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1. Introduction

This report presents two quasi-Newton subroutines for solving the problem of minimiz-
ing a function F(x) of n varjables X. Tt is assumed that the gradient vector EFLE) = 5(5)
and the hessian matrix G = [azF/(axi axj)] exist. Quasi-Newton methods have achieved a
high degree of popularity since they were introduced some 14 years ago. However many such
methods have been published since that time and in this paper the recent ideas of Gill, P.E.
and Murray, W. ('Quasi-Newton Methods for Unconstrained Optimization‘, Journal of the
Inatitute of Mathematics and its Applications, Vol. 9, p. 91-108, 1972) will be followed.

It is recommended that this report be read in conjunction with Gill & Murray's paper.

The main feature of classical quasi-Newton methods is that an approximation Hk to G_1
is stored and used by analogy with Newton's method. That is to say, given an approxima-

. . th . . . .
tion to the solution jﬁion the k jiteration, then §k+1 is chosen as a point

x = X
Sket TRk T SRy {1
where

Rk = 7 i B (2)
Hk is updated after each iteration by making a change of low rank. The scalar o in (1) is

chosen ideally to optimize Fk§k + O Bk) with respect to a, or in practice so that 5k+1
satisfies some criterion of approximate optimality. The total amount of work per itera-

tion is(an) compu ter operations.

In this paper two problems are referred to, namely that in which both F(x) and g(x)
can be calculated explicitly, and that in which only F(ﬁ) can be calculated. In the
latter case a quasi-Newton method can only be implemented by approximating the derivatives
§(§) by differences. These two aspects of the problem are considered in sections 2 and 3
of this paper respectively. The main aim of the work has been to develop FORTRAN sub-
routines for each of the problems, and these are given in Appendices 1 and 2 respectively

together with the specification sheets for the gubroutines.

2. The Method with Derivatives

There are three main problems in implementing a quasi-Newton method when both F(i) and
gﬁz) can be calculated explicitly. The first of these Concerns the representation of the
approximation which is maintained to the hessian matrix. In early implementations it was

convenient to keep an approximation H, to G_l. Gill and Murray's contribution {loc.cit.)

I



was to represent G by the product

GxLDL =B (3)

where L is a lower unit triangular matrix and D a diagonal matrix. An important feature
of this method is that the approximation to G is alnways kept positive definite and it is
€asy to guarantee this by ensuring clii » o for all i, The product —B_tgk is achieved by

making two back substitutions. When a rank one correction is made to B,

B* =B + u QT (4)

say, then it is possible to update L and D to L*,D¥* in 3n%/2 + O(n) multiplications.

Gill and Murray give two methods for updating D; the first requires more work (including
n square roots) and n extra storage locations, but Gill and Murray prefer it because they
believe it is easier to ensure positive definiteness in the formulae for obtaining d:i'
However the second method which they give has been used here because of its efficiency.

The method uses the recurrence

i1

& 4 2 N .
ii = Y Y9 L B _jj) (5}

=1

Cis

where v and B are certain vectors, and it is possible that d:i could become negative due to
accumulation of round off errors, even when it is theoretically predicted to be positive.

It is easy to correct for this however, and if a negative d:i is found then it is replaced
by the smallest positive dii in any previous matrix D. This is equivalent to making an
increase to dii before applying the recurrence. No problem with round off errors has
occurred when using this device. It is worth pointing out that the use of LDLT representa-
tions with rank 2 correction formulae requires 4n2 + 0(n) multiplications per iteration
whereas the classical method of recurring an approximation to G_] requires only 3n2 + 0O(n).
However this is a minor disadvantage when compared against the ease with which positive

definiteness of the representation of G can be assured.

