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1. Introduction

The problem under consideration is that of minimizing a sum of squares S(gg) of several

non-linear functions r;(x) of many variables X, that is

m

2
s(x) = Z [r, (x)]

i=1

where X = (xI,xz,...,xn)T, and where m 3 n. Such problems arise typically in non-linear
least squares data fitting, when r, is the residual difference between observed and
predicted quantities, and also when solving systems of non-linear equations. Two very
similar methods have been published for this problem, by K. Levenberg (Quart. Appl.
Maths,, 19544, Vol. 2, p.164), and by D, W. Marquardt (Jour. SIAM, 1963, Vol. 11, p.431).
If the mxn Jacobian matrix J is defined by .Jij = ari/axj then each iteration can be

written as

+ 6(k)

~

MUSDRN

where § (dropping subscripts where no confusion can occur) is the solution of the set of

linear equations

(A +AD) & =¥ (1

k)

where A = JTJ and y = JTg are evaluated at gg( , and where A is an adjustable parameter
which is used to control the iteration.

On any one iteration A and y are fixed, s0 that & may be considered as a function
8(A) of A, As A =, then 8(M)=> ~y/A which is an incremental step along the direction
of steepest descent of S(x) at z(k). As A = 0, then §(A) — —A_lx which is the
correction predicted by the Gauss-Newton or General ized least squares method., Stecpest
descent methods are known to be convergent but slow, whereas rapid but less reliable con-
vergence is usually obtained with the Gauss-Newton method. The motivation of the
Levenberg-Marquardt methods is that they attempt to choose A so0 as to follow the

Gauss-Newton method to as large an extent as possible, whilst retai ning a bias towards the



steepest descent direction to prevent divergence,

The methods differ in the way in which A is selected on each iteration. Levenberg
suggested that it would be preferable to estimate the minimum of S{x+&(\)) as a function
of A, on each iteration. This requires the solution of (1) and the calculation of S to be
repeated for a number of different values of A. This suggestion is open to a number of
objections but primarily it is less efficient to spend time in looking for a minimum of S
with respect to %, rather than to start a new iteration wi th more up-to-date information
for A and y, once a sufficient reduction in the sum of squares las been obtained.
Furthermore the programming of this search process is complicated by.a number of difficult
ad-hoc decisions, and in this case in particular it is not at all obvious what sort of
behaviour S(A} relating S to A should be assumed, to make the interpolations which would
be required. However I do not agree with Marquardt who suggested that Levenberg's
scheme would lead to a serious over—emphasis of the bias towards steepest descents.,
Unfortunately Levenberg never stated his ideas in a sufficiently precise form that a
computer program could be written from them, so no further consideration of his choice of
A will be given,

Marquardt suggested a way of varying whigh gave much more hope of being efficient
in the number of solutions of (1) and evaluations of § required per iteration. His idea
was to choose a fixed parameter v (v=10 was recommended), increasing or decreasing A by
multiples of v or 1/v as necessary, and terminating any iteration once a § had been
obtained for which $(x+&)} < S(x). Unforturately Marquardt's statement of the algorithm
makes it appear necessary that S3(x) is ovaluated at least twice per iteration, and the
text confimms this impression. Howover jf his algorithm is written as shown in Figure 1,
then it is clear that only one cvaluation of 5(5) may be required on some iterations,

Murquardt's algorithm is very simple, and some limited tests with a version of it
show that it is reasonably efficicnt. 1In fact, on many problems, an average of little
over ome solution of (1) per iteration i= required, Unfortura tely Marquardt's original
FORTRAN subroutine in the IBM SHARE subroutire library seems to be difficult to obtain,
and this motivated the writing of a more readi ly accessible subroutine, Having decided
to do this, a number of modifications to ¢l iminate some less favourable aspects of the
method were also planned, For instance the arbitrary initial choice of A, if poor, can
tause the wastage of a number of evaluations of S before a realistic value is cbhtained,

This is especially noticeable if v is chosen to be fairly =mll, .=2 say. Another



Figure 1

| Given x and $=3(x):
| choose A arbitrarily _

Tl
A=A D

o

Solve (1) for &
evaluate $'=S(x+0)

