AERE - R 6469

Copy)
United Kingdom Atomic Energy Authority
RESEARCH GROUP
Report
A FORTRAN SUBROUTINE
FOR UNCONSTRAINED MINIMIZATION,
REQUIRING FIRST DERIVATIVES
OF THE OBJECTIVE FUNCTION
TN
- b
M. J. D. POWELL 1\ &‘94‘&9>
N 0
Theoretical Physics Division,
Atomic Energy Research Establishment,
Harwell, Berkshire.
197 o [5L

Price 4s. 6d. net from H. M. Stationery Office,

@ UNITED KINGDOM ATOMIC ENERGY AUTHORITY - 1970
Enquiries about copyright and reproduction should be addressed to the
Scientific Administration Office, Atomic Energy Research Establishment,

Harwell, Didcet, Berkshire, England,

u.D.C.
681.14:517

AERE-R,6469

A FORTRAN SUBROUTINE FOR_UNCONSTRAINED MINIMIZATION, REQUIRING

FIRST DERIVATIVES OF THE OBJECTIVE FUNCTION

by

M, J. D. Powell

Abstract A Fortran subroutine is described and listed for calculating
the least value of a function of several variables, F(xl,xz,...,xn) say. The
user must provide a subroutine to calculate F(xl,xz,..‘,xn), and the first
derivative vector of the objective function, for any (xl,xz,...,xn). The
method used is the new one proposed by Powell {1970), which has the advantage
that convergence is guaranteed in theory, even if no good initial estimte of
the required vector of variables is available. The convergence criterion is
that the algorithm finishes when its search to reduce F(xl,xz,...,xn) gives a
point at which the magnitude of the first derivative is less than a prescribed
- positive tolerance, Numerical examples and the corvergence theorems (Powell,
1970) suggest that the new subroutine compares favourably with the other general

methods for solving unconstrained optimization problems,

Mathematics Branch,

Theoretical Physics Division,

Atomic Energy Research Establishment,
Harwell,

Berkshire,

July, 1970.

HL..70/4037 (C.13)

1. Intreduction
Recently (Powell, 1970) I suggested a rew algorithm for uncons trained minimization,
and I proved that it has some nice super-linpear convergence properties. But I omitted
some details that are unimportant to the convergence theorems. Therefore this report
provides a complete description of the new algorithm, and it includes a Fortran listing.
We let F(x) be the function whose least value is required, where X stands for the

vector of variables (xl,xz,...,xn), and we let g(x) denote the gradient vector whose

components are
g; (%) = BF(X) /0%y i=1,25000,m0 (1)

To use the new algorithm it is necessary to provide a subroutine that calculates F(X)

and g, (%) (i=1,2,40.,n) for any x.

(x)

The new algorithm is iterative, and it calcula tes a sequence of vectors X

{k=1,2,...), that is intended to converge to the point, x* say, at which F(x) is least.

The kt’h iteration of the algorithm uses g(k}, the gradient

say, some information that is accumilated from previous iterations, and just one

(k+1) and g(kﬂ).

evaluation of F(x) and g’(,g) , to define Xx Also it revises the

accumilated information.

(k)

This accumulated information is a step-bound 4 , and three nxn matrices, namely

G(k), H(k) and D(k). The value of A“) has to be set by the user of the subroutine, and

all iterations force the condition

“ .E(k-'-‘) - E(k) ” < ﬁ(k), (3)

where throughout this report the vector norm is the Euclidean vector norm

n 1
%
|I2s||=[inzj . (4)
i=1

(k) (k)

k X . , . .
and H() are symmetric, G 15 an estimate of the second derivative

(k) (k)

The matrices G

and H is the inverse of G(k). We require both these matrices

matrix of F(x) at x
in order to keep the number of operations of each iteration of the algorithm to within a

2

multiple of n°. is a matrix whose columms apre orthogonal directions, that depend

mainly on the directions of the vectors i,{c(kﬂ) - é(k) , and it is used to ensure that

G(k} is an adequate approximation to the second derivative matrix at gg(k). Initially

(k)

G(k), H(k) and D are set to certain multiples of the nxn unit matrix,

The algorithm provides the inequalities

F(,x_(”) BF(é(z)) a2 F(zs(k)) 2 ees (5)

It finishes 'as soon as the test
k+1
1™ ¢ o (6)

is satisfied, where ¢ is a positive rumber whose value is assigned by the user of the
subroutine,

Section 2 of this report states how to call the algorithm from a Fortran program,
and the next five sections give details of the algorithm. Section 3 describes the
instructions that precede the first iteration. Section 4 specifies the usual method for
calculating the difference ,Qg(kﬂ} - gg(k). Section 5 defines the revision of the step-

(k)

bound & « Section 6 specifies the sequence of second derivative approximations G(k)

(k=2,3,...), and also it gives the formula for calculating H(k). Section 7 describes the
way in which the matrices D(k) are calculated and used, Finally Section & gives some
numerical results, obtained by applying the algorithm to tw test functions,

In f‘acﬁ there are two Fortran listings in the appendix to this report, The first
ore is intended to be understood, and the second one is intended to be useful, The
main difference between them is that in the first listing two-dimensional arrays are used
to hold the elements of the matrices D(k), G(k) and H(k), in order that it is straight-
forward to distinguish different matrix elements., But, because some Fortran compilers do
not handle two-dimensional arrays efficiently, and to exploit the symmetry of G(k) and
K

» the second listing uses a single working space vector, namely W, to hold all the

matrix elements. Therefore in practice the second listing is the better subroutine, In

the main text of this report we refer to the instructions of the first listing only,
because the reader should have no difficulty in identifying the instructions of the
gecond listing with the instructions of the first listing, due to the similarities in
label numbers and comment cards.

As well as giving details of the new algorithm, this report contains some remarks
that may be of general interest, For example in Section 6 the stability of any

(k)

due to computer rounding errors, is discugsed,

(k)

dif ferences be tween [H(k) }_1 and G
Apd in Section 7 it is proved that the role of D gives a condition that is necessary
for Powell's (1970} proof of the convergence of the second derivative approximations
G(k).

2. The parameters of the Fortran subroutine

In the first listing of the appendix the name of the subroutine and its parameters

are

SUBROUTINE MINFA(N,X,F,G,STEP,ACC,MAXFUN, IPRINT).
X and G are one-dimensional arrays, whose lengths must not be less than N, and the
remaining parameters are ail real or integer variables. The user must give values to N,
X(1) (1=1,2,...,N), STEP, ACC, MAXFUN and TPRINT. The subroutine changes X(I)
(I=1,2,.,..,N), and it calculates values for F and G(I) {(I=1,2,...,N).

N is the number of variables of the objective function, and it must be in the
range 2 ¢ N ¢ 50, The upper bound is imposed by the dimensions of the arrays that are
private to the subroutine, so it is straightforward to change it.

Initially X{I) (I=1,2,...,N) must be set to an estimate of the required vector of
variables, The algorithm adjusts this vector, so that, when the subroutine finishes,
it contains the best calculated values of the variables,

F will contain the least calculated value of F{x), corresponding tc the final
vector X(I)} (I=1,2,...,N}.

G(I) (I=1,2,...,N) will be set to the components of the gradient -5,(35)’ for the
final vector X(I) (I=1,2,...,N).

STEP must be set to a positive number, that is the user's recommendation of the
initial change to make to x in the search for the least value of F(x}. Indeed, following

expression (3), the algorithm satisfies the inequality

l 5(2) —Asmll < STEP. (7"

About ore tenth of the total expected change in X is a moderate value for the parameter
STEP,

ACC controls the accuracy of the calculation. The parameter ¢ of inequality (6)
is set equal to ACC. Note that this convergence criterion is such that it is sensible to‘
scale the variables {x1,x2,...,xn} so that the components of the gradient vectors g‘(g\c‘)
have simjlar magnitudes. There are other good reasons for trying to achieve this scaling.

The parameter MAXFUN provides an upper bound on the total number of evaluations of
F('zg) that are made by the algorithm. The subroutine provides an error retum if the
iteration pumber k attains the value MAXFUN, and it indicates this by printing the
diagnostic message "MINFA has made MAXFUN calls of CALCFG". However usually the
subroutine finishes because the convergence criterion (6} is satisfied. Experiments
show that frequently the subroutine requires less than max [100, 10*N] evaluations of
F(x), but MAXFUN should be set to a greater rumber, unless the total amount of calculation
needs to be limited by a conservative value of MAXFUN,

IPRINT controls the amount of printed output from the subroutine, If IPRINT is zero
there is no printing, except perhaps the diagnostic message of the last paragraph,
Otherwise the best calaulated values of x and F(x) are printed after every |IPRINT]
iterations, and, if IPRINT is positive, the gradient vector §(,§) is printed aiso.

The subroutine, provided by the user, to calculate F(x) and g(x) must have the name
SUBROUTINE CALCFG (N,X,F,G},

where N,X,F and G correspord to the N,X,F and G of the parameter list of subroutine

MINFA. Subroutine MINFA calls CALCFG once on every iteration, and it assigns the components
of X, CALCFG must not change the values of N and X(I) (I=1,2,...,N), but it must set F

to the function value F(x), and it must set the elements G(1) (I=1,2,...,N) to the
components of the gradient 5(5), where x is the vector whose components are X(I)
(1=1,2,,..,N).

The second subroutine of the appendix has the name

SUBROUTINE VAO8A(N,X,F,G,STER ,ACC,MAXFUN, IPRINT, W) .

Its first cight parameters are identical to the parameters of subroutine MINFA, and the

last parameter W is a one-dimensional array, whose elements are used as working space.
The length of this array must be at least (2n2 + 6n). Note that one difference between
MINFA and VAOBA is that VAOBA does not use any private arrays, so it does not impose an

artificial upper bound on N.