The second problem which must be solved when implementing a Quasi-Newton method is in
the choice of the correction formula to be used. There is a clear advantage to be gained
by maintaining positive definiteness, and this leaves three competing formulae, the DFP
formula, the complementary DFP formula, and the switching strategy of Fletcher ('A new

@pproach to variable metric algorithms', Computer Journal, Vol. 13, pp. 317-322, 1970)

which chooses either the DFP fomula or its complement depending upon the test



QTY >y Hy (6)

and H qu

he - - - .
where B = X, = X X 7 Bl T Bk

Unfortunately it is not convenient Lo use
this test when (3) is used to represent G because it involves calculating HI’ a quantity
not necessary in the Gill and Murray formulation. However one way of looking at (€) is to
consider it to be comparing H and the true G—1 ( because 9 = G‘II for a quadratic function)
in the direction ¥. A similar test therefore which it is convenient to compute with the
Gill and Murray formulation, is to use the DFP formula if

QT LT & < QTI i7)

~

which can be thought of as comparing G and LDLT in the direction g. Tests have heen
carried out using all three formilae On a variety of test problems {Table 1), and they

cshow that use of the DFP formula alone is much inferior. The performance of the comple-
mentary DFP formula alone and the modified switching strategy is virtually identical, but
the latter has been preferred in the FORTRAN subroutine because it is felt to be more

flexible.

TABLE 1

Comparlson of various strategies for updating the
approximation to the hessian matrix

T T P B
Rosenbrock's function
2 a5 agt?® 33 42 L 34 44
Chebyquad
2 36 3 6 3 6
4 9 13 9 13 9 13
6 22 28 15 18 16 20
8 3 38 21 26 20 25
Trigonometric functionsg
2 9 12 9 12 9 12
4 30 36 16 22 18 22
! 6 14 19 13 18 13 18
i 8 15 22 16 23 16 23
‘ 10 18 24 18 24 18 24
20 71 85 1 56 41 55
30 97 2150 67 85 0 88
40 o1 176t D) 8 o8 | 81 97

(a) Entries are No. of iterations, No. of function & gradient ev
(b) Low accuracy.




A third problem is that of choosing the parameter o in (1), the so-called linear
search subproblem. For rapid ultimate convergence it is expected that a value o = 1
will be used, but in the early stages when LDLT is a poor approximation to G, & =1 may
be too large. In these circumstances a good approximation to make is that the reduction
in F is likely to be similar to that obtainad on the previous iteration, in which case a
quadratic interpolation would give o = 2(F‘k - Fk—l)/ngBk' Thus a likely choice for a

is given by
G=min 1, 2AF,_~-F_ Vg Tp (8)
- 4 k k-1 2k Xk

This strategy requires the user to estimate the likely reduction in F on the first

iteration, The linear search can be teminated when a value of a is ootained for which
Fk+] < Fk and
lg(x, + appTp. | < o= g Tp (9)
~k ~k) ~k n.kéulg
where p is a fixed parameter in the range o < o<1, Because it has been shown

(Fletcher, loc.cit,) that it is most efficient overall when using Quasi-Newton methods

to look for low accuracy in the linear search, a value of P = «9 has been used. Ir

F(fk + qgk) P F,or if (9) is not satisfied and E(fk'+ agkfigk> O then a new value of q
is detemined using the well known cubic interpolation formula. If (9) is not satisfied
but g({k + GEk)TEk < O then a new value of a is determined by extrapola tion assuming a
linear behaviour of §(§k + cgk) with respect to a. To ensure stability o is not allowed
to increase by a factor of greater than 10 on extrapolation. Two points will be noticed
about this search method. One is that it guarantees QTI‘> O which is a necessary and
sufficient condition for the approximation to G to remain positive definite, and another
is that it requires on average about 1.25 function evaluations per iteration as will be

seen from Table 1.

Finally the problem of how to terminate the algorithm will be cons idered. Because
the algorithm generally converges rapidly near the minimum, it has been decided to
terminate when ’(xk - xk+1)(i)| < & for all i, where € is a tolerance vector supplied by

the user, It is however important not to set £ too large when using this criterion.