Flow diagram for Marquardt’'s method

disadvantage of the method is that the reduc tion of A to »/v at the start of each
iteration may prove to be cxcessive, especially if v Is chosen to be large {v=10, say).
The effect of this is that thc average number of evaluations of S per iteration may be
about 2, which is unnecessarily inefficient. A further disadvantage of the method is
that the test §' ¢ S (or even S' < §) precludes a proof of convergence being made,
Finally, when solving problems in which =0 at the solution, it is possible to achieve a
quadratic rate of convergence with the Gauss—Newton method but only a superlinear rate
with the Marquardt scheme. The modifications of section 2 of this report represent an
attempt to circumvent these difflficulties,

2. Modifications

Although Marquardt's idea of replacing gg(k) by 35“()

+ & when a better sum of squares
is obtained, is Tollowed, the circumstances under which * is changed are modified, The
initial reduction of % to M/v (see Figure 1) is discontinued. After solving {1) and
evaluating S8’ = S(gg(k) + &), a new value of N is calculated by comparing the actual reduc—
tion 5-S' in the sum of squares with that predicted on a linear model. If &{(x) represents

the predicted sum of squares, then the predicted reduction is given by



~

sy - o™ . 9 = g g,

The motivation for the strategy to be described is that if the ratio R of actual
reduction/predicted reduction is near 1, then A ought to be reduced, apd if the ratio is
near to or less than 0, then % ought to be increased. However for some intermediate
values of A it is probably best to leave A unchanged for the next iteration. In fact it
has been found satisfactory merely to choose arbitrary constants p and o such that
O<p<o<l, and to reduce A if R < p» and to increase » if R > o. In fact various
experiments were tried with p in the range 0,01 to 0,25 and o in the range .5 to «9;
however it was found that the rate of convergence was largely insensitive to different
choices of p and o, and in fact the values p = 0.25 and o = 0,75 were finally chosen,

The method chosen for increasing M is similar to that used by Marquardt in that A
is increased to vh. It was found that on most iterations the valuc v = 2 would be
adequate, but on early iterations, when A might be much too small, then a larger factor
of say v = 10 would be desirable, Thus it was decided tw allow the use of a multiple v
between 2 and 10, and an automatic method for choosi ng a multiple in this range was
devised, For large values of A, increasing A to vA corresponds approximately to reducing
8 to &/v. Now because the sum of squarcs and its derivative is available at 5(1(), and
because the sum of squares is available at ,5(k)+g, it is possible to estimate the optimum

correction af in the direction § from the formula

o = 1/ - sy - sy Ty

From the assumptions of reciprocity, a multiple v = 1/a is chosen by which to increase A,
This multiple is replaced by 2 or 10 if it is less than 2 or greater than 10 respectively,
The test has worked very well in practice, yet is very simple to apply.

The modification to Marquardt's idea for reducing X comes from the feeling that the
geometric progression choice of A works least well for very small A, As A — 0,
8O/ &) | = 1 and the changes in £ on replacing A by A/v are much smaller than
might be desired. For instance if good progress is made with the Marquardt method for a

number of iterations, then a A of around muchine accuracy might be obtained, If an



iteration then occurs on which the sum of squares is not improved, quite a number of
increases of A and hence evaluationg of 5 might be necessary before a significant
reduction in § is obtained. Another disadvantage of the geometric progression method is
that it precludes the quadratic rate of convergence being achieved when [ = 0 at the
solution. One way of getting around these difficulties is to reduce A to A/ as with
Marquardt's method (» = 2 has been used), but to detfine a "cut-off" value KC such that any
values of A < ]\C are replaced hy A = 0. However there are some difficulties with the
cut—-ofT strategy which have L0 be overcoms before it is acceptable.

The most important difficulty ties in the actual choice of ?xc. Too small a value,
although not catastrophic, has the effect that very little modification is being made to
the method at all, Too large a value however can be catastrophic, in that the iteration
can oscillate by failing to make progress with a value of % = 0, and then making an
incremental step along the steepest descent vector with & = ')\c. Clearly it is necessary
to make a good automatic choice of 7\C and not an arbitrary one. To do this, it is argued
that A, would be suitable if it caused || Q(hc) /) &(0) | = %. Then to go from » = 0 to
A =\, would cause | & I, to be halved which is what happens with large » on going Trom
» to 2A. An estimate of such a lc’ which is usually realistic, yet which is on the =small

side and therefore fail-safe, is given by

A = /7!