The array W is utilised in such a way that, when the execution of subroutire VAOGA
finishes, its first %n(n+1) elements arc estimates of the second derivatives
azF()@)/Bxi ij (i=1,2,+..,n; j=i, i+1,...,n), calculated at the point ¥, whose components
are the final values of X{I) {(I=1,2,...,N). To be specific the estimate of
azF(,g)/axi axj, j »i, is the element W({n-%i}{i-1}+j). Moreover the rext %n{(n+1)
locations of W contain the elements of the upper triangle of the imverse of the matrix
of the second derivative approximation,

3. The initial operations of the algorithm

The description of the algorithm that is given in the rext five sectiors refers
frequently to the listing of subroutine MINFA, which is in the appendix. Indeed we do
not comment on the operations whose purpose is obvious from the listing, and when we
dwell on a detail, tle corresponding line number of the listing is quoted.

In Section 2 we explained the paramcter list of MINFA, so now we consider the
dimension statement, given in lires 2 and 3. Here the vector X is reserved for the
vector of variables that has given the least of ail the calculated values of F(x), and
G is reserved for the corresponding value of E(f)- The vectors XA, GA, WA, WB and WC
are used for scratch working space. At the beginning of the kth iteration (k=1,2,...),
the matrices, GG, H and DD contain the elements of the matrices G(k), H(k) and D(k),
which are mentioned in Section 1,

The real variable DSS, whose initial valuwe is set in lipe 8, is equal to the

{x)

square of the bound A", that ocecurs in inequality (3). The integer variable MAXC

(see line 9) is used to wunt the number of calls of subroutine CALCFG. The integer

variable ITSPEC (see line 10) is used to distinguish every third iteration, because when

k=3£+2, & an integer, the purpose of the kth iteration is Jjust to improve the

{(x)

approximation G . We call thesc iterations '"special iterations'", and we discuss them
in detail in Section 7, The integer variable IPTEST (sec lire 11) is adjusted so that
the best values of x and F(x) are printed after every |IPRINT| iterations,

() 4K g k)

The initial elements of the matrices G are set by instructions

15-28. We note that G'1) is the matrix

o.01 | g

(1)
G = T I, (8)

(1) (1)]—1 (1)

H is equal to ¢ and D is the nxn unit matrix, namely I. A onsequence of

the choice (8) is that the quadratic approximation
F(x) = F(z(”) + (g“},gg-z(”) + 55(35—5{1), G(]?{z—)s“)i) (9)

suggests that the least value of F(;g) is at the point

(1)

x=x Zo0 a0 OV g0y

(10)

Without further information we cannot do more than try changing ,g(” by a positive

“), 50 the choice (8) is adequate in the sense that the resultant

multiple of -g
approximation (%) supports a step down the steepest descent direction. But the length
of the correction of ecuation (10) is one hundred times the user's recommendation of the
initial step=-length. The factor 100 is present because it is preferable if initially
the estimate of the secord derivative matrix is too small, rather than too la;rge. D(‘)
is set to the unit matrix because it must be set to some orthogonal matrix, and there is
no good reason for making any other choice.

The instructions for a general iteration of the algorithm begin at line 35 of the

Fortran listing,

4. Adjusting the vector of variables

First a general iteration of the algorithm tests for convergence (see line 38 of
the Fortran listing of MINFA)}, and then it provides any printing that is required by the

value of IPRINT. Next it predicts a correction Q(k) to apply te the current best vector
(%)

of variables, namely x

(x)

calculation of 9 for the iterations that are not “special iterations", because the

, and it is the purpose of this section to describe the

special iterations are treated in Section 7, Our definition of ,é(k) depends only on the

vector g(k), the bound A(k), and the matrices G(k) (k). (k)

(k)

and H When &

(), 500,

has been cal-

culated, the subroutire calculates F(x + é(k)) and g(x and for the rext

iteration the vector of variables is defined by the formula

.
00 bW 50 | p 9y

s

E(kﬂ): (11)

Thus inequality (5) is obtained, using just ore call of CALCFG on each iteration,
(k)

The definition of § for the ordinary iterations is like the one used by

Powell (1968a), and it is based on the quadratic approximation
F(E(k)+§) o Q(k)(@
=)+ @, 0 + 45, Wy, (12)

Moreover following inequality (3) we require é(k) to satisfy the condition

189 ¢ a9, (13)

If it happens that the quadratic agpproximation (12} decreases monotonically along

ALY, (x)

its steepest descent direction (at $=0) for the distance , then & is set to the

multiple of the steepest descent vector

809 2 (9,00, (9,

(14)

The condition that Q(k)(—i\g(k)/ |[g(k)) decreases monotonically for 0 ¢ A g A(k) is the

inequality

(g(k), gtk g(k)) 2% < g(k) 1% (13)

which is tested by instruction 103 of the Fortran listing. However, if the test (15)

é(k)

fails, then, instead of formula (14), the correction is defined in a way that depends

on the position of the stationary point of'é(k)(g), which is the point

~

(x)

is the imverse of G ", Also the definition of Q(k)

(x)

because H depends on the best

steepest descent correction for the approximation (12), which is the vector

0 L g0 0, (0G0) (47

~

(k)

whose length is less than &4 ', due to the failure of inequality (15).

Because we want the algorithm to have a fast final rate of convergence, we

é(k) {(K) I (k)

, and moreover

(k)

frequently let equal the vector (16). But |y may exceed A

(k)

is not positive definite then it can happen that _‘I>(k) (_\\{(k)) > Flx so these

(k) y x(k)

if G

are two cases when &

~

. Therefore, when formula (14) is not used, the strategy
of the algorithm is based on the variation of @(k) (é) for vectors ,@ that are on the

straight lire through the points (18) and (17}. Indeed g(k) has the formm

,é(k) =§(k) . G*ix(k)—g(k)i, (18)
where the value of 9% depends on the function

o(6) = Q(k)(g(k) . eix(k)-g(k)}}. (19)

We calculate the value of & so that ¢{9*) is small subject to condition (13).
Therefore we let the sign of ©* be opposite to the sign of ¢'(0), and from equations {12),

{(18), (17) ard (19) we fird that this derivative has the value

~ ~~

MORNCINEN

r

(20)

Moreover, because the quadratic function ¢(8) is stationary at 6=1, we note that $(0)
is convex if and only if the value of expression (20) is negative or zero.
If ¢(6) is concave, then ¢'(0) > O, and we let 5% be the most pegative number

supject to the condition {13), so & is the smaller root of the gquadratic equation

R N [(21)

However if ¢(6) is convex, then it is sensible to define 8* = 1, unless this choice

conflicts with condition (13}, in which case §* is made equal to the larger root of

equation (21), Now it is fortunate that the sign of expression (20) is always opposite
to the sign of the coefficient of 9 in the quadratic equation (21), because this fact
implies that, whenever the test (15) fails, we define 6* to be the quantity

6* = min {1, THETA], (22)

where THETA is the root of equation (21) with smaller modulus, Indeed THETA has the

value
[M(k)gz _ Ilg(k) ”2] cign (ﬁ(k)’ E(k)) -
THETA = T s 23
l(s(k)) W(k)) I + [(.ﬁﬁ) QE(k) 2+IM(k) “2({A(k) 12 _ “,?_,_(T() ”2)]’f
whe re E(k) = y_(k) - g(k). The components of g(k) and ,w(k) are set by instructions 115

and 116 of the Fortran listing, the value of THETA is set by instruction 121, and when
instruction 127 is reached, the components of j}(k) are present in the working space
array WA,

To prove a convergence theorem (Powell, 1970), we have to note that ,é(k) always
has the property that the gradient of the function ‘ﬁ(k) (&), at the point § = é(k), along

(k)

the direction § °, is always regative or zero, which is the condition

@ Lo 50) o (24)

It is easy to v erify this statement when formula (14) is used, because in this case the
condition (15) is satisfied. Therefore we now show that inequality (24) is valid when
Q(k) is defined by expressions (18), (22) and (23).
The function

o10) = (g™ 1 [oy 0 (037 (0 g0 (1) __ ()

+ 8 {25)
is a quadratic function that is zero at 6 = 0 and at € = 1. Therefore inequality (24)
holds if o{6) is convex and O ¢ O* < 1. Also inequality (24) holds if o(0) is concave and

g < 0, Now the coefficients of 6° in expressions (19) and (25) are the same, so of8) is

convex if and only if the function ¢(8) is corvex, Therefore the definition of O%
implies that inequality (24) is true.
The Fortran instructions that are applied immediately after ,é(k) is defined are

(k+1) for the next iteration,

discussed in Secticn 7, because they calculate the matrix D
The values of F(ﬁ(k) + é(k]) and g(x(k) + 6(k)) are obtained by instruction 161 of the
Fortran listing, and the definition (11) is realised by instructions 192 to 196,

5. The calculation of the step-bound

This section specifies the calculation of A(k) (k=1,2,...), which is the bound
on || Q(k) | of inequalities (3) and (13), The value of A(]) is assigned by the user of the

subroutine, and the value of ALY (k=1,2,...) depends on || ,é(k) || and on the success of

(kt1) _ (k)

the kth iteration, except that every "special iteration" sets A . Instruction

178 of the Fortran listing tests whether the algorithm is applying an ordimary iteration,

and, if it is, then the block of imstructions on lines 179 to 186 defines the step-bound

A(k+1) }2

for the next iteration. 1In fact the algorithm calculates the value of { , which

is the real variable DSS, so we note that, when instruction 188 is reached,A(kH) has

I 6™ and 20 8™ . we now

been set equal to onc of the three numbers %| &
explain the actual choice between these three numbers,

The choice that is made depends, of course, on the purpose of the step;bound,
which is to make || é(k} | so small ttat the approximation (12) is adequate for o= ,é(k).
However we must be careful not to make || é(k) | too small, because then a large number
of iteratiors would be needed to change the vector of variables by a moderate amount,

(k1) can let the step-length of the (k+1)5t

iteration be smaller than, greater than, or the same as the step—lerngth of the kth

