        0195
                                                                                                                                                                                                                                                                                                                  9616
                                                                                                                                                                                                                                                                                                                           197
                                                                                                                                                                                                                                                                                     0193
                                                                                                                                                                                                                                                                                              461û
                                                                                                                                                                                                 0184
0185
0186
0187
                                                                                                                                                                                                                                                         0110
                                                                                                                                                                                                                                                                            0192
                                                                                                                                                 0110
                                                                                                                                                           0180
                                                                                                                                                                              0182
                                                                                                                                                                                        9183
                                                                                                                                                                                                                                                                   0191
                                                                                        0173
                                                                                                  0174
                                                                                                            0175
                                                                                                                      0176
                                                                                                                                        0178
                                                                                                                                                                     0181
              0165
                        0166
0167
                                                                                                                               0177
                                          0168
0169
                                                             0110
                                                                                0172
                                                                      0171
                                                                                                                                                                                                            17
```

APPENDIX 2

A FORTRAN subroutine VA10A for minimization when only the function can be calculated explicitly

		•
		,
		-

1. Purpose

To find the minimum of a function $F(\underline{x})$ of n variables \underline{x} . It is assumed that the function is differentiable, although it is not necessary to supply a formula for the derivatives. The method used is a quasi-Newton method in which derivatives are estimated by differences and is described in R. Fletcher, 'FORTRAN subroutines for minimization by quasi-Newton methods', A.E.R.E.R.7125 (1972). The subroutine complements VAO4A but some comparisons (R. Fletcher, loc.cit) indicate that VAO4A is less efficient than VA1OA and more affected by round off error. VAO4A also uses twice as much storage as VA1OA. It is therefore suggested that VA1OA be used in the first instance on any problem.

VA10A should not be used when explicit expressions are available for derivatives (use VA09A) nor when the function is a sum of squares (use VA05A, VA02A or one of the NS routines as appropriate).

Argument List

CALL VAIOA(FUNCT,N,X,F,G,H,W,DFN,XM,HH,EPS,MODE,MAXFN,IPRINT,IEXIT)

FUNCT An IDENTIFIER of the users subroutine - see section 3.

- N An INTEGER to be set to the number of variables $(N \ge 2)$.
- X A REAL ARRAY of N elements in which the current estimate of the solution is stored. An initial approximation must be set in X on entry to VA1OA and the best estimate obtained will be returned on exit.
- F A REAL number in which the best value of $F(\underline{x})$ corresponding to X above will be returned.
- G A REAL ARRAY of N elements which is used to store an estimate of the gradient vector $\nabla F(\underline{x})$. Not to be set on entry.
 - H A REAL ARRAY of $N^*(N+1)/2$ elements in which an estimate of the hessian matrix $\partial^2 F/(\partial x_i \partial x_j)$ is stored. The matrix is represented in the product form LDL where L is a lower triangular matrix with unit diagonals and D is a diagonal matrix. The lower triangle of L is stored by columns in H excepting that the unit diagonal elements are replaced by the corresponding elements of D. The setting of H on entry is controlled by the parameter MODE (q.v.).
 - W A REAL ARRAY of 4*N elements used as working space.

DFN A REAL number which must be set so as to give VA10A an estimate of the likely reduction to be obtained in F(x). DFN is used only on the first iteration so an order of magnitude estimate will suffice. The information can be provided in different ways depending upon the sign of DFN which should be set in one of the following ways:

DFN>O the setting of DFN itself will be taken as the likely reduction to be obtained in $F(\underline{x})$.

DFN=0 it will be assumed that an estimate of the minimum value of $F(\underline{x})$ has been set in argument F, and the likely reduction in $F(\underline{x})$ will be computed according to the initial function value.

DFN<O a multiple |DFN| of the modulus of the initial function value will be taken as an estimate of the likely reduction.

XM A REAL ARRAY of N elements to be set on entry so that XM(I) > 0 contains an indication of the magnitude of X(I). This quantity need not be set precisely as it is merely used in scaling the problem.

A REAL number to be set so that HH*XM(I) contains a step length to be used in calculating G(I) by differences. Set HH equal to 2^{-t/2} where t is the number of significant binary digits in the calculation of F. If F contains only small errors the setting HH=1E-3 is appropriate for VA1OA and HH=1E-6 for VA1OAD.