C

To show this a simple lemma will be proved,

Lemma If the spectral decomposition of A is given by A = g i g.z—;.T whe re
— ~dlael
i

Hy 2 Hg 3 «ev > Hyy and if 0O < Mg, then | &(n) ||2 = %5 5(0) 1|2.

Proof By (1) and the decomposition of A, §(A) can be written

13

a0 = Z g 2 v/ ()

i

whence

amTen) = Z &,/ ) (2)
i



Therefore the ipequality

l@(o)Tg(o) = Z (giTx/(zpi))z
i

< Z &, v ? = a0 (3)
i

can be obtained, whence the Lemma follows, QED,
Clearly the choice A, = I/HA_1 | satisfies the conditions of the Lemma for any definition

of | « In practice both the L norm of A_I and the trace of A"] have been calculated,
o0

both being overestimates of pn_i. These estimtes of “n—i have usually been no worse
than ahout 2pn_1 in the examples which have been considered, Furthermore the term in
éiTx/(pnﬁ) usually dominates (2) for small A, so the inequality (3) is usually fairly
tight, Thus a quite effective and fail-safe choice of a cut-off value can be determined.

The best way of using this result in an algorithm must now be determined. First of
all, to solve equations (1) requires ~ n3/6 operations, whilst the additional calculation
to obtain A_1 is ~ n3/3 operations., Thus it is somewhat expensive in computer time to
recalculate 7\.C on each iteration (although not in storage because A—1 can overwrite the
Choleski factor L), On the other hand, to set up ;. once only might lead to the
oscillatory behaviour described above, if the eigensolution of A changed significantly
with x. The compromise which has been adopted is to recalculate A, every time A is
increased from zero to some positive number., This avoids any possibility of oscillation,
yet in practice has required the evaluation of A_] at most about twice per problem,

Another difficulty with a cut-off strategy is that a method in which A is increased
L0 some multiple vA no longer works when A = 0. However a simple way of avoliding the

difficulty is to adopt the convention that a change from A = 0 to A = KC is equivalent (o

doubling X, by virtue of || ﬂ(’fg(?\c) = %I &(0){l. Given this convention, then the strategy

for increasing A which was described earlier in this section can be applied without change,
When a cut-off strategy is in uUs€, an arbitrary initial choice of A is no longer

necessary, because the choice » = 0O suggests itself in a matural way and has therefore

been used in the subroutine, In some data fitting problems it has been found that this

value of A can be used on cvery iteration, However it might be possible to argue a case



for choosing » = 7\C initially, and this would certainly be preferable to the arbitrary
initial choice A = .01 in the unmodified Marquardt method,

A flow diagram for the modified algorithm is given in Figure 2.

3. A FORTRAN subroutine

A FORTRAN subroutine has been written to implement Marquardt's method, together with

the modifications described in the last section. An additional feature which is also
included, is the ability to scale the variables. Marquardt shows that solving the system

(A + RD)'@ = =V

at each iteration, where D is a constant diagonal matrix with Dii > O for all i, is
equivalent to using scaled variables x* such that changes ;¥ in x;* are related to

changes 6i in X; by 61* =/ D..

i 61. It is important that the variables be scaled in a

realistic way because the method has the important property that the solution & of
equation (1) is the correction which minimizes the prediction @(5—}5(}()) subject to

I ,35-,25(]() I, 18 Il This implies that use of the L, norm, and hence the scaling of the
variableé, should be appropriate. A good choice of D is that described by Marquardt
{g.v.) in which D is chosen as the diagonal of A, evaluated using the initial x. This
choice is given as standard in the subroutine, although the choices D = I or any other
D supplied by the user, are allowed as optiomns,

The FORTRAN subroutine (identifier VAO7A) is listed in Appendix 1, and the
specification sheet giving details of ils use appears as Appendix 2. Specification sheets
of two other subroutines called by VAOTA are given in Appendix 3, Tt should be mentioned
llére that VAOTA uses a feature of one of these subroutines, MA10A, which is not
described in its specification sheet. When solving ecquations, the Choleski factor L
{(for which A = LLT) is stored as LT in the working space A, thus overwriting only the
diagonal elements of the lower triangle of A, It is important that any replacement. for
MA10A should possess the same property.

Finally the results on a few test problems are given as they might be useful for
comparative purposes, The accuracy obtained in each variable is ,00005 corresponding

to about 4 decimal places or to a discrepancy of about 10_9 in the minimum S.