Therefore the three available values of A

iteration,

T

To decide whether || & is too large, we compare the actual reduction in the

(k) . 6(k))

objective function, namely F(x - F(E(k)), with the predicted reduction

@(k) (’é(k)) - F(‘x‘(k)). Indeed instruction 179 of the Fortran listing tests the inequali ty

PR s) p (0 ¢ 0,1 120 (50 _ gy, (26)

(k+1) = X ,é(k) I, in order that a

and if this condition fails the algorithm sets A
smaller correction vector will be used by the next iteration. However, if inequality

(26) is satisfied, we judge that the current step-length is not too large, so the value

o alkr1) (k) Wy

is set either to || § or to 2|| & The factor 0,1 of the right-hand
side of expression (26) is also used by Powell (1868a)}, and the reason for this particular
choice is only that numerical experiments suggest that it is adequate,
When the inequality (26) holds, we have to guess whether it is preferable to let
l Q(kﬂ) | exceed || g“‘) . Ome calculated number that helps this guess is the value of
W), 400 500
-~

the scalar product {g(x , because, if it is negative, then we know that
¥

6(k% for some * > 1, in which case it seems that a larger

~

F(gg(k) + A ,é(k)) < F(_zg(k) +
step length would have been preferable, Further an estimate of the optimal value of A

can be obtained by supposing that the function
s(\) = ig(gg(k) + 'r\é(k)), é(k)} (27)

depends linearly on », Indeed this approach predicts that F(g‘c(k) + h_é(k)) is least

when A is the number

00 s(1) g s(0)
A= (28)
5(0)/{s(0)~s(1}}, s(1) > s(0).

. k
Therefore the test on line 185 of the Fortran listing leads to the value A(kH) = z|f Q()Il
if A¥* is greater than or equal to two, because in this case it seems to be worthwhile
to double the step-length.
. . " . {k+1) (k)
When inequality {26} holds, and when A* < 2, the algorithm may set A =&
(k+1) (k} . "
or A =218 7| . We sometimes prefer Lhe larger value when A¥ < 2, because, when
- the quadratic spproximation {12) is exact, it can happen that A* is close to ore ard it is
well worthwhile to double the step-bound for the next iteration., Therefore we want to
estimate the goodness of the approximation (12). We do this by comparing the predicted

{k) (k)a(k) (k) . 6(k))

gradient at x + Q(k), namely g(x(k)) + G , with the actual gradient g(x

and specifically line 184 of the listing tests the inequality

g 4 gy L g 05002 oy G002, (29)

If it is satisfied then A(kH] = 2| é(k} |, but if it fails, if ** < 2, and if inequality

(26) holds, then A(k+1) - ” _é(k) H .

11

6. The calculation of G(k) and H(k)

(1)

The calculation of the initial second derivative approximation, namely G , has
been described in Section 3. Now we specify the later second derivative approximations
G(k) (k=2,3,...), ard also we give the formulae that define the matrices H(k) = {G(k)]_]..
Moreover the stability of these formulac is discussed, from the point of view of the
cumulative effect of computer rounding errors,

(k+1) and H(k+1)

The calculation of G is made by instructions 199 to 243 of the

Fortran listing. It depends on the matrices G(k) and H(k), and on the vectors Q(k) and
k k k k
(L g 09y (50)
and it is based on the equation
(y=68) 67 + &(v=68)T
G* - Gy~ ; AT
(F
T
85 (y-G5,)
= 4 L] (31)
[
which is proposed by Powell (1970). Usually we let § = 58, y = AL BLE. R
G(k+1) = G*, because then we obtain the identity
k) gl (1) (52)

which is worthwhile because, in the case that F(¥) is exactly quadratic, then the true
second derivative matrix of F(x), G say, satisfies the equation E_Q(k) = x(k). Moreover
note that, unlike other formulae for revising second derivative approximations, for
example see Broyden (1970), Davidon (1939} and Powell (1969), the formula (31) does not
involve divisions by scalar products of different vectors,

{(k+1)

However the matrix G is not defined directly by equation (31) if this matrix

is exactly or nearly singular, because in this case there are liable to be serious errors
. C i k+1 C e
in the definition of H(). Therefore the Fortran listing uses a method that guarantees

the inequality

12

(k+1) (33)

(k)l

| det G | 2 0.1 |det G

Later in this section we describe how this condition is maintained, and we will find

. k+ .
that we have to depart from the usual definition of G(R when the tests made on lines
216 and 217 of the Fortran listing lead to the statement on line 219,

To revise the inverse of the second derivative approximation we use the fact that

if H = G-I, and if G* is defined by equation (31), then the inverse of G* is the matrix

W = H - {mT (5,H8) - {@TH + HggT] (5,Hy)

+ H88TH (n,) 1/ Lty) (6,80 ~(8, 1)], (34)
where 1 is the vector
m = ijé. (33)

At iretruction 199 of the Fortran listing the vectors §, Y-—GQ and ¥ are present in
the working space arrays WA, WB and WC, and at instruction 215 the arrays XA and GA contain
the vectors m and HS, Then in the case that irstruction 216 or 217 branches to lire 230

{k+1) an

of the Fortran listing, it is straightforward to verify that the matrices G d

#¥*1) e defined by formulae (31) and (34).
Of course the purpose of the conditional instruction on lire 217 is to test

(k+1)

whether the usual definition of G satisfies inequality (33). We now prove a

theorem to show that the conditional instruction is correct,
Theorem 1 If the mtrix G is symmetric and non-singular, then the determinant of the

matrix

G¥(8) = G+06 ———m— = ———o (36)

is equal to the expression

13

(3,Hy)
det {G*(0)] = det G {1 + 28 = =5
[

o (SHD? = (5,H8) (B -(5,15) (5,1

’ (37)
i

2

-~

where H is the matrix G_I.

Proof First we treat the special case when u is a multiple of &

£ ~

, say w=Ab. Then

G*(9) is the matrix

06 262 T
G*(8) = G + p - 7 55
() TN T (33)
and its determinant has the value
26 r6°
det G*(6) = det G det | T + { 2 - 2 mosT | . (39)
s &l]

Therefore, as stated in Section 1,1 of Householder (1964), we have the expression

2:8
2
gl

det {G*(8)] = det G |1 +[- e 2:| (&HB)], (40)
[
which justifies equation (37).
For the usual case, when B and E are independent, we let Q0 be an nxn orthogonal
matrix, whose first column is §/f & |l, and whose second column is in the space spanned
by p and &. Then the definition (36) shows that the elements of the matrix

-\.. ~~

c'(e) = alg*(e)n (41)

are independent of 6, except for the elements GTI(G)’ GTZ(G) and G;-](E)). Indeed
G';I(G) is a quadratic function of ¢ and GTZ(G) §=G;I(e)} is a linear function of 8§,
The refore the determinant of G+(8) is a quadratic function of 9, so equation (41) shows

that det{G*(9)} is also a quadratic function of 8.

14

We now ilook for the zeros of the guadratic function det{G*(8)}, and if necessary
we allow © to be complex. This function is zero if and only il there exists a non-zero

vector Z such that the eguation

G(8)g = 0O (42)
holds, In this case equation (36) shows that the vector G (which is non-zero because
G-is non-singular) is a linear combination of u and &. Therefore there exist numbers
a and B such that & is the vector

% = aHu + BHS, (43)

and equations (36) and (42) imply that o and B satisfy the equations

a + Ti? j n.(é,ﬂﬁ) + ﬁ(é,ﬂé}} = 0 (44)
and
B+ —2—r fal(yHy) + B(yHE)}
[
6%(1,8)
- ———— la(8,Hy) +8(5HE)] = O. (45)
N .

Moreover it follows from equation (33) that the matrix G*(0) is singular if and only if
6 is such that the equations (44) and (45) have a non-zero solution (a,B).
Now equations (44) and (45) inmply the relation
0 an(,H-,,é)

fa(wHy) + B(gKHY)] + —— = o, (46)
Ak s 1P

so the matrix G*(8) is singular if and only if © satisfies the quadratic equation

6 8¢

f1 + |[2 (,é,H,H)} = ” 5 “4 (,Q;H.é) ;(H,H&) + (—H’-é 2 . (47)

&

~

15

Theretore Theorem | must hold in the case that this quadratic equation has two separate
roots, which happens if and only if the right-hand side of equation (47) is different
t i Zero.

In the case that cquation (47) does not teve two separate roots, we find a vector,.
p say, such that (B,HE) # 0, and we consider replacing by & + g0 and u by BtE, Dy

whicr 17 4 and ¢ are very small an molulus. We then regard the right-hand side of

equation (47} as a function of 5 and 29 and we note that arbitrarily small values of
these parameters cause the equation to have separate roots, in which case Theorem 1 holds.
Now the detemminant of a matrix is a continuous function of its coefficients, so it
follows that equation (37) holds in the case that we are considering, The proof of
Theorem 1 is now complete,

One important corollary of Theorem t is that the detemminant of the matrix (31) is

the expression

- 2
det G 1“ 517+ (g,nmj — (5, H8) Gy, 5+H) §
s It ~

- Tt j4 F(&H0? = (8,10 (r - G&, Hy)!
- Y X i
2 4
= det G {(§,H)° - (&HD G,/ 18 I, (48)

where n is the vector (35). Therefore instruction 217 of the Fortran listing tests the

inequality

1(8,1)% = (5,88 to,v) | <01 18 [, (49)

{k+1)

because if it holds a special fomula is reeded to define G , in order to satisfy

inequality (33).