The new subroutine { identifier VAOSA) has been tested against two other subroutines

in the Harwell Subroutine Library, namely VACIA, a convention Quasi-Newton algorithm using



th=z DFP formula and an accurate linear search, and VAOBA, a Quasi-Newton algorithm of an
unconventional type due to Powell ('A FORTRAN subroutine for unconstrained minimization
requiring first derivatives of the objective furc tion' report AERE - R 6469, 1970) wiich
can be guaranteed to converge in exact arithmetic. The results in Table 2 show that
VAO9A is superior to both VAQ1A and VAOBA in both efficiency and reliability. In parti-
cular VAOBA is more affected by the presence of round-off errors, and it was also found
difficult to use because of the need to supply a convergence tolerance on the gradient
vector. It will be noted that the results for VAOSA do not quite correspond to those for
the switching formula in Table 1. This is because the results of Table 1 were obtained

with a maximum extrapolation factor of 4 rather than 10.

TABLE 2

Comparison_of VACOA against other existing library subroutines

Problem

n VAOIA VAOGA : VAOQ9A

} I
Rosenbrock's function

2 | 0 62?42 43 % 44
Chebyquad i
: ] !
2 | 2 7 S 14 3 6 |
4 | 8 22 o8 19 | 9 13
6 11 26 27 28 16 20
8

failed B 67 20 25

Trigonometric functions

2 7 18P 13 14 8 11 |
4 14 30 19 20 16 22
6 1M 25 24 25 1217
8 ; 12 29 22 23 15 22
10 | 17 38 37 s 18 25t
20 - o8 84 85 , 42 S5
30 - 165 failed | ™ %2
40 failed failed 82 96 |

{a) Entries as for Table |

{b)} Finds a different minimum.

3. The Mathod without Derivatives

When Quasi-Newton methods are modified to use difference approximations to derivatives

then a number of additional problems raise their heads. However the means of representing

-5 -



and updating the approximation to ¢ and of terminating the iteration are no different to
the case when derivatives are available, and the recommendations of section 2 have been

followed. The new problems lie in the choice of the differencing interval, the choice

of finite difference formula, and in the way in which the linear search subproblem is

solved.

In the first paper on this subject, Stewart ('A Modification of Davidon's Minimiza-
tion Method to Accept Difference Approximations of Derivatives', Journal of the ACM,
Vol. 14, pp. 72-83, 1967) recommended that the diagonal elements of H_T be recurred as an
approximation to the diagonal elements of G. This could then be used to estimate the

truncation error in using the forward difference formula
gi(f) = (F(E + hgi) - F(i))/h + O(h) (10)

whare Ei is the i-th coordinate vector. The differencing interval h could then be chosen
in such a way as to balance the effects of trunation and round off error. However Gill
and Murray give good reasons why this strategy should not be used and prefer to set

h = 2_t/% assuming the variables have been scaled suitably, where t is the number of

significant binary digits in F. This choice of differencing interval has been used in

the implementation given here.

Another problem is the choice of whether to use the forward difference formula (10)

or the central difference formula

F(f + hgi) - F(i - hEi)

g,(x) = + o(n?) (1)

2h

Various strategies were considered for this decision, the most simple being to switch from
forward differences to central differences if the step ap is less than the tolerance £
required on the solution by the user, This is very similar to the method which Gill and
Murray suggest. Gill and Murray also suggest that a return be made to using forward
differences in certain circumstances. Typically one might do this if ||aB|| > 100 ]|5!|
say. Unfortinately it was found that on switching to central differences near the
minimum the value of |‘a£|| could increase greatly, and it was not easy to pick out a
suitable tolerance on a test for returning to forward differences. Thus in the imple-
mentation of the strategy given here, the algorithm stays with central differences until
T

convergence, once the switch has been made. An alternative strategy is t estimate & B

~]

to second order accuracy during the linear search process and to switch to central

-6 -



differences when this estimate of g{[k and that obtained directly from the gradient vector

fail to agree to a certain accuracy. The switch back to forward dif ferences could be
made if g:Bk evaluated using the g from both (10) and {11} agreed to a certain accuracy.

Somz of these quantities were monitored on some test runs on various problems and it was
found that the agreement between the two estimates of gifk was not always a good indicator
of when the switch to central differences ought to be made . It was therefore not decided

to implement this more sophisticated strategy, but to use the simple one.