Table 1

Rosenbrock's sum of squares (rI:I-x], r2:10(x2—x12))

M=N=2 13 iterations 17 calls of RESID

Chebyquad sum of squares
{see R. Fletcher, Computer Joy 1965, Vol, 8, p.33)

M=N=2 3 iterations 4 calls of RESID

M=N=4 4 iterations 6 calls of RESID
M=N=6 6 iterations 8 calls of RESID
M=N=8 15 iterations 22 calls of RESID

The Chebyquad N=8 case is interesting in that the equations have no exact solution, This
inplies that the matrix A evaluated at the value of x corresponding to the minimum sum
of squares will be sj ngular, and hence that a Gauss—Newton method or Gauss-Newton method
with linear searches would work badly. The figures show a qiite acceptable amount of
computation for the modified Marquardt method, The subroutine has also been tested on

some data fitting problems for which M > N, with satisfactory results,



R<p

Figure 2

Given x, S(x) and »=0

Solve {1) for b:

~

evaluate S'=S(x+d) and R

Calculate o and hence v,

2 g v g 10 (see p.4)

|

N

If A=0, calculate
set A=A, and v=u/2

AzDA

—=
R>a
P <Reo
A=A /2
If A <A
set A=0
N
S 1

Ir 8' < § set x = x+&, S
d

and recalculate A and y

Flow diagram for the modified Marquardt _method




Appendix 1

The 1isting of the FORTRAN subroutine VAD7A
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Appendix 2

The specification sheet for the FORTRAN subroutine VAO7A



Harwell Subroutine Library SUBRGUTINE VAO7A/AD

1. Purpose

To find a local minimum of a sum of squares of m non-iinear functions of
n variables, that is to

n 2
minimize Z [ri(x] ,xz,...,xn)]

i=1

Typically the ri might be the residuals of a non—-lincar least squares data
fitting problem, as in the cxanple of section 8. The wser must e able to
calculate the functions rj and the partial derivatives Ori/ax_j for all i,j :
this information is presented to VAOTA by two user subroutines as described in
section 3, The method is described by R, Fletcher (1971}, "A modified Marquardt
subroutine for non-lincar lecast squares", Harwell rcport, AERE R.6799; it is
iterative so that an initial approximation to X1sX2ye0 o, X, must be supplied,

The method allows the imposition of constraints in a limited way as described

in scction 6, It may also be possible to improve the performance of the me thod
by scaling the variables in a realistic way {sce scction 5). An aulomatic choice
can be made by VAOTA or this can be overriden by the uscer if desired,

2. Argument List

SUBROUTINE VAO7A (RESID, LSQ,M,N,X,R,5S,A,D, EPS, IPRINT, MAXEN, MODE)

il?ggln ; identifiers of the user subroutines — see section 3,

M an INTEGER sect to the number of functions m. Mmust e » N.

N an INTEGER set to the number of variables n. N mst be » 2,

X a REAL array of N elements, set so that X(I) is the initial
approximation to xj» The best approximation to the minimum which
is found will overwrite X on exit from VAQ7A.,

R a REAL array of M elements, which is such that on exit from VAQ7A
R(T) contains the value of the residual ri (X)X, euu,xp)
corresponding to the X above, R need not be set by the user on
entry to VAOYA,

58 a REAL variable which on exit from VAO7A oontains the sum of
squares of the R(I) above, S$S need not be set by the user on
entry to VAOTA,

A a REAL array of at least N2 elements, used by VAO7A as working
space,

D a REAL array of N elements, only to be set if MODE = 3, and which

controls scaling {see section 5).

16



EPS a REAL array of N clements, set so that EPS(I) is the absclute
accuracy to which Xxj should approximate the solution.

IPRINT an INTEGER which controls the frequency and amount of printing -
see scction 4.

MAXFN an INTEGER giving an upper limit to the number of times RESID
is called -~ see scction 3.

MODE an INTEGER which governs the method of scaling the variables -
see scction 5.

3. liser subroutines

The user must provide two subroutines, one to calculate the residuals, and
the other to calculate derivatives., The uscr may chioose any identifier for these
subroutines, and these aust be supplied in the calling sequence. An EXTERNAL
statement must also appear in the user's MAIN program, (see the example in
gsection 8). These subroutines should be written as follows.