(k+1)

In fact if inequality (49) holds, we let G be the matrix G¥(8) of equation

(36), where G = G(k), &= Q(k), M= I(k) - G(k)é(k), and where the value of 6, e(k) say,

is the number closest to one such that the equation

t G(k+1) (k)

de 0.1 det G (50)

16

is satisfied. This choice is a good one because, in the case that F(x) is exactly a

quadratic function, with second derivative matrix E, it can be shown that the error in

G(RH) is related to the error in G(k) by the equation

(() X (K = 8"
(Gk+l)_a>=<l_ek)__2><ak)_G><I_e(k)“~____2>. (51)
& e

. k |
In Theorem 2 we prove that | 1-6()l S\/ 2/11, so our choice usually improves the

accuracy of the second derivative approximation,

We now describe the calculation of G(R). Theorem | and equation (50) show that

the required value of © satisfies the quadratic equation

4 2
0.8 18 1*+20 18 IF (&

e 02 1(5, 7 = (8,H0) (I - (8,10) (5,0 = 0. (52)

It is convenient to let ¢ = 1-6, so, by using tte equations y = y-G& and (35), we deduce

that expression (52) is the same as the quadratic eguation
; 4 2
0.1 [& I + (&H0)7 - (5,18) (m,y)}

261 (8,1) (3, 1) — (&,H8) (n, Y}

w56 % = (5,H0) (0} = . (53)

e

To simplify this equation, we define o to be the number
5 = () (5,H8) - (y,HO)7, (54)
for then expression (53) reduces to the equation

(0.1 18 IF - o} + 260 + (5H0 1 &)

s Pl s =208 IP (580 - o =o. (55)

17

The zeros of this equation are

c+ 01 o0t

(56)
!)
for(,i) 12 57 218 1P [0 - 0.1 18 P17 + o.oforo.t || & IHTE

Because ¢ = 1-0, we require the zero that is smaller in modulus, so we let the #* sign of
-
expression {(56) be the same as the sign of {o + (Q,HI) [& I°}. Thus instruction 221 of

thé Fortran listing sets CA to the required value of ¢.

We could calculate the required matrix G(k+1) by substituting G = G(k), 6= é(k),

K . . .
= 8() = |-CA in expression (36}, However it is easy to

) k k
verify that the same matrix can be obtained by setting G = G(), b= _§() and

e 0 g0 0

(k) (0, ()

+ (1-¢

¢ = ok 0)

~

(K ”2 (57)

in expression (31). We prefer this second method, because it allows us to use equations

(34) and (35) to define H(kﬂ}, where H = H(k)

y &= Q(k) and y is the vector (57). 1In
the Fortran programme instruction 226 sets the elements of the array WC to the components
of the vector (57), and instruction 225 scts the elements of WB to the corresponding
components of I_Gf", Then instruction 228 branches to the part of the subroutine that
evaluates the elements of the matrices (31) and (34). The description of the calculation

of G(k+1) and H(kH)

is now complcte,
k . .
Next we bound |1—G()I, in order that equation (51) can be used to show that the
tterations of the algorithm tend to reduce the error of the second derivative approximation,

(k)

Theorem 2 The given definition of © implies the inequality

1—\}2/11 < gk < 1+\j 2/11' . (58)

Proof Llet ¥(8) be the quadratic function

y(e) = det{G*(8)] / det G, (59)

where G*(0) is defined by equation {37). We note that ¥(0) = 1, and that 8(k) = 1 if

[W(1)| 2 0,1. Otherwise, if [¥{(1)] < 0.1, oK) is the number closest to one such that
¥ 6(k)) = 0,1. Therefore it is sufficient to prove that if the coefficients of the

quadratic function
_ 2
¥(8) =1 + ad + bo (60)
sétisfy the condition

[1 + a + bl < 0.1, (61)

then a zero of the equation ¥(8) = 0.1 is in the interval [- ’ 2/11, 1 + \/ 2/11 :l

If condition (61) holds, and the theorem is false, then ﬂf(\/2/11) < 0.1, which

gives the inequalities

+<1 —\/;ﬁ)ew ({13/11} —2\}2_/1;>b<0.! . (62)

and

1 +<1 +Jﬁ>a+<{13/nl +2J271—1>b< 0.1. (63)

Therefore if we multiply inequality (62) by (11/18) (1+ JT/”) and inequality (63) by
{(11/218) (1-{ 2/11}, and if we add these products, then we obtain the condition
{(a + b} < -1,1, which contradicts i-equality (61). Theorem 2 is proved,

The last remarks of this section concern the numerical stability of formulae (31)
and (34), The difficulty is that, due to computer rounding errors, H in fact will not
equal the inverse of G, and therefore there will be di screpancies between G* and (H*)_l.
The rounding errors of a single iteration are rearly always tolerable, but in iterative
numerical calculations like this one it sometimes happens that small errors accumulate
in such a way that after a number of iterations the total error is disastrous.

Fortunately we can prove that our formulae satisfy a nice stability theorem,

19

Theorem 3 If G and H are any non-singular nxn symmetric matrices, apd if ¢ and y are
n=component vectors zubject only to the condition that the denominators of equations
(31) and {34) are non-zero, then the matrices G* and H*, defined by equations (31) and

(34), are related by the equation

- N 88"
G- (W = (1 - (G-H) (I - —-—> (64)
-y s B/,

Proof It is straightforward, but tedious, to verify that the imwerse of H* is the

matrix

o Hme sy T 55" (0 8)
H @ +—== - - =V (65)
I

s it .

Therefore, if we substitute Hy-§ =, equations (31) and (65) give the identity

» ces” v et’e 8876, 68)
g 150
» ieeT o seTy! s8T(s, 108
-H '+ - —_— (66)
I

et .

Because the right-hand sides of equations (64) and (66) are equal, the proof of
Theor‘em 3 1s complete,

Equati on (64) states that any discrepancies between G and K are multiplied by
symmetric projection matrices, so0 any accunulation of errors is suppressed, Moreover,
because the formulae (31) and (34) are used even when B(k) # 1, this suppression of
€rrors occurs on every iteration, Note that equations (5i) and (64) show a correspondence
between the numerical stability and the converzence of the second derivative
approximations,

7. The special iterations of the algorithm

In Section 3 we stated that every third iteration of the algorithm is special,

because these iterations do not use the method of Section 4 to calculate the correction

20

vector

Q(k) Instead é(k) is set to a value that is intended to improve the accuracy

(k+1) 5(K)
(k)

the first row of the orthogonal matrix D . In this section we describe the calculation
(k+1} ‘

of the second derivative approximation G , and in fact is set to a maltiple of

of g(") by a special iteration, and we alsc defire the calculation of P for all

k > 1. Finally we prove that, due to the special iterations, the sequence of directions
,é(”, Q(Z), ... satisfies a "strict linear independence condition". This condition
enables one te prove some convergence properties of the algorithm (Powell, 1970).

These special iterations are included, not because they are needed to prove the
convergence theorems, but because numerical experiments have indicated that they are
worthwhile. I also found it desirable to include some special iterations when solving
systems of non-linear equations, and the report on this work (Powell, 1968a) gives some
reasons to justify the special iterations,

There are many possible ways of choosing the directions é(k) of the special
iterations, and we decided to employ a method that would work very well in an ideal case,
This case occurs when F(x) iz exactly a quadratic function, with second derivative

(k)

matrix G say, and when no value of © ig different from one in order to satisfy the

condition (33). In this ideal case equation {51) shows that, for any 1 ¢ 9 < k, the

(k+1) (q)

error in G is related to the error in G by the equation

%1 5 - pa,T6' YT p(q,6), (67)

where P{q,k} is the matrix

55T
I - W— (68)

~

P(g,k) =

I ==

We would like the error matrix (67) to be zero, so the special iterations make some of
the matrices P(q,k) equal to zero,
When minimizing a non-quadratic function, it of ten happens that most of the
iterations of the algorithm are spent in reaching a point that is close to the minimum,
and then relatively few iterations are reeded to achieve the required accuracy. A way
of interpreting this behaviour is to say that the early iterations are needed to reach
the neighbourhood of the minimum in which a quadratic function is an adequate approximation

to F{x). Therefore the special iterations make some of the matrices (68) equal to zero

21

for large values of q and k, because equation (67) has some validity when F(x) is almost
a quadratic function,

To make the matrix P(q,k) equal to zero, we have to reduce its rank to zero, and we
note that the definition (68) gives the equation

y

either rank P{q,k-1)
rank P(q,k) = (69)
or rank P(q,k-1) - 1 .

where 1 ¢ g € k-1. Therefore the best that a special iteration can do is to calculate
Q(k) so that, if P(q,k-1) is not already zero, then the rank of P(q,k) is one less than
the rank of P{q,k-1). In fact each special iteration calailates Q(k) s0 that the second
line of equation (69) holds for every integer q for which P(q,k~-1) is non-zero. We now

prove that we can do this.

Theorem 4 Given a sequence of non-zero vectors Q(U, Q(z), ey ,é(k_”, there exists
a vector Q(k) such that the equation
rank P(q,k)} = max {0, rank P(q,k-1)-1] - (70)

holds, for all q in | < q ¢ k-1, where the matrices P(q,k) are defined by equation (68).
Proof For 1 < q ¢ k-1, we let S, be the right-hand null space of the matrix P{q,k-1),

which is the definition

8q = ixIPla,k-1)x =0} . (71)

Then the definition (68) impliecs the expression

™ > 2
8,2 8,2 s, =8, (72)
We let d(q) be the dimension of Sq and expression (72} implies that there exists a set
of n orthonormal vectors, Tiyslgs e« 7, Say, such that, for 1 ¢ q ¢ k-1, the set Sq is

spanned by the vectors Qm»]-d(q)’ 1n+2_d(q),...,:fln.

g(k)

The theorem is proved by showing that

it is sufficient to let be a multiple of .

22

If n, is in the null space of Sq, then P(q,k-1) is the zero matrix, and therefore,
by equation (68), P(q,X) is also the zero matrix, so equation (70) holds., And for the

values of q for which P(q,k-1) is non-zero, T, mus t be orthogonal to all members of Sq.