Finally the problem of how to implement the linear search subproblem must be solved.
The method used is described by the flow diagram of figure 1, and some features of this
will be discussed in more detail. Firstly note that as in section 2, equation (8) is
used to determine o initially. It is important however to ensure that a small Fk - Fk-l
does not cause a small ak a1l hence a small Fk+1 - Fk and so0 on. To prevent this,
provision is made for an extrapolation phase with at least two function evaluations per
iteration. A second point is that for efficiency the extrapolation loop is enly continued
while it is predicted that good progress will be made. This is quantified as follows:
if F, F and F* are three values of F(x) at equally spaced points E—’ X, ff on the
extrapolation phase, where §+ =X+ ap = x o+ 2&2, then it may be possible to predict a

paint, Xoin say, which is the minimum of a quadratic function which interpolates the F's.
If the point xt & 2ap lies on the opposite side of X i to x then it is decided not to
examine F(x+ + 2a,p) and the extrapolation phase is stopped; this is done by setting INT=2

as indicated in figure 1. To prevent this decision causing premature termination, the

termination test is not carried out if an exit is made from the linear search with INT=2.

In fact alternatives to this linear search have been considered and a version was
programmed in which an extra interpolation was carried out in the lower FINISH block.
However numerical tests suggested that this change made the method less efficient. Hence

the version described in figure 1 was finally implemented.

The method was implementéd in a FORTRAN subroutine VA10A and was compared against the
Harwell subroutine Library routine VAO4A which is based on Powell's conjugate direction
technique. Both methods were applied to the solution of various problems with a tolerance
of .00005, and the results are shown in Table 3. In fact this tolerance was only achieved
on the smaller problems due to the effects of round off error. However the smallest

function value obtained by each method is shown in the table.



TABLE 3

Comparison of routines VAO4A and VA10A

Froblem VAO4A VATGA
Rosenbrock's function
(a)
2 32 178 .910—10 35 172 .710—10
Chebyquad
2 a8 35 .710—11 12 55 .110—10
4 32 104 .610—12 12 84 .510—9
§] 114 369 .410—10 20 1M .210—8
| 8 400 868 .210—6 27 402 .110—8

Trigonometric functions

2 10 55 .310—7 é 12 9 .4]0~6
4 40 137 .510—6 fj 14 121 .110—4
6 | 102 349 .910-6 12 145 .310~5
8 E 152 500 .310—5 13 238 .110—5
12 200 om .810—4 21 365 .3]0—5
20 500 1872 .2101 38 1235 .110—4
30 1360 4038 .5100 59 2809 .710~4
40 920 3340 .2102 886 4949 .910—5
(a) Entriss are 'No. of linear searches', 'No. of function

evaluations', and 'difference between the final F(x) and

its minimum value'.

Although VAO4A performs better on some of the two variable problems, VA1OA becomes
progressively better as n increases. Only VA10A manages to get reasonable accuracy on
the large problems of 20 variables and more, and VAO4A essentially fails on these problems.
The results of the comparison are such that it has been decided to recommend the use of

VA10A in the first instance when solving general minimization problems without derivatives.



APPENDIX 1

A FORTRAN subroutine VAQ9A for minimization when the function

and first derivative can be calculated explicitly




Harwell Subroutine Library

VAO9A/AD

1o ' Purpose

To find the minimum of a function F(x) of several variables, given
that the gradient vector (aF/‘axl,aF/axz,...,aF/dxn) can be calculated,

The subroutine replaces VAO1A 1o which it is superior in various ways (see
section 5), and should be used whenever derivatives can be evalucted readily.
it snould however not be used either if storage space is at a picmium (use
VAORA) or if the function is a sum of squares {use VAO7A).  The subroutine
complements VAOGA, the latter requires four times the storage, and some
comparisons (R. Fletcher, A.E.R.E. Report, in preparation) indicate that
VAOGA is marginally slower and more affected by round off error. As VAOBA
is more difficult to use, it is suggested that VAO9A should be

used in the first instance on any problom. If VAOQA fails then VAOBA should
be tried as it. is guaranteed to cOnverge if the effect of rounding errors can
be neglectedd

2, Argument List

CALL VAOSA (FUNCT,N, X, F,G,H,W,DI-‘N,EPS,I\DDE,MAXFN.,IPRINT,IEXIT)
FUNCT An IDENTIFIER of the users subroutine - see section 3.
N An INTEGER to be set to the number of variables (N 3 2).
X A REAL ARPAY of N eleménts in which the current estimate of the
solution is stored. An initial approximation must be set in X

on entry to VAO9A and the best estimate obtained will be
returned on exit.