EPS A REAL number to be set on entry so that the accuracy required in X(I) is EPS*XM(I) for all I.

MODE An INTEGER which controls the setting of the initial estimate of the hessian matrix in the parameter H. The following settings of MODE are permitted.

MODE=1 An estimate corresponding to a unit matrix is set in H by VA10A.

MODE=2 VA1QA assumes that the hessian matrix itself has been set in H by columns of its lower triangle, and the conversion to LDL form is carried out by VA1QA. The hessian matrix must be positive definite.

MODE=3 VA10A assumes that the hessian matrix has been set in H in product form. This is convenient when using the H matrix from one problem as an initial estimate for another, in which case the contents of H are passed on unchanged.

An INTEGER set to the maximum number of calls of FUNCT Up to 2N more calls may be taken if the limit MAXFN is exceeded whilst evaluating a gradient vector by differences.

Printing occurs every An INTEGER controlling printing. **IPRINT** |IPRINT| iterations and also on exit, in the form

> Iteration No, No of calls of FUNCT, IEXIT (on exit only).

Function value

8 to a line (5 in VA1OAD) X(1), X(2), ..., X(N)8 to a line (5 in VA10AD) G(1), G(2), ..., G(N)

The values of X and G can be suppressed on intermediate iterations by setting IPRINT<O. All intermediate printing can be suppressed by setting IPRINT=MAXFN+1. All printing can be suppressed by setting IPRINT=0.

An INTEGER giving the reason for exit from VA10A. This will IEXIT be set by VA1OA as follows

(MODE=2 only). The estimate of the hessian TEXT T=0 matrix is not positive definite.

The normal exit in which |DX(I)| < EPS(I) for all I=1,2,...,N, where DX(I) is the change in TEXTT=1 X on an iteration.

Either due to rounding errors because IEXIT=2 EPS is set too small for the computer word length, or to the truncation error in the finite difference formula for G being dominant.

FUNCT called MAXFN times. IEXIT=3

User Subroutine 3.

The user must provide a subroutine headed

SUBROUTINE XXX(N, X, F)

REAL X(1)

(REAL*8 in VA1OAD)

where XXX is an identifier chosen by the user.

This subroutine should use the variables \underline{x} supplied in $X(1), X(2), \dots, X(N)$ to evaluate the function and place it in F. XXX must be passed to VA10A as VA1CA's first argument, see section 2, and appear in an EXTERNAL statement in the program that calls VA10A.

4. General

Use of COMMON: , none

Workspace:

N words + $N^*(N+1)/2$ words + 4N words provided by

the user in G,H and W.

Other routines:

none

Input/Output:

controlled by the user through IPRINT. All

output is on stream 6 (line printer)

Restrictions:

none

System dependence:

none

Date of routine:

April 1972.

May, 1972

10/21/04

```
PAGE 0003
```

10/21/04

```
DATE = 72122
```

```
IF(Z*XM(I).GE.ABS(W(IS+I)))GOTO29
VALOA
                                                                                                         26 IJ=IJ-1
25 W(IS+N-I)=W(N-I)/H(IJ)-Z
                                                                                                                                                                                                                                                                             M(I)=X(I)+V[DHY*M(IS+I)
                                                                                                                                                                                         IF (GSD.GE.0.)GDT092
ALPHA=-2.*DF/GSO
IF (ALPHA.GT.1.)AL?HA=1.