(k) then

Therefore the definition {68) implies that, if) is a multiple of m

1,
P(q,k)x = Q for all X in Sq, and, moreover, the definition (68) gives the equation

(k) =0 . (73)

Q(k)

1t follows that the null space of P(q,k) includes S and also , 50 the rank of

P(q,k) must be less than the rank of P(q,k-1}. Therefore, because of expression (69),

equation (70) holds., Theorem 4 is proved.

(k)

In the algorithm the rows of the orthogonal matrix D are the vectors

IT’ leTr cees T 0 defined in the proof of Theorem 4. Therefore we now understand why

(x)

a special iteration sets Q(k) to a multiple of the first row of D°°°,

3

We now return to the Fortran listing of the appendix, and we describe the purpose
of instructions 69-90, which are obeyed only on a special iteration. They are reached
only if the variable ITSPEC of instruction 68 is negative, for it is the value of ITSPEC
that ensures that exactly one out of three iterations is special, This part of the

subroutine sets Q(k) to a multiple of the first row of D(k)

D(k) (k+1).

, and it replaces the matrix
by the matrix D
The length of the correction Q(k) satisfies inequality (13), and its sign makes

(x) (k) . . (k) . .
(g°7,8) g0, because we do not want the direction Je] to be uphill with respect to
(k)

(k)

, but this is liable to be a poor choice if the length of
(k) (k
a9,

(k)

F(x). Usually || _é(k) = &

the predicted gradient at X + g("}, namely || g(k) + is much larger than

i g(k) . Therefore | é(k) || is set to the smaller of A4 and || §(k) /1 G(k)”ﬂ1 Il. The

components of Q(k) are calculated by instruction 82 of the Fortran listing.

{k+1)

It is easy to calculate the matrix D on a special iteration, because the

direction of the vector _é(k} makes the null space of P{q,k) equal to all linear

combinations of the vectors m

Dnr1-ala)’ Tln+2-d(q)’ cery T and Nqe Moreover equation (73)

implies that the null space of P(k,k) is Mye Therefore the set of vectors

e ,'Q‘z,...,'r'}n has to be replaced by the set 1‘2’7«‘.3""’Tln’3.1' In other words to calculate

k+1 .
D() we have only to shift the last (n-1) rows of D(k) up ore position, and to set the

(k+1) (x)

last row of D equal to the first row of D . These operations are carried out by

23

instructions 83 to 88 of the Fortran listing.,
However, in the case of an ordinary iteration, the calculation of D(kﬂ) is less
easy, lor we require a method that is satisfactory for all possible values of §(k). We

T T
continue to use the notation m m2 ,...,nnT for the rows of D(k), and we let

EIT,ézT,...,énT be the required rows of D(kﬂ). They are calculated by using the
following theorem,
Theorem 5 The required vectors él ,féz,...,én may be calculated in the following way.
%, is the vector

z.= 80 0y, (74)

Let t be the greatest integer such that (Qt,é(k)) # 0, and if t ¥ n then make the
definition

Z

&ju1 = T'lj, J= 41, t+2, ..., n. (75)

And if t 3 2, then, for j=t-1,t-2,...,1, define Z. to be a linear combination of the
vectors Qj’ﬂjﬂ""’nn that is orthogonal to the vectors §j+l’§j+2""’—€n and whose
Euclidean length is one.

Proof In the text of the proof of Theorem 4 we have noted the required properties of
the orthonormal vectors ;],2;2,...,'%]. Specifically to prove the theorem we just have to
show that, for all integers q in the interval 1 £ q g k, the vectors §n+l—c(q)’
én+2-c(q)""’5n span the right-hand null space of the matrix P{q,k), where c(q) is the

dimension of this null space.

First we note that the definitions (68) and (74) give the equation
Pla,k)Z =0, 1 sqaxgk. (76)

Therefore the choice of En is correct, and further, because the null space of the matrix
P(k,k) has dimension one, from now on we reed consider only values of q in the interval
1 £ g% k-1.

We divide tlese integers q into two parts, which depend on the values of clq).

Specifically, noting that equation (69) is equivalent to the expression

29

either d(g)
clq) = , 1 ¢ 4qg k-1, (77)

or d(q) + 1

where d(q) is the dimension of the space (71}, we first consider the values of q for
which the second line of equation (77) holds, and then we treat the remaining values of (.
I c(q) = d{q) + 1, then there exist d(q) independent vectors in the null space

of P(q,k) that are orthogonal to the vector (74). Further the equation

gmng

P(q,k) = P{q,k-1) (I = W (78)

-~

shows that these d{q) vectors are in the null space of P(q,k-1). Therefore the vectors

nn+l—d(q)’ T]vn+2—d(q)"“’ e én are an orthonormal basis of the nutl space of P(q,k),

and in particular the orthogonality condition

Qlj, é(k)) 0, nvl=d(q) < J g n, . (79)

holds. Therefore the integer t, defined in the statement of the theorem, is less than

n+1-d(q}, so the definition (75} makes the vectors Z z

“n+l—c(q)’ <n+2-cl(q)?® """ fén the

same as the vectors Trln+1—d(q)’ Trln+2-d(q)’

these are a basis of the null space of P(q,k). Therefore the construction of the theorem

sray T]n, Z,q, and we have already noted that

is adequate when the second line of equation (77) applies.

Finally we have to treat the case when q is such that c{gq) = d(g). We use the

fact that, because zj is constructed to be orthogonal to Q(k) for 1 £ j € n—1, the
definition (68) gives the equation
P(q,k—l)éj = P(q,k)éj, 1gJgn1,1¢qgk1. (80)

Moreover, by construction for all 1 £ j < n=1, the vector a;j is a linear combination of

the vectors m Therefore equation {80} and the definitions of d(q) and

mJ"
) iMys - esm,) imply the identity

LRRIREED %

23

P(q,k)éf 0, nt1-d(q) £ j £ n-1, 1 £ q £ k-1. (81)

Further equation {76) shows that the range of j can be extended to n+i-d{q) g j ¢ n.
Therefore, in the case when c(q} = d(q), the vectors -§n+1—§(q)’én+2-c(q)""’§n span
the rnull space of P{q,k).

We have now treated all values of g in the interval 1 £ q g k, s0 the proof of

\

Theorem 5 is complete,

The calculation of the matrix D(kﬂ) in the case of an ordinary iteration is made
by instructions 127 to 155 of the Fortran listing, The method of Theorem 5 is applied,
and first instruction 133 sets the elements of the working space array WB to the scalar
products

(n‘]!é(k)) = Uj) J=1,2,...,n, (82)

say, Then when instructicn 137 branches to instruction 140 the integer KK is set to the
value of t defined in the statement of Theorem 5, To calculate the vectors Ej for
j=t-1,t=2,...,1, we follow the suggestion of Powell (1968b), in order to keep the amount
of computing per iteration to within a multiple of n2 operations, Specifically we let

a, = 0 and f%t = Q, and then, for j=t-1,t-2,...,1, we apply the recurrence relations

Ey = Ejer T a1 Dyer

Q. = &, + 02

J i+ j+i (83)
= amn.- 7.8

o /a‘j (a.J. +cr‘j)) .

In the subrmoutine the working space vector WC is used for the current .‘%j’ and the variable
S is used for the current value of G‘j' Note that because Q‘j is required to define
.E:‘,j-—i after E’j is calculated, the program first sets the vectors %,52,...,%1_1 in the
last (n-1)} rows of the matrix DD. Then these rows are shifted to their correct positions
by imstruction 152,

This method for calculating the directions ,cf,;(k) for the special iterations is like

the method that I used in my subroutire for solving systems of non-linear equations

26

(Powell, 1968a)., But it should he noted that there are some important differences. In
particular the present method is based directly on the hypothesis that we would like to
obtain the exact second derivative matrix of a quadratic function, but the earlier method
has no analogous property, |
To complete this section we prove a theorem that is required by Powell (1970}, It

(k) may be different

takes account of the fact that in practice some of the numbers]
from one, in order that condition (33) is satisfied.
Theorem 6 There exists a constant ¢, less than one, such that, for every integer

k » 1, the inequality

- - i g c 4
=k 19 /]

holds, where the subscript "2" denotes that the matrix norm is induced by the Euclidean

vector norm.

Proof First we show that the special iteratiors cause the identity

s (1) (DT
(85)

=
+
A
=3
]
TN
-
1
= |
o
LN
T
|
=}

We use the following four facts: (i) the rank of P(k,k) is (n-1}, (ii) equation (69)
holds for every ordinary iteration, (iii) every third iteration is a special iteration, and

(iv) Theorem 4 is equivalent to the statement
rank P(k,j) = max[0, rank P(k,j-1)-1], (86)

where j > k is an integer that numbers a special iteration. Now as i runs from

k+1 to k+3n=3, there are (n-1) special iterationg, and therefore equation {86) holds

(n-1) times. It follows that the rank of P{k,k+3n-3) is zero, so equation (85) is true,
We now suppose that in expression (84) the parameters G(j) and also the vectors

,Q(j) /| é(‘j) l, j=k,k+1,...,k+3n-3, are chosen in any manner that is consistent wi th

the algorithm, and we try to identify an upper bound on the greatest value of the left-

27

hand side of the inequality. In particular a convenient upper bound is the greatest

value of the function

w(e('),e(Q) e(3n—2) 0_(1) o_(2) -"£§5n—2))

TLERT)

3n-2 . . .
I @ - s IADTy (87)
J=1

where each G(J) satisfies inequality (58), where each N(J) has length one, and where,

because of equation (85), the identity

3n-2 . .
1 (I “,Q'(J),CZ(‘])T) =0 (88)
J=1

holds, It follows that the range of the variables of the function (87) is closed and
bounded, and moreover the definition (87) shows that this function depends continuously
on its variables. Therefore the greatest value of the function is attained, and we
suppose that it occurs when the variables have the values -5(:') and :.:(j) (i=1,2,...,3n-2}.