(a) SUBROUTINE RESID (M,N,X,R,IFL)
DIMENSION X{1},R{1)

statements to ecvaluate ri(xl,xz,...xn) for i=1,2,...,m and store them
in R(I), T=1,2,0..,M.  X7sXgyeee,Xp 8re given in X(1), X(2),4.., X(N)
RETURN '

END

If for any reason, onc or morc of the rj cannot be evaluated with the given
Xy5Xgssesy Xy (for cxample if overflow or negative square root would occur), then

the INTEGER variable IFL should be sct to 1 and a RETURN given. This leature can
also be used to impose constraints on the variablies in a limited way - see section 6,

(b) SUBROUTINE LSQ(M,N,X,R,A,V)
DIMENSION X(1),R(1),A(N,1),Vv(1)

statements to set up the coefficients of the least squares normal
equations, that is 1o evaluate

for i=1,2,...,n and

for j=1,2,.u0,1;

4
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cp @
x|,
[N P

A
1)

=~
I
-

" and

-
| o3
=

z’

vi = for i=1,2,...,0,

-~

[s}]
N
-

m
k=

=

where ry and 9r./0x; are cvaluated Tor Xq,Xg,»..yXn 88 given in

X{(1),%X(2),...,X{N}. In fact the values Iy, k=1,2,...,m will alrcady
have been cvaluated Cor these Xy,Xgse-«)Xp in an immediately previous
call of RESID, and these values are available in R{1,R(2) e, RO
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One way of programming L5Q is w declare an array of size MxN (DR(M,N) say)
and o set DR(K,I) equal o 0rg/ux; for all K=1,2,,..,M and all I=1,2,...,N.
Then A and V can be evaluated using the statements

BoO 1 I=1,N
CALL MCO3AS (D(1,1}, D{2,I), R(1), R(2), O., V(I), M, 4)
Lo 1 J=1,1
1 CALL MCO3AS (D(1,I), D(2,1}, D{1,J}, D(2,J), O., A(T,T), M,4)

sce the cxample of scction 8, It muy be ‘possible to do this more efficiently
without using MN storage locations for DR - however note that A 1s overwritten by
VAO7A so that any constant eloments in A must be reset. Because A is a symmetric
matrix, only the lower triangle necd e sct.

In most problans, the calculation of derivatives in L5} will involve terms
(c.g. cosines, exponentials, cte,) which have alrecuady been calculated in RESID, It
is usually very incfficient to recalculate such expressions and they should be
passced from RESID to LSQ via o COMMON block - see the cxample in section 8,
Alternatively LSQ can be written as if it were a sccondary entry point to RESID.

For the sake of erficicncy LSQ is only called if the sum of squares of
residuals evaluated by RESID is an improvement on tle best previously obtained,
However in practice most calls of RESID are lollowed by a call of LSQ. This should
be taken into account when setting the parameter MAXFN,

4.  Printing

Printing starts on a new page with the text ENTRY TO VAO7A., At the beginning
of the first iteration and on every subsequent |IPRINT} iterations the mumbers

IT IR

S5

X(1),Xx(2),...,X(N) (8 to a linc)
v(1),v(2),...,V(N) ( " )

R(,R(2),uunnn.. e ROMY " )

arc printed as shown, IT is the previous no. of iterations, IR is the no. of
calls of RESID, X is currcnt best approximtion, R and $8 are the correspondi ng
residuals and sum of squares, and V is the correspondi ng quantity delined in
scction 3(b), where in fact 2V is the gradient vector of the sum of squares,
The same information is printed out on exit from VAOTA, excepting that V is not
given as it is not usually available.

Exceptions to the above occur if IPRINT=0, whcen none of the above printing
takes place, and if IPRINT < O when printing of R(1),...,R(M) is suppressed,
Furthermore diagnostics may be produced in certain error situations,

s. Scaling the variables

At each iteration the equations

(A +AD)S = -y

are solved to obtain a correction & to the current approximtion X. Dis a
constant diagonal mtrix with Dj; > 0, and different choices of D correspond to
different prescalings of the variables. jj 1s represented by the I ¢lement of
the paramcter [ in the calling sequence o VAOTA and may be specified in different
ways by setting the parameter MODE. The following are permitted,



MODE = 1 {the normal setting): D(I) for I=1,2,...,N is set automatically
by VAO7A to A{I,I}, where A is the matrix calculated by LSQ from
the given initial approximation, or t 1 if exceptional 1y
A(I,1)=0, This choice is described further in R.6799

MODE = 2 D(I) is set automatically by VAO7A to 1 {corresponding to no
change of scale).
MODE = 3 D(I} is set by the user through the parameter D in the parameter

list,

If MODE = 1 or 2, therefore, no user action is required as regards scaling.