                                                                                                                                                                                                                                                             OFCIOS(NAXAM. 30.NAI) 4 I
                                                                                                                                                       Z=ABS(W(IS+I))/XM(I)
                                                                                                                                                                 (I+SI)M*(I)90S9=0S9
                                                                                      DO 26 J=1.1
Z=Z+H(IJ)*W(IS+NP-J)
                                                                                                                                                                                                                                                                                        CALL FUNCT(NoMoF1)
                                                                                                                                                                                                                                                                                                                                                                   IF(INT-1)35,49,50
                                                                                                                                                                                                                                                                                                        F (F1, GE.F)60T040
                                           (NN)H/(N)H+(N+SI)H
                                                                                                                                                                                                                                                                                                                          TOT=TOT * AL PHA
                  (C)M*(C1)H-Z=Z
                                                                                                                                                                                                                                                                        Nº 1=1 16 00
                                                                                                                                                                                                                                                                                                                                           00 33 I=1.N
                                                                                                                                         N°1=1 62 00
                                                            DO 25 I=1.NI
                                                                                                                                                                          AEPS=EPS/Z
                                                                                                                                                                                                                                                                                                 I FN=IFN+1
                                                                                                                                                                                                                                                                                                                                                   (I)=(I)X
                                                                                                                                                                                                                                                                                                                                   CONTINUE
                                                                                                                                                                                                                                                       CONTINUE
                          23 I J=I J+N-J
                                                                                                                                                                                    1 E X 1T=2
                                                                                                                                                                                                                                               I EXII=1
                                                                                                        1 = 11 = 1
                                                                      1-[1-[1
                                                                                                                                                                                                                              ror=0.
                                                                                                                                                                                                                                                                                                                   F2=F
                                                                                                                                  6 S O=0 °
                                   2=(I)M 22
                                                                                                                                                                                                                                      INT=0
                                                     N=C1
                                                                                                                                                                                                                      FF=F
                                                                                                                          2=0°
                                                                               •0=2
   20
                                                                                                                                                                                                                                                                                                                                                     33
                                                                                                                                                                                                                                                                                  2
                                                                                                                                                                     59
                                                                                                                                                                                                                                                         30
  FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                                                                                              6110
                                                                                                                                                                                                                                                                                                                                                        0120
                                                                                                                                                                                                                                                                                                                      0116
                                                                                                                                                                                                                                                                                                                                       0118
                                                                                                                                                                                                                                                                                                              0115
                                                                                                                                                                                                                                                                                            0113
                                                                                                                                                                                                                                                                                                     0114
                                                                                                                                                                                                                                                                                                                             0117
                                                                                                                                                                                                                                                                                    0112
                                                                                                                                                                                                                                                          0109
                                                                                                                                                                                                                                                                   0110
                                                                                                                                                                                                                         0105
                                                                                                                                                                                                                                  9010
                                                                                                                                                                                                                                         0107
                                                                                                                                                                                                                                                  0108
                                                                                                                                                                                                                                                                           0111
                                                                                                                                                                      6600
                                                                                                                                                                               0100
                                                                                                                                                                                                        0103
                                                                                                                                                                                                                 0104
                                                                                                                           0004
                                                                                                                                                              8600
                                                                                                                                                                                                0102
                                                                                                                                             9600
                                                                                                                                                     7600
                                                                                                                                                                                       0101
                                                                                                          0092
                                                                          0088
                                                                                  6800
                                                                                         0600
                                                                                                  1600
                               0083
                                       0084
                                               0085
                                                        0.086
                                                                0087
                                                                                                                                                                                                   - 24 -
```

```
F(F1+F2.GE.F+F.AND.7.*F1+5.*F2.GT.12.*F)INT=2
                                                                                                                                                                                                                                                                                                        F(F1+F.GT.F2+F2)Z=1.+.5*(F-F1)/(F+F1-F2-F2)
                                                                                                                                               F ( AL PHA . LT. AEPS) SOT092
                                                                                                                                                                                       W(I)=X(I)+ALPHA+W(IS+I)
                                                    W(I)=X(I)+ALPHA+W(IS+I)
                               F (IFN.GE.MAXFN)GDT390
                                                                                                                                                          F(IFN.GE.MAXFN)G3T390
                                                                                                                                                                                                                                                                                                                                                                                                                                            F(IDIFF-1)100,100,110
                                                                                                                                                                                                                                                                                                                                                                     F(TOT - LT - AEPS) GOT 092
                                                            CALL FUNCT(N.W.FI)
                                                                                                                                                                                                   CALL FUNCT(N.W.F2)
                                                                                   F(F1.6E.F)G0T050
                                                                                                                                                                                                                       IF (F2.GE.F)G0T045
                                                                                                                                                                                                                                                                                                                   [F(Z.T.1)Z=.1
                                                                                                                                                                   AL PHA=.5*ALPHA
                                                                                                                 ALPHA=2.*ALPHA
                                                                                                       TOT=TOT+AL PHA
                                                                                                                                                                                                                                AH9 JA+1CT=TOT
                                                                                                                                                                                                                                                                                                                            AL PHA = Z * AL PHA
                                         DO 34 I=1.N