We let ¢ be the greatest value of the function, and it remains to prove that ¢ < 1,

There exists a normalized vector, Z say, such that the equation

3n-2 . . .
” n (I _ E(J) :':(J)E.:(J)T> z “2 - ¢ (89)
j=1 ~
holds., We let g(sn'” = &, and, for j=3n-2,3n-1,...;1, we define é(‘j) to be the vector

Note that this equation implies the identity

” 5(.])“2 = ” é(J+]) ”2 - {2'5(.]) _ r’e'(.])]zz(g.(.]),é(.]‘”))z, (91)

and therefore, because | 1—_6(J)I £ \/2/11, the inequalities

28

R P P T I (92)

hold. It follows that the theorem is false only if ¢ = 1, in which case all the above

, L -(3J j+1
inequalities become equalities, and then equation (91} implies that (g(‘]),é(‘])} =0,

J=1424400,30=2, If this happens then the equation

3In=2))
nn (1 - E(J)E—(J)T)é = 2 (93)
J=1 T

{J)

holds, which contradicts the constraint {88) on the vectors g . Theorem 6 is proved,

8, T™we numerical examples

In this section we do not make a comparison with other algorithms, because already
a comparison has been published {Powell, 1970). Instead we give two numerical exampies,
g0 that anyone who punches cards from a Fortran listing in the Appendix will have some
numbers to test his subroutine. However the second example shows that small perturbations,
due for instance to computer rounding errors, can cause large changes to the computed
sequence E(k) (k=1,2,...). In this example the final solution is always correct, but
the path to the solution is very sensitive to computer rounding errors,

The first example is the calculation of the least value of the function

2 2 2 2 4
Flx) = x] + 2x) + 3x3 = 4 + (X, + %, + X5 + Xy (94)

starting from the point ,&(1) = {1,-1,-1,1), with the parameter values STEP = 0,1

and ACC = 10710

(see Section 2). This problem was solved by subroutine VAOGA on an
IBM 360/75 computer in single length arithmetic, The values of % and F(x) were printed
after every evaluation of the objective function and its gradient, and they are given
in Table i1, Note that the tabulated vectors x are not the vectors gg(k) (k=1,2,000,20),
because E(k) (K=2,3,...,20) is defined by equation (11)., Instead thcy are the vectors
5“) and gg(k) + Q(k) (k=1,2,...,19), Evecry third row of the table is the result of a
"special iteration",

The second example is the minimization of Rosenbrock's (1960) function

2,2 2

Flxs%,) = 100(x,=x7)" + (1-x,)%, (95)

29

starting from (-1.2, 1,0}, with the parameter values STEP = 0,1 and ACC — 0,0001,
Using single length arithmetic on the I.B.M. 360/75 computer, 41 evaluations of F{x)} and
its gradient were required to complete the calculation, but in double length arithmetic

(k) and F(gg(k)) in these two

43 calls of subroutine CALCFG were made, The values of X
cases are given in Table 2. The value of F(,}g(l)) differs from 24,20000 even when
double length arithmetic is in use, because the Fortran instruction X(1) = -1,2 provi des
the mumber -1,19999980927.

The table shows a very great difference between the single and double length
calculations, and the main discrepancies stem from the calculation of @(k} by the third

g2(3) E(s) {3)

iteration. is defined by the method of Section 4, s0 the vectors 8(3)’ and v

are important. It happens that in the single length version these vectors have the

(3)

values g °' = (-87.2567, -36,2234), 1(3) = (0,06765, 0,01548) and g(s) = (0.06351, 0,02637),

and in the double length version they have the values §(3) = (-87.2580, -36.2239),
x(s) = (0,06811, 0,01538) and §(3) = (0,06351, 0,02637). Therefore in the Tirst case
the value of expression (20) is equal to 0.033, and in the second case it is equal to
—-0.003. It follows that when expression {23) is evaluated the signs of THETA differ in
the two cases, which corresponds to setecting different roots of the quadratic equation
{21), Therefore there are large discrepancies between the two calculated values of ,é(s).
One purpose of Table 2 is to show that if an al gorithm depends on any discrete
decisions, like estimating the sign of (;g_(k), E(k)) in expression (23), then a small
change in the accuracy of the calculation can causc a large change in the progress of the
algorithm, Therefore the user may not be able to reproduce the results given in the
tables, However he should find that the algorithm of this report compares favourably

with other methods for unconstrained minimization,

30

The minimization of a function of four variables

Table 1

X, X, Xg X, F(x)
1.00000 -1, 00000 -1,00000 1.00000 10, 00000
0,98174 —-0.96348 -0,94523 0,92697 8.93789
0.78510 -0,97705 -0,96557 0, 95409 8.96549
0,94358 -0,88857 -0, 83499 0.78282 7.01232
0.85945 =0,73013 -0.61165 0.50365 3.94183
0,86534 0,00170 -0,808601 0.76173 5,47700
0.64517 -0, 36607 -0,15418 0.00138 0.75585

~0,03757 —0,21769 0.48077 0.25445 1,10165
0,43286 -0. 30621 -0. 30809 -0.22038 0.87998
0.29596 ~0,07597 0,02673 0,00100 0.10505
0,03559 0.02964 -0,00704 0.01443 0.00403
0,04002 0.04771 0,00716 -0.00605 0.00652
0.01523 0.01198 -0,00114 0,00534 0.00064
6.52x107 1,56x10-* 3.42x10~ 1.62x10 9,31x10™°
3,65x10~ 3. 98x10-* 4,80x10-8 3.21x10™ 8.63x10-°

-1.,63x10~ 4,41x10-° 1,49x10° 1.30x107° 1.64x107°

-3.78x10°¢ -2.,50x1077 1.95x107° 1.38x107° 3.34x107""

-5.,27x107° 2.68x107° 3.72x1077 3.39x1077 4,30x107" !

-2,80x1071° ~1,75x10-1° -3,49xi0~"? 2.56x10-'¢ 7.69x10~'°

-3.10x10~"3 -2,86x1012 —-6,27x107"3 4,27x10~"3 2,17x1074

31

Table 2

The minimization of Reosenbrock's function

Single lLength

Double Length

K x(k) x(k) F(x(k)) x(k) x(k) F(x(k))
1 2 ~ 1 2 <

1 -1.20000 1.00000 24,19996 ~1. 20000 1. 00000 24,19996
2 | -1.10741 1.03779 7.99731 ~-1.10742 1.03779 7.99738
3 -1,14520 1.13037 7.88224 -1,14520 1.13037 7.88233
4 -1.10679 1.22270 4.43910 -1.07710 1.14573 4.33511
5 -1,08193 1.19540 4,37712 -1,013486 1.02144 4,05723
6 -1,08992 1.19649 4.375%1 ~1,00877 1.02385 4.,03904
7 -1,07138 1.13715 4,30210 -0, 88196 0,77503 3.54257
8 ~1,01237 1.02771% 4.05042 -0.88196 0,77503 3.54257
9 -1.01012 1.02893 4,04795 -0,87783 0,77726 3.53069
10 -0.90786 0.80225 3.68810 -0}, 78880 0.62186 3.15981
11 -0, 78341 0, 58695 3.25228 -0,60268 0,31582 2.79322
12 -0,77225 0.59340 3. 14176 -0,58454 0.32685 2,53277
13 -0, 50000 0.17718 2.78017 -0, 34642 0.05928 2.18170
14 -0, 58534 0.34881 2.51713 -0, 38178 0.14240 1.91044
15 -0.58255 0, 35020 2.51620 -0.37485 0.14535 1.89255
16 ~0.41456 0.15341 2,03505 -0,22002 0,05223 1.48992
17 -0,22406 -0.02168 2.01503 -0,22002 0.05223 1.48992
18 -0.19995 0,00455 1.56541 -0,22002 0,05223 1.48992
19 —0,07291 -0,01987 1.21456 -0.17349 0,03337 1.37815
20 0.034353 -0,02448 0,99836 -0.07753 0.00378 1,16157
21 0.03542 0.00093 0,93042 -0,07471 0,01293 1.160640
22 0.23626 0.01537 0, 74692 0.,11734 -0, 04583 1.13427
23 0,23132 0.05566 0.59133 0.05631 0,00778 0,89268
24 0.25517 0.05858 0.,55904 0.05631 0,00778 0, 89268
25 0,32255 0,10385 0.45894 0.21789 0.02467 0,66369
26 0,46725 0,17747 0,45077 0,35856 0.03505 0., 60086
27 0, 44840 0.21452 0.32235 0.34052 0,12709 0.44730
28 0.51585 0.25969 0.23852 0.47161 0,20613 0.30573
29 0.62864 0.37647 0.17296 0.58026 0.31397 0.22787
30 0,61818 0,38657 0,14774 0.56556 0,32878 0.19669
31 0.72242 0.51104 0.08881 0. 67099 0.43976 0.11921
32 0.81313 0.64570 0.05888 0,76104 0.56355 0,08152
33 0.80412 0.65177 0.04104 0,75187 0.57022 0.06398
34 0,80182 0.78839 0,01655 0.83867 0.69631 0,03101
35 0.94496 0.88660 0,00707 0,91635 0,82822 0.02017
36 0.94179 0,88832 0.,00357 0.91030 0.83178 0.00903
37 0.96803 0. 93640 0.00107 0.96892 0.93581 0.00187
38 1 1,00090 0,99991 0,00035 0, 98494 0,96913 0,00032
39 | 1.00008 1.00034 0. 00000 0. 98452 0,96932 0, 00024
;40 J 0.99995 0.99891 0,00000 0,99358 0.98710 0., 00004
f41 4 1,00000 1, 00000 0, 00000 0.99988 0.99966 0, 00000
42 0,99984 0, 99968 0, 00000
43 ! i 1.00000 0,999589 0, 00000

32

References

Broyden, C.G. {1970) "The convergence of a class of double-rank minimisation algorithms,
1. General considerations", J. Inst. Maths. Applics., Vol.6, pp. 76-90.