6. Constraintis

When a RETURN is given in RESID with 1FlL=1, as described in section 3(a),
then the iteration is repeated with a larger value of A, causing a smaller
correction to be made to the variables, This featurc can be used to impose
constraints in a limited and simple minded way. It is merely necessary in RESID
to check whether the values XqsXope-erXp violate any of the constraints on the
variables, in which casc the INTEGER variable IFL is set to 1 and a RETURN is
given, This device is illustrated in the next section, and is worth trying
when an unconstrained minimum is expected to exist, although success is by no
means guarantced.

7. General

Use of COMMON - none
Private workspace - sce under restrictions in use below
Other routines - calls MCO3AS {double lergth scalar product)
and MA1OA (Choleski method for linear equations)
System dependence -~ none
Date of routine - April 1971
Restrictions - VAO7A is restricted to N=25 and M=200 directly.

However these restrictions can be circumvented, when single
length is being used, by adding the following named COMMDN
statements to the users MAIN program,

(i) to increase the N limit (to N say), include

COMON,/VAOT7B/S{N)
COMMON/VAO7C/T{N)
COMMDN AVAOTDAUN)
COMMON AVAOTE/V(N)

(ii) to increase the M limit (to M say}, include
COMVON VAO7F A4 (M)

To increase both limits, include both sets of named QOMMON
statements,

The changes in the double length version are as above but with
the addition of D to the name, that is

COMMDN/VAOTBD/5(N)

etcC.
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8, An Example

Consider the problem of fitting the data y(ty), ylta), ..o, y(tyc) by a
function of the form

£(t) = a + bt + ¢ exp (-4(t-d}2/c?),

where a,b,c,d and e arc paramcters to be determined. The problem can he posed
as that of choosing a,b,...,c s0 as to

23

minimize Z [rl.(a,b, ey} 12
i=1

where

ri(a,bya.e) = a v b+ ¢ et -a)o/e?) - yit,),

Thus the problem has 25 residuals, 5 variables, and tystnyeas,tys and
y(ty), y(tz),...y(t25) arc given-data. The required partial derivatives are
easlly obtainable, namely

aj =1 & =t ai = exp{......)
da ab a¢c
2
or, _ c(ti—d) explea.d) _E_]é - C(ti"d) expl....).
ad 2 de 3
e €

Note how the cxponentials which occur in calculating r; also oceur in the
calculation of the derivatives, Finally r; will overflow if e = O and in fact
& minimum subjcet to the constraint ¢ > 0 is required,

The MAIN program for this problem is as follows

REAL A(25), D{5), X(5), EPS(5), R(25)

COMMON Y(25), T(25), EX(25), DR(25,5)

EXTERNAL GAUSSR, GAUSSD
statements to read y(t;} —» Y(I), t; —> T(I), to set DR(I,1)=1 and
DR(1,2) = T(I), for I=1,2,...,25; also to set initial approximations to
a,b,...,e into X(1), X(2}, ..., X(5) and the respective tolerances into
EPS{1), EPS(2), ..., EPS(5),

CALL VAO7A (GAUSSR, GAUSSD, 25, S, X, R, SS, A, D, EPS, 1, 100, 1)

STOP

END
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and the uscer subroutines are

SUBROUTINE GAUSSR (M, N, X, R, IFL)
DIMENSION V(1), R{1)
COMMDN Y(25), T(25), EX(25), DR(25,5}
IF(X(5).GT.0,) GOTO 3
IFL=1
RETURN
3 CONTINUE
Do t I=1,M
EX(I) = EXP{-.5* ((T(I)-X(4))/X(5))**2)
1 R(I) = X(1) + X(2)*T(I} + X(3)*EX(1)-Y(I}
RETURN :
END