                                                                                                                                                                              00 41 I=1.N
                                                                                                                                                                                                                                                                                                                                                                                                                        W(IB+I)=6(I)
                                                                                                                                                                                                                                                     DO 42 I=1.N
                                                                                                                                                                                                                                                                                                                                                                                                   00 56 I=1.N
                                                                         [FN=IFN+]
                                                                                                                                                                                                            I FN=IFN+1
                                                                                                                                                                                                                                                               (I)#=(I)X
                                                                                                                                                                                                                                                                                                                                                                                                             H(1)=X(1)
                                                                                                                                                                                                                                                                                                                                                                                         AL PHA=TOT
                      CONTINUE
                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                           CONTINUE
                                                                                                                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                    CONTINUE
                                                                                                                           GOT 032
                                                                                                                                                                                                                                                                           G0T049
                                                                                                                                                                                                                                                                                                                                                 601030
                                                                                                                                                                                                                                                                                                                                       [NT=1
                                                                                                                                                                                                                                            F=F2
                                                                                                                                                                                                                                                                                               = 1
                      35
                                                     34
                                                                                                                                      40
FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                42
                                                                                                                                                                                                                                                                                     45
                                                                                                                                                                                                                                                                                                                                                                               20
                                                                                                                                                                                                                                                                                                                                                            49
                                                                                                                                                                                         41
                                                                                                                                                                                                                                                                                                                                                                                                                        56
                              0124
                                        0125
                                                  0126
                                                             0127
                                                                       0128
                                                                                 0129
                                                                                           0130
                                                                                                                                    0134
                                                                                                                                              0135
                                                                                                                                                                                       0139
                                                                                                                                                                                                                                                                                  0148
                                                                                                     0131
                                                                                                                 0132
                                                                                                                          0133
                                                                                                                                                         0136
                                                                                                                                                                   0137
                                                                                                                                                                             0138
                                                                                                                                                                                                                                                                                             0149
                                                                                                                                                                                                                      0142
                                                                                                                                                                                                                                                               0146
                                                                                                                                                                                                                                                                                                                                     0153
                                                                                                                                                                                                                                                                                                                                                          0155
                                                                                                                                                                                                  0140
                                                                                                                                                                                                            0141
                                                                                                                                                                                                                                           0144
                                                                                                                                                                                                                                                     0145
                                                                                                                                                                                                                                                                        0147
                                                                                                                                                                                                                                                                                                                           0152
                                                                                                                                                                                                                                                                                                                                                0154
                                                                                                                                                                                                                                                                                                                                                                    0156
                                                                                                                                                                                                                                                                                                                                                                                         0158
                                                                                                                                                                                                                                 0143
                                                                                                                                                                                                                                                                                                        0150
                                                                                                                                                                                                                                                                                                                 0151
                                                                                                                                                                                                                                                                                                                                                                                                   0159
                                                                                                                                                                                                                                                                                                                                                                                                             0160
                                                                                                                                                                                                                                                                                                                                                                               0157
                                                                                                                                                                                                                                                                                                                                                                                                                        0161
                                                                                                                                                                                                                                                                                                                                                                                                                                  0162
```

10/21/04

```
IF ( DGS + ALPHA * GSO . GT. 0. ) GOT U62
                                                                                                 IF (DGS+AL PHA*GSO.3T.0.)G0T052
VAIOA
                                                                                                                                                    ZZ=ALPHA/(DGS-ALPHA*GSO)
                        IF (IFN.GE.MAXFN) GDT390
                                                                                                                                                                             (I)9+(I)M*Z=(I+0I)M
                                                         GY S=GYS+G(1) *W(1S+1)
                                                                                  IF(DGS.LE.0.)GOT020
                                                                                                                                                                                                                                                                                                                                          (C+AI)M*(CI)H-Z=Z
                                                                                                                                                                                      SIG=1./(22*DGS**2)
                                                                                                                           SIG=1./(ALPHA*DGS)
                                                                                                                    (1)H-(1)9=(1+01)M
                                                                                                                                                                                                                                                                                         W(IV+1)=W(IU+1)
                                                                                                                                                                                                                                                                                                                                   00 72 J=1+I1
                                                                                                                                                                                                                                M(I)+1)=M(I)
                                                                                                                                                                                                                                                                                                  DO 71 I=2.N
                                                                                                                                                                                                                        N.1=1 19 00
                                                                                                             N+1=1 15 00
                                                                                                                                                              Z=DGS*ZZ-1.