Davidon, W.C. (1959) "Variable metric method for minimization", A.E.C. Research and
Devel opment Report, ANL-5990 (Rev.).

Householder, A.S. (1964) "The theory of matrices in numerical analysis",
Blaisdell Publishing Co.

waell, M.J.D, (1968a) '"A Fortran subroutine for solving systems of non-linear
algebraic equations", Report No. R-5947, A.E.R.E,, Harwell,

Powell, M.J.D. (1968b) "On the calculation of orthogonal vectors", Computer Journal,
vol, 11, pp.302-304.

Powell, M.J.D. (1969) "Rank one methods for unconstrained optimization", Report No.
T.P.372, A.E.R,E., Harwell.

Powell, M.J.D. (1970) "A new algorithm for unconstrained optimization", Report No,
T.P. 393, A.E.R.E., Harwell,

Rosenbrock, H.H. (1960) "An automatic method for finding the greatest or the least

value of a function", Computer Journal, vol. 3, pp. 175-184,

33

PAGE 1 MINFA

1: SUBRIUTINE MINFA (N,X:Fs+G» STEP,ACC,MAXFUNS IPRINT)
2t DIMENSI ON X{(503,G(50)+,XA{50),5a¢50),GGC(50,50),HCS0,50),
33 1DDC50,50),WACS50),WB(50),WC(50)
43 C SET SJIME C/INSTANTS
5: ACCT=ACCxACC
H IPP=IPRINT*IPRINT
:C GIVE INITIAL VALUES TJ] SIME VARIABLES
: DSS=STEP*STEP
H MAXC=1
16¢ ITSPEC=1
11: IPTEST=1
12:C CALCULATE THE INITIAL GRADIENT
13: CALL CALCFG (N,X,F,G)
14:C GIVE INITIAL VALUES T1 THE CIMPINENTS JF GG, H AND DD
15: G5Q=0.
16t D1 I=1,N
172 1 GSO=GSQ+GCI)xx2
18: IF (GS5Q) 555.,2
19¢ 2 GGDIAG=0.01%*SQRT(GSQ) /STEP
20 HDIAG=1./GGDlAG
21 DO 4 I=1,N
22 DY 3 J=1,N
23: GG(I,JX=0.
24 H{I,Jd)=0.
25¢ 3 DDCI,J)=0.
26 GG(1I,I)XY=GGDIAG
27: HC(1,I)=HDIAG
28 4 DDCL2IY=1.
29:C AHRANGE F'JR ANY PRINTING TJ BEGIN N A NEW PAGE
303 S IF (IPP)Y 16510s5h
31: 6 PRINT 7
32: 7 FIRMATC1IH],5%, *THE FILLIWING JUTPUT 1S PRIVIDED BY MINFA')
33: Gl TJ] 10
34:C BEGIN AN ITERATI'IN BY TESTING FIR C.JNVERGENCE
35 8 GSQ=0.
363 D] 9 I=1,N
37: 9 GSQA=CGSO+G(IX%kxp
38z 10 IF (GSQA-ACCTY 11,11,18
39:C PRINT THE FINAL VALUES 1F THE FUNCTI XN AND GEADIENT

40z 11 IF (IPP) 17517512
411 12 PRINT 13,MAXC,F
421 13 FIRMAT (/5Xs *AFTEE",I4,*' CALLS JF CALCFG, THE FINAL F ="',

43: 1E20.12)

443 PRINT 14,(X(1),I=1,N)

453 14 FNRMAT (5%, 'X =',(SE20.12))
463 IF CIPRINTY 17,17:15

47: 15 PRINT 16,(GC(I),I=1,N)

48z 16 F'IRMAT (5X,'G =',(5F20.123)

49z 17 RETURN

50:C TEST WHETHER MAXFUN CALLS ‘JF CALCFG HAVE BEEN MADE
51: 18 IF (MAXC-MAXFUN) 21,19,19

52 19 PRINT 20.MAXC

532 20 FIRMAT (/5X,'MINFA HAS MADE',15,' CALLS JF CALCFG')
54z GJT? 11

55:C PRINT THE CURRENT BFST VALUE JF F ETC
563 21 IPTEST=IPTEST-IABSC(IPRINT)
57t IF CIPTEST) 22,22,25

581 22 IPTEST=IPP

34

PAGE 2

59
60
613
622
633
641C
65:C
66:C
6T
68:
691
702
Ti:
1212
73:
T4t
75¢
763
T7:C
78:C
7ot
80
8l
8e:
83:
Bas
B5:
863
87:
88:
Bo:
901t
21:C
g92:C
93:
94
9512
962
97s
98¢
991
100
101:C
102:C
103
104:C
105¢
106:
107
108:
109:C
110:C
111:
112:
113:
1143
1152
1162

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

MINFA

PRINT 23,MAXC,F

FIRMAT(/59X, 'AT THE START JF ITERATION'»14,5Xs"F =',E20.12)
PRINT 14,(XC{1),I=1,N)

IF (IPRINT) 25,25.24

PRINT 16s(G(I),I=1>N)

TEST WHETHER A SPECIAL ITERATIIN IS5 NEEDED, AND CALCULATE
THE CHANGFE IN GRADIENT ALJING THE DIRECTIIN OF

A SPECIAL ITERATIIN

ITSPEC=1TSPEC-1

IF (ITSPEC) 26,32,32

DGGD=0.

SGDD=0 .

D] 28 I=1,N

SUM=10 .

D1 27 J=1,N

SUM=SUM+GGCI,J>*DDCL,J)

SGDD=SGDD+GCI)*DD(1.,1)

DGGD=DGGD+ SUNM* SUM

CALCULATE THE COJRRECTION FJR A SPECIAL ITERATION
AND REVISE THE ARRAY DD

DSQA=AMINLI(DSS, GS5Q/DGGD)

C=SIGN(SQRT(DS5Q)»-5GDD)

D3 29 I=1,N

WACIX=CxDD(1,1)

WBCI>Y»=DD(1,1I>

D) 30 I=2,N

DI 30 J=1sN

pDDCI-1,J)=DDC1,J?

D3 31 I=1.N

DD(N,I)Y=WB(I)

ITSPEC=2

GO TJ 5!

CALCULATE THE GENERALIZED NEWTIN CIRRECTION T3 X
AND PREDICT THE CURVATURE JF F ALING THE GRADIENT
GGGG=0.

D 34 I=1sN

WA(I)=0.

SUM=0.

D] 33 J=1.N

WACI)=WACII~-HC(I,JX*G(D)

SUM=SUM+GG(1, J)*G(D)

GGGG=GGGG+SUM*G(I?

TEST WHETHER T) SET THE CJIRRECTIIN TJ A MULTIPLE JF
THE GRADIENT

IF (GGGG*ABS(GGGGRI*DSS5-GSQ**3) 35235, 37

SET THE CIRRECTIIN VECTIR Tud A MULTIPLE JF THE GRADIENT
C=-SQRT(DS5/GS5Q)>

DA 36 1=1sN

WACIY=CxG(I)

G1 T 41

SET THE JPTIMAL STEEPEST DESCENT CJRRECTIJN IN WB
aND THE DIFFERENCE BETWEEN WA AND WB IN WC
C==GSQ/GGGG6

CA=0.

CB=0.

D] 38 I=1,N

WB(I)=CxG(I)

WC(I)=WACE)-WB(I)

35

PAGE 3

117
1182
t19:C
120¢
121:
122:C
123
1241
125
1263C
127
1281
129:
130:
131
132:
1332
134:C
1352
136¢
1372
138:
139:
140
141
142
1432
144
145
1462
147:
148:
149
150
161
i52:
153:
154:
155¢
156:C
157:C
158:
159:
160t
161:
162:C
163:C
1642
1652
1663
167:
168
169¢
170¢
171
172:
1732
174

38

39
49

41

42

43
44

45

46

47

48

49

S0

51
52

53

MINFA

CA=CA+WB{I)*HCCT)
CB=CB+WC(I)%*2
INTERP JLATE FIRE THE CIRRECTIIN VECT'IE I THE LINE wA - WR
C=DSS-C*C*GSQ)
THETA=5IGN(C/(ABS(CA)+SART(CA*CA+C*CR)), CA)

TEST WHETHER T USE THE GENERALIZED NEWT W CIRRECTIIIN
IF (THETA~«1.) 39,41,41

D7 40 I=1,N

WACI)=WB(I)+THETA*WC(I)

EXPRESS THE CJIRRECTIIN VECT'IR IN TERMS JF THE ROWS JF DD
DSQ=U-

DY 42 I=1,N

DSA=DSQ+WACI)% 2

WB(I)=0.

WC(IY=0.

DD 42 J=1,.N

WB(I)=WB(I)+DD(I,J)*WACT)

REVISE THE DIRECTIINS IN THE ARRAY DD

S=0.

KK=N

IF (WBCKK)Y) 45,44,45

KK=KK-1

G T 43

HK=KK=-1

IF (KK) 4B,4B.,46

S=S+WB{KK+1)%x2

C=SQRT(Sk (S+ YB(KKIY*%2))

CA=S/C

CB=WB{KK) /C

DO 47 J=l.N

WC{J)=WCC)+ WB(KK+ 1) DD{KK+1,J)
DD{KK+1,J)=CA*DD(KK»JY-CB*WC(J)

GJ T 45

DY 49 I=8,N

D] 49 le N

DDCI-1,J)=DDCIsJ)

C=1/5QRT(DSQ

DI 50 I=1,N

DD{(NsI)=C*WaA(1)

APPLY THE CIRRECTION VECTOR AND CALCULATE THE
IBJECTIVE FUNCTI.IN

DO 52 I=1.N

XACII=XCIdY+WACT)

MAXC=MAXC+1

CALL CALCFG (N,XA,FA,GA)

SET THE ERRJR JF THE PREDICTED GRADIENT IN B

ALS5] CALCULATE SIME NUMBERS F IR REVISING THE STEP-BIUND
DG=0.