F A REAL number in which the best value of F(x) corresponding to
X above will be retumed.

G A REAL ARRAY of N elements in which the gradient vector
corresponding to X above will be returned, Not to be set on
entry,

H A REAL ARRAY of N*(N+1)/2 clements in which an estimate of the

hessian matrix aQF/(axiaxj) is stored, 'The matrix is reprcsented

in the product form LDL where L is a lower triangular matrix with
unit diagonals and D is a diagonal matrix. The lower triangle
of L is stored by columns in H excepting that the unit diagonal
elements are replaced by the corresponding elements of D. The
setting of H on entry is controlled by the paramcter MIDE (geve)o

w A RFAL ARRAY of 4*N elements used as working space.



DFN

MAXFN

IPRINT

A REAL number which must be set so as to give VAOSA an
estimate of the likely rcduction to be obtained in F(x),

DFN is used only on the first iteration so an order of
magnitude estimate will suffice, The information can be
provided in different ways depending upon the sign of DFN whi.ch
should be set in one of the following wWays:

DFN>0O the setting of DFN itself will be taken as
the likely reduction to be obtained in F(x).

DFN=0 it will be assumed that an estimate of the
minimam value ot' F(x) has been set in argument
F, and the likely rcduction in F(x) will be
computed according to the initial function value,

DFN<O a multiple |DFN| of the modulus of the initial
function value will be taken as an estimate of
the likely reduction, )

A REAL ARRAY of N elements to be set on entry to the accuracy
required in each element of X,

An INTEGER which controls the setting of the initial estimate
of the hessian matrix in the parameter H, The follewing
settings of MODE. are permitted,

MODE=1 An estimate corresponding to a unit matrix
is set in H by VAOWA,

MODE=2 VAO9A assumes that the hessian matrix itself
has been set in H by columnns of its lower

T
triangle, and the conversion to LDL fomm
is carried out by VADSA. The hessian matrix’
mist be positive definite.

MODE=3 VAO9A assumes that the hessian matrix has been
set in H in prodzct form, This is convenient when
using the H matrix from one problem as an initial
estimate for another, in which case the contents
of H are passed on unchanged,

An INTEGER set to the maximum number of calls of FUNCT permitted.

An INTEGER controlling printing, Printing occurs every
[IPRINT| iterations and also on exit, in the fom

Iteration No, No of calls of FUNCT,IEXIT (on exit only)
Function value

X(1},X(2),00.,X(N) 8 to a line (5 in VAO9AD)
G(1),6(2),...,G(N) 8 to a line (5 in VAQ9AD)

The values of X and G can be suppressed on intermodiate
iterations by setting IPRINT<O, All intemmediate printing can
be suppressed by setting IPRINT=MAXFN+!., All printing can be
suppressed hy setting IPRINT=0,

- 10 -



IEXIT . An INTEGER giving the reason for exit, from VAOSA, This
will be set by VAOOA as follows

IEXIT=0 (MODE=2 only). The estimate of the hessian .
matrix is not positive definite.

JEXIT=1 The nomal exit in which |DX(1) | <EPS(I) for
all I=1,2,...N, where pX(I) is the change in
X on an iteration.

IEXIT=2 dTDXBO. Not possible without rounding error.
Probable cause is that EPS is set too small

for computer word length.
IEXIT=3 FUNCT called MAXFN times.

3e User Subrouting

The user must provide a subroutine headed
SUBROUTINE XXX(N,X,F,G)
REAL X(1),G(1} (REAL*8 in VAQ9AD)
where XXX is an identifier chosen by the user.