                                                                                                                                                                       N.1=1 ES 00
                                                   M(I)=M(IB+I)
                                                                            DGS=6YS-6S0
                                                                                                                                                                                                                                                 516=1./650
                                           DD 55 I=1.N
                                                                                                                                                                                                                                                                                                                           (I+NI)M=Z
                                                                                                                                                                                                                                                                                                                                                    [ -N+[1=[ ]
                                                                                                                                                                                                                                                                                                                                                            Z=(1+AI)M
                                                                                                                                                                                                                                                                                 CONTINUE
                                                                                                                                                                                                                                                                 CONTINUE
                                                                                                                                                                                                        CONTINUE
                                                                                                                                              CONTINUE
                                                                                                                                                                                                                                                                          21 C=- 77
                                                                                                                                                                                                                                                         COTOTO
                                                                                                                                                                                                                                                                                                                   I 1 = I - 1
                  CONTINUE
                                                                                                                                                                                                                 L I NK=2
                                                                    DF=FF-F
                                                                                                                                                                                                G0T070
                                                                                                                                      601070
                                                                                              LINK=1
                                                                                                                                                                                                                                                                                                           IJ=I
                                                                                                                                                                                                                                                                                    20
                                                                                                                                                                                                                                                                    62
                                                                                                                                                                                                                                   79
                                                                                                                                                                                                          9
                                                                                                                                                                                  53
                                                                                                                         2
                      4
                                                               S
S
    FORTRAN IV G LEVEL
                                                                                                                                                                                                                                                                                                     0197
                                                                                                                                                                                                                                                                                                                                               0202
                                                                                                                                                                                                                                                                                                                                                        0203
                                                                                                                                                                                                                                                                                                                                0200
                                                                                                                                                                                                                                                                              9610
                                                                                                                                                                                                                                                                                       0195
                                                                                                                                                                                                                                                                                               0196
                                                                                                                                                                                                                                                                                                               0198
                                                                                                                                                                                                                                                                                                                       0199
                                                                                                                                                                                                                                                                                                                                       0201
                                                                                                                                                                                                                                             0100
                                                                                                                                                                                                                                     0189
                                                                                                                                                                                                                                                                      0193
                                                                                                                                                                                                   5810 26
                                                                                                                                                                                                                             0188
                                                                                                                                                                                                                                                     0191
                                                                                                                                                                                                                                                             0192
                                                                                                                                                                                                                    0187
                                                                                                                                                                           0182
                                                                                                                                                                                   0183
                                                                                                                                                                                            1 0184
                                                                                                                                                                                                            9810
                                                                                                                                                  9110
                                                                                                                                                          0180
                                                                                                                                                                   0181
                                                                                                                                          0178
                                                                                                0173
                                                                                                         0174
                                                                                                                 0175
                                                                                                                         0176
                                                                                                                                 0177
                                        0166
                                                        0168
                                                                0169
                                                                        0110
                                                                                        0172
                               0165
                                               0167
                                                                                0171
```

```
PAGE 0006
     10/21/04
    DATE = 72122
                                                                                                                                                                (I+AI)M*([I]H-([+AI])M=([+AI])M
                                                                                                                                                                           (C+01)M+(I+81)M+(C1)H=(C1)H
  VA10A
                                                                                                                                                                                                                                                                                                  PRINT 1301.ITN.IFN.IEXIT
                                                                                                                                                                                                                                                                                                                      PRINT 1002 (X(I) . I = 1 . N)
                                                                                                                                                                                                                                                                                                                                PRINT 1302+(G(I)+I=1+N)
                                          Z=H(I))+SIG*W(IV+I)**2
                                                                                 4(18+1)=M(10+1)*S16/2
                                                                                                                                                                                                                                                                                        IF ( IPRINT.EQ.0)RETURN
                                                                                           SIG=SIG-W(IB+I)**2*2
                                                                                                                                                                                                                                                 IF ( TDIFF.EQ.2)GDT094
                                                              IF (Z.LT.DMIN)DMIN=Z
                                                   [ F ( Z.LE.0.) Z=DMIN
                                                                                                                                                                                                                                                                                                                                                                                             CALL FUNCT(N.W.F1)
                                                                                                                                                                                               GDTD(60,20), LINK