SUBROUTINE GAUSSD(M, N, X, R, A, V)
DIMENSION X(1), R{1), A(N,1), V(1)
COMVON Y(25), T(25), EX(25), DR(25,5)
o 1 I=1,M
DR(1,3) = EX(I)
DR(I,4) = X(3)*(T(I)-X{4))*EX(I)/X(5)**2
1 DR{I,5) X(3)* (T(I)-X(4))**2*EX(I} /X(5)**3
DO 2 I=1,N
CALL MCO3AS (DR(1,I), DR(2,I), R(1), R(2), 0., V(I), M, 4)
no 2 Jj=1,1
2 CALL MOO3AS (DR(1,I}, DR(2,I), DR(1,J), DR(2,J), 0., A(L,3), M, 4)
RETURN
END

o m-
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Appendix 3

Specification sheets for the FORTRAN subroutines MCOZAS and MAT0A
which are called by VAO7A
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Harwell Subroutine Library SUBRCUTINE MCO3JAS

i. PURPOSE

To evaluate the sum of @t inner product and a constant wsing double-
length accumulation to minimize rounding errors.

i.e, to evaiuate

k'k

-+
>
1+
=
[N
=3

Fo
I

The vectors a, b can be stored in any rcgular fashion., -This routine is
written in IBM 360/ ASSIMBLER LANGUAGE,

2. ARGUINT LIST
SUBROUTINE MCO3AS (A(I),A(J),B(K), B(L),X, S, N, TFLAG)
All arguments except SUM must be set by the calling program.

A an array containing the elcments ol the vector a. A(I) is that member
of A containing the vaiuc of a,. A(J) is the member of A containing a,.
Subscquent meambers off the vector a are stored in A at equal intervals
i.e. A is coutarned in A(X+(M-1)={J-I)).

B an array containing the vector b, B(K), B(L} are the elements of this
array containing the first and second clements of the vector p as for A, a

above, 1i.e, bM is stored in B(I+{M-1)*{K-L)},

X is the constant to bhe added to the inner product.
N the number of elements in cach vector a, b

SM is the required sum, and is set by MCO3AS,

IFLAG an integer parameter which specifics the combination of signs required,
" and also specifies whether the result in SJM is to be rounded (r) or
unrounded (u},

IFLAG SIGN OF X SIGN OF L ROUNDING -
+

1 +
| I+ 1+
b [ I = = ]

WO MpLN =0
U+ + 1

P

~

3. METHOD

The sum is accumnulated in double-length fTloating point register,
No results are stored until the accumulation is complete.
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SUBROUTINE MA10A

1 one

This subroutine inverts a symmetric positive definite matrix A or aclves the
equations Ax = b with one or more right hand sides, or does both of these operations.
Only the elements of the lower triangle of A need be defined, and if the matrix is
not atrioctly positive definite the routine will invariably do an error retuwrn.

The equations are of the form

" _
I AILJ). X(3,K) =B(LK) Ta1,2 o, ¥ Kaui, 2, vee, N
J=1 It .

Therefore A is an M x M matrix and there are N right hand sides.

2, Argument List
SUBROUTINE MA, A (A, B, M, N, NR, M1, IA, IB)

A is a two dimensionel array containg the elements of the matrix, Only the
elements A(I,K), I 3 J need be met on entry to the routine, If the inverse has
been esked for it will be found in A on exit, unless the matrix is not poaitive
definite, in which case A will contain rubbish.

B is a two dimensional erray containing the right hand sides of the equations,
If equation solving has been asked for, the solutions will over write B; X(I,X)
will be found in B(I,K).

M is the number of equations.

N is the m.unbez" of right hand sides.

NR is a parameter which will be set to zero on exit if the inversion has been
completed. If the matrix is not positive definite NR will be set to one.

M1 is a parsmeter thet determines the operations that will be carried out by
the routine. Bee next paragraph for detaills.

IA and IB define the first dimension of the arrays A and B, so that if the
dimension statement of the oalling routine ia

DIMENSION A{a, ), B(B, ) then set IA =6 and IB u 8,

3, Controlling the Routine

(a) To sarry out inversion only, enter with Ng O and M1 > O,

(b} To solve equations only, enter with N> O and Mi =« O.

{c¢) To invert and solve, enter with N> O and M1 » O

(a) After doing (b) it is possible to re-enter the routine for the purpose
of finishing the inversion of A (which will have ‘been partly done by the equation-
solving process). To do this, set M1 < 0 for the re-entry.
&. _Output

If the inverslon carnot be completed a message will be printed,

5.  General

The routine doea not use common or awdiiiary storage.

6. Other routines
MCO}AS is called by this routine and therefore must be loaded with it.

[« Method
Symmetric Choleski decomposition is used to £ind the lower trianguler matrix

L for which LLT = A.
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