This subroutine should use the variables X supﬁlied in X(1),
X(2)..0.,X(N}) to evaluate the function and gradient veclor and place
them in F and G{1),6(2),...+,6{N) respectively. XXX must be passed Lo
VAOOA as VAO9A's first argument, see section 2, and appear in an
EXTERNAL statement in the program that calls VAOQA,

4, General '

Use of COMMON : none

Workspace: N* (N+1) /2 words + 4N words provided by the user in
H and W.

Other routines: none

Input/Output: controlled by the user through IPRINT, All
output is on stream 6 (line printer).

Restrictions: none
System dependence: none

Date of routine: April, 1972,

-11 -



5. Method

The method used is a quasi-Newton method described by Fletcher
(Computer Journal, Vol. 13, p.317, 1970), and is a modification of
earlier methods of this type, such as that implemented by VAOlA, The
method is superior to that of VAOIA on three counts,

(1) It uses a formula to update the hessian approximation H
which has proved to be more efficient and reliable,

(2) It uses a 'crude' line search which has been shown to be
more efficient than an 'accurate' line secarch,

{3) It represents H by the product LDLT, which epables the

positive definiteness of H to be guaranteed, even in the
presence of round-off error,

-12 -
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APPENDIX 2

A FORTRAN subroutine VAI0A for minimization when only

the function can be calculated explicitly







Harwell Subroutine Library VATOA /A D

1o Purpose -

To find the minimum of a function F(x) of n variables x. It is
assumed -that the function is diflerentiable, although it is not necessary
to supply a formula for the derivatives. The method used is a
quasi-Newton method in which derivatives are estimated by differences and
is described in R, Fletcher, 'FORTRAN subroutines for minimization by quasi-
Newton methods', A.E.R.E.R.7125 (1972).  The subroutire complements VAO4A
but some comparisons (R. Fletcher, loc.cit) indicate that VAO4A is less
efficient than VA1OA and more affected by rourml off error, VAO4A also
useg twice as much storage as VAI0A, It is therefore suggested that
VA1OA be used in the first instance on any problem.

VA10A should not be used when explicit expressions are available for
derivatives (use VAOSA) nor when the function is a sum of squares (use
VAO5A, VAO2A or one of the NS routines as appropriate).

2, Argument List

CALL VA10A(FUNCT,N,X,F,G,H, W, DFN,XM, HH, EPS,MODE, MAXFN,
IPRINT,IEXIT)

FUNCT An IDENTIFIER of the users subroutine - see section 3.

N An INTEGER to be set to the number of variables (N 3. 2},

X A REAL ARRAY of N elements in which the current e stimate of the
golution is stored. An initial approximation must be set in X
on entry to VA10A and the best estimate obtained will be returned
on exit.

F A REAL number in which the best value of F(gc) corresponding to
X above will be returned.

.G A REAL ARRAY of N elements which is used to store an estimate
of the gradient vector VF(x). Not to be set on entry.

H A REAL ARRAY of N*(N+1)/2 elements in which an estimate of the
hessian matrix 82F/(axiaxj) is stored. The matrix is represented
in the product form LDLT where L is a lower triangular matrix with
unit diagonals and D is a diagonal matrix, The lower triangle
of L is stored by columns in H excepting that the unit diagonal
elements are replaced by the corresponding elements of D, The
setting of H on entry is controlled by the parameter MODE (q.v.).

i A REAL ARRAY of 4*N elements used as working spacec.