                                                                                                                                                                                                                                                                                                                                                                                                                                     GOTO(18,54), LINK
                                                                                                                                                       DO 80 J=11.N
                                                                                                                                                                                                                                                                                                            PRINT 1002.F
                                                                                                                                                                                                                                                                                                                                                                                                      G(I)=(FI-F)/Z
                                                                                                                         DO 80 I=1.N1
                                00 75 I=1.N
                                                                                                                                                                                                                                                                                                                                                              00 101 I=1.N
                                                                                                                                                                                                                                                                                                                                                                                  Z+(1)M=(1)M
                                                                                                                                                                                                                                                                                                                                                                                                                 Z-(I)M=(I)M
                                                                                                      I-dN+fI=fI
                                                                                                                                                                                                                                                                                                                                                                         Z=HT#XM(I)
                                                                                                                                                                                                                                                                                                                                                                                                                           N+N I I =N i I
                                                                        Z=([])H
                                                                                                                                                                                                         CONTINUE
                                                                                                                                                                                                                                       CONTINUE
                                                                                                                                                                                                                                                                               CONTINUE
                                                                                                                                                                                                                                                                                                                                                     CONTINUE
                                                                                                                                    11=11+1
                                                                                                                                                                                                                                                           [0]开=2
                                                                                                                                                                                                                    I EX IT=3
                                                                                                                                                                                     []=[]+1
                                                                                                                                              I l = I + 1
                                                                                                                                                                                                                             GOT094
                                                                                                                                                                                                                                                                     GOTO17
                                                                                                                                                                                                                                                                                                                                          RETURN
                                                                                                                 1=1
  20
                                                                                                      75
                                                                                                                                                                                      80
FORTRAN IV G LEVEL
                                                                                                                                                                                                                                       6
                                                                                                                                                                                                                                                                               46
                                                                                                                                                                                                          90
                                                                                                                                                                                                                                                                                                                                                     100
                                                                                                                                                                                                                                                                                                                                                                                                                 101
                              0206
                                        0207
                                                  0208
                                                            0209
                                                                      0210
                                                                                                    0213
                                                                                                               0214
                                                                                                                        0215
                                                                                                                                 0216
                                                                                                                                                     0218
                                                                                0211
0212
                                                                                                                                                                          0220
                                                                                                                                            0217
                                                                                                                                                                                             0222
                                                                                                                                                                                                        0223
                                                                                                                                                                                                                  0224
                                                                                                                                                                                                                            0225
                                                                                                                                                                                                                                      0226
                                                                                                                                                                                                                                                                    0229
                                                                                                                                                                                                                                                                                                                               0235
                                                                                                                                                                                    0221
                                                                                                                                                                                                                                           270 27
27
                                                                                                                                                                                                                                                         0228
                                                                                                                                                                                                                                                                              0230
                                                                                                                                                                                                                                                                                                  0232
                                                                                                                                                                                                                                                                                                           0233
                                                                                                                                                                                                                                                                                                                      0234
                                                                                                                                                                                                                                                                                                                                          0236
                                                                                                                                                                                                                                                                                                                                                             0238
                                                                                                                                                                                                                                                                                                                                                                       0239
                                                                                                                                                                                                                                                                                                                                                                                  0240
                                                                                                                                                                                                                                                                                       0231
                                                                                                                                                                                                                                                                                                                                                   0237
                                                                                                                                                                                                                                                                                                                                                                                                     0242
                                                                                                                                                                                                                                                                                                                                                                                           0241
                                                                                                                                                                                                                                                                                                                                                                                                                0243
```

VAIOA

110 CONTINUE 00 111 I=1.N

FORTRAN IV G LEVEL 20

(I)WX#HH=Z

W(I)=W(I)+Z CALL FUNCT(N•W•F1) W(I)=W(I)-Z-Z CALL FUNCT(N•W•F2) G(I)=(F1-F2)/(Z•*Z)

0246 0247 0248 0259 0251 0252 0253 0254 0255

GO TO(18.54) .L INK END

IFN=IFN+N+N Z+(I)M=(I)M

111

28 -

Figure 1

Linear search subproblem for the no derivative problem