- 18 -



DFN

XM

HH

A REAL number which must be sct so as to give VA10A an
estimate of the likely reduction to be obtained in F(x),
DFN is used only on the first iteration so an order ol
magnitude estimate will suffice, The inTomation can be
provided in different ways depending upon the sign of DFN
which should be set in one of the following ways:

DFN>0 the setting of DFN itself will be taken as
the likely reduction to be obtained in F(x),

DIN=0 it will be assumed that an estimate of the
minimum value of F(x) has been set in argument
F, and the likely reduction in F(x)} will be
computed according to the initial function value,

DFN<O a multiple [DFN| of the modulus of the initial
function value will be taken as an estimate of
the likely reduction,

A REAL ARRAY of N elements to be set on entry so that

XM(I) > O contains an indication of the magnitude of X(I),
This quantity need not be set precisely as it is merely used
in scaling the problem,

A REAL number to be set so that HIFXM(I). contains a step
length to be used in calculating G(I) by differences, Set HH
equal to 2—"’/2 wiiere t is the number of significant binary
digits in the calculation of F, If T contains only small
errors the setting HH=1E-3 is appropriate for VA10A and
HH=1E-6 for VA10AD,

A REAL number to be set on entry so that the accuracy required
in X(I) is EPS*XM(I) for all I.

An INTEGER which controls the setting of the initial estimate
of the hessian matrix in the parameter H, The following
settings of MODE are permitted,

MODE=1 An estimate corresponding to a unit matrix
is set in H by VAI10A,

MODE=2 VA10A assumes that the hessian matrix itself
has been set in H by columns of its lower

T
triangle, and the conversion to LD. form
is carried out by VAIQ\. The hessian matrix
must be positive definite,

MODE=3 VA10A assumes that the hessian matrix has been
set in H in product form, This is convenient
when using the H matrix from one problem as an
initial estimate for another, in which case the
contents of H are passed on unchanged,



MAXFN An INTEGER set to the maximum number of calls of FUNCT
pemitted. Up to 2N more calls may be taken if the limit
is exceeded whilst evaluating a gradient vector by differences.

IPRINT An INTEGER controlling printing. Printing occurs every
|IPRINT| iterations and also on exit, in the form

Iteration No, No of calls of FUNCT,IEXIT {on exit

Only) o

Function value

X(1),X(2) 5000, X(N) 8 to a line (5 in VA10AD)
G(1),G(2) 4 400,G(N) 8 to a line (5 in VA10AD)

/  The values of X and G can be suppressed on intermediate
iterations by setting IPRINT<O, All intermediate printing
can be suppressed by setting TPRINT-MAXFN+1, All printing
can be suppressed by setting IPRINT=0,

IEXIT  An INTEGER giving the reason for exit from VA1GA, This will
be set by VA10A as follows

. {EXIT=0 (MODE=2 only). The estimate of the hessian
matrix is not positive definite,

1EXIT=1 The normal exit in which | DX(I)}|<EPS(I) for
all I=1,2,...,N, where DX(I) is the change in
X on an iteration.
IJEXIT=2 GTDX>O. Either que to rounding €rrors because
EPS is set too small for the computer word length,
or to the truncation error in the finite difference
" formula for G being dominante

TEXIT=3 FUNCT called MAXFN times.

3. User Subroutine

The user must provide a subroutine headed
SUBROUTINE XXX(N,X,F)
REAL X(1) (REAL*8 in VA10AD)
where XXX is an identifier chosen by the user,
This subroutine should use the variables x supplied in X(1),X(2) , ... X(N)
to evaluate the function and place it in F. XXX must be passed to VATQA

as VA1CA's first argument, see section 2, and appear in an EXTERNAL
statement in the program that calls VA10A,
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_GEner‘al
Use of COMMON: . none

Workspace: N words + N*(N+1)/2 words + 4N words provided by
the user in G,H and W,

Othe I' routines: none

Input/Output: controlled by the user through IPRINT, All
output is on stream 6 (line printer)

Restrictions: none

System dependence: none

Date of routine: April 1972,

May, 1972
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Figure 1

Given x and F(z) = F say
Set o using (8)
Set INT = ¢

, 4

Evaluate F(.z,: + op) = Ft say e —

No Interpolation

v_ LL

+ up Evaluate

F(x + ap) = F' say

Evaluate (x + ap) Set x = T + ap Set INT = 1 .
) F-F

=F" say F a=14+
2(F+F -2F /)

Extrapolation

If little more
progress likely
set INT = 2

|
o = 20
|

-<—

Linear search subproblem for the no derivative problem