DGA=0.

DGGD=0.

WBS5Q=0.

D] 54 I=l1,N

SUM=00

D77 53 J=1,N

SUM=SUM+GG(I,JYxWA(. D)

WBC(IX=GAC1Y-GCI)-SUM

DG=DG+G(I)*WAC(I)

DGA=DGA+GACIY*WACI)

36

PAGE 4

1751
1763
177:C
1781:
179¢
180
181z
i82:C
183¢
1842
18512
1867
187:C
1883
189:
190:C
191
192
193¢
1941
195¢
ige6:
197:C
198:C
1993
200
201
eoa:e
203:
2043
o285
206t
207:
208:
209:
210
2113
g12t
213:C
214:C
2153
2162
217t
218:C
2192
220
021
pg2e
223¢
224:
2251
2263
poTe
p28:
229:C
2301
231:
232:

55
56

57

58
59

60
61

62

63

64

65

66

67

&8

69

70

MINFA

DGGDH=DGGD+ SUM*WACTI)

WBSQ=WBSQ+WBC(I I **2

TEST WHETHER TJ DECREASE THE STEP-BIUND
1F ¢ITSPEC-2) 55,60.60

IF (FA-F=0.1%DG-0.05%kDGGD) 57157256
D55=0.25%D5&

G1 TN &0

TEST WHETHER T11 INCREASE THE STEP=-B:JUND
DS5=D5Q

IF (WBSQ-0.25%G3Q) 59559558

IF (DG-DGA-DGA)Y 6055959

DSS=4.%D5Q

SET THE DIFFERENCE BETWEEN GRADIENTS

DJ 61 I=1,N

WCCI13¥=GACII-CG(ID

SET X, F aND G T THE BEST CALCULATED VALUES
ITHETA=1]

IF (F=FA)Y A4, 64,62

F=FA

D] 63 I=1.N

X(I)=XA(I)

G(IY=GAC(ID

CALCULATE S$IME VECT!JRS AND SCALAR PRIDUCTS T
REVISE GG AND H

SDM=U .

GHD=0»

SEG=0+.

DHD=0«

D] 66 I=1,N

XACD)==WACI)

GACI)=0.

D} 65 J=1.N

XACII=XACI)+H(I, J)*xWCCJ)
GACI)=GACI)+H(I, I *WALJ)
SDM=SDM+WACIY*WB(I?

GHD=GHD+WC(I1)*GAC(I)

SEG=SEG+WCC(I)*XACI)

DHD=DHD+WACI)*GA(I)

TEST WHMETHER THE USUAL CIRRECTI N T GG GIVES
NEAR SINGULARITY

HDIV=SEC*DHD-GHD*GHD

G1 T (67>70), ITHETA

IF (ABSC(HDIUY=0.1%DSQ*DSAY 68,70, 70
CHANGE THE DIFFERENCE IN GRADIENTS T1 AVIID SINGULARITY
CA=HDIV/(DSR*DSA)+0.1

CB=GHD/DS8-0.1
CA=CA/(CA+CB+SIGN(SQRT(U.Q#CA+CB*CB):CA+CB))
CR=(1+-CAX*SDM/DS50O

D] 69 I=1,N

C=Ca*x(CR*WA(I)-WH(I)})

WB(I)=WB(I>+C

WC(II=WCC(IX+C

ITHETA=2

Gl T'1 64

REVISE THE MATRICES GG AND H

Ca=1./D5Q

CB=SDM*CA*CA

CC=DHD/HDIV

37

PAGE 5 MINFA

233: Cb=GHD/HDI VY

234 CE=SEG/HDIV

235: DI 71 I=l.N

2363 DT 71 J=I.N

237: GGCI,J)=GG(I, J)+CA*{WACDI*WB()+WACI)XWB(I))
238: 1 -CBxWACT)*WACT)

239: HOI» D) =H(1,J)=CCxXACII*XAC I +CD* (XACII*GAC I +XAC DI *GALI))
240 l-CE*GACI>*GA(J)

241 GG(J,1)=GGCI,J}

242: 71 HCJ,IY=H(I,J)

2431 GJ Td 8

244r END

38

PAGE 1

2w
Q

[Nl JEES R JE 1)
B T LI L I T

—
fo==)
-

p—
-
.

13:
14:C
15¢
1A1
17:
181
19:C
ans
21:C
0P
2312
Y
251
26A1
27
2Bt
29t
30
31:
age
33:
34
35:
k2
a7:
3812
39:
40
41t
891
a43:
LY/ B
45:
Ak 3
art
4R
B9
501
51:C
581
53¢
S4%
551
aA3C
57¢
AR

101
1ng

1113

104

™oN

yanaa

SRRIMTINF UADAN (N,X:F:G;STFP,QCC;MAKFWV:IPFIMT;M)

DIMENSTTN XC1IsGCLYsW01D

THE NRXT SRUEN INTWAFRS PARTITION THFE AREAY

IND=N*N+N

IH=INN/7
IXA=IDN+N*N
IGa=1XA4+N
IWA=IGA+N
TWR=1WA+N
IUC=1%WR+N

SET SMF CNSTANTS
ACCT=ACC*ACC
IPP=IFPRINT*IPRINT

GIVF INITIAL YALNIFS T SIMF UVARTARLES

PSS=STFP*STFF
MaxXC=1
ITSPRC=1
IPTEST=1

caLCHLATE THF INITIAL GRADIFNT

CALL CALCFG (N,X,Fs0)

GIVE INITIAL UaLTES T1 THF CONMPANENTS 1F GG, 9 aNn DD

G50=0«

pn 1 I=1.N
OSA=GSN+GC T *x0
IF (AS7) 5:5s2

GGDIQG=0.ﬂl*SQRT(GSQ)/STFP

HNIAG=1./G30IAG
K=t

KDD=1DD

nry 4 I=1,N

J=1

IF (J-1D 102,103,103
KND=KDD+1
W(KNDY=N .

J=J+1

G TN 101

K=K +1

KDN=KDH+1
W(KI=GGDIAGR
W(IH+KI=HDIAG
WCKDDI=1 .

J=J+i

IF (J=N) 104,104.4
K=K+1

KDD=KND+!

W(KI=0.

WCIH+KY =N,
W(KDDYI=0 -

G TN 3

CINTINTIFE

ARRANGF FIR ANY PRINTING
1IF (IPP) INsiN,A
PRINT 7

FARMAT(1H1,5X, ' THF FALLAWING

G TR 1D

AFAIN AN ITFRATIIN RY TESTING

GSQ=” .
NN g I=1,N

T REGIN TN A NEW PAGE

39

ITRIT 15 PRIWIDED BY yafaat)d

FiR CIANURRGENCE

PAGE 2 vanaAa

1

593 9 GSA=(SN+GC(I1I*%xD
AN 10 IF (G50-ACCT> 11511518
Al:C PRINT THF FINAL UVALYIFS IF THFE FUNCTINN aND GRADIENT

AD L IF CIPP)Y 17517512
A3 12 PRINT 13.MAXC,F
hie 13 FARMATC /585X, 'AFTFR'>14,* CALLS NF CALCFG, THFE FINAL F =*,

A5 1E14.A)

hA 3 PRINT 14,(XC(13,1=]1,N)

67 14 FORMAT(S5X, *X =',(BE14.6))
CAH: IF CIPRINT)Y 17,17,515

AG: 15 PRINT 16,(GCI),1=1,N)

70 16 FARMAT(SX,'(=', (BR14.A))

Tl 17 RETURN

T721:C TEST WHETHER MAXFUN CALLS AF CALCFG HAVE REFN MADFE
T3: 18 IF (MAXC-MAXFUN) 21,19,19

T4 13 PRINT 2n,MaXre

75¢: 20 FIRMAT(/5K, "UADAA HAS MAPF',15,' CALLS IF CALCFG')

TAt 81 TN 11
77:0C PRINT THF CURRFNT RBRFEST VALIFE NF ¥ ETC
TR e 21 IPTEST=IPTFST-IARS(IPRINT)
793 IF CIPTEST) 22,22,25
a0 22 IPTEST=1PP
gl 3 PRINT 23,MAX(,F
Ros 23 FARMATC(/5X, 'AT THF START 7F ITERATINMN'>I455%X,'F =',Fl4.8)
&3 PRINT 14,¢XC13,1=1,N)
A4 IF (IPRINT) 25,25,24
RS ¢ 24 PRINT 1A,(RCT)s1=1,N)
R&:C TFST WHETHFR A SPRCIAL ITERATIMIN IS NEEDED, AND CALCOITLATE
27:C THE CHANGF IN GRANRIENT ALNNG THF DIRECTION NF
BR:C A SPRCIAL ITERATINN
9t 25 ITSPREC=ITSPRC-1
90 ¢ IF (ITSPRC) 9/,38,392
91 26 DGGD=0.
. 9213 56DN=0.
*93: KNN=IND
Sl ¢ NN 28 I=1,N
951t STM=0,
9h K=1
971 KD=1DD
981 J=1

99 10S IF ¢J=-1) 194,107,107
100z 104 KD=KD+1

101 STIM=STIM+ WK # W (KD)
102 K=H+N=

103 J=J+1

1042 G TN 105

105 107 DO 27 J=1,N

1nA: KN=KD+{

107 SIIM=SITMA(KI* W (KND)

108 27 K=K+l

IN9: KDD=KND+1

110 SEDN=SGRD+GC 1) *W(KDD)

111 2R DEGD=NEAD+SHIM*SIM

112:0 CALCIJLATE THE CORRECTINN FAR A SPFCIAL ITFRATION
113:C AND REVISF THE ARRAY DD

tlas DSA=AMINL(NSS, 3SN/NGEND)Y

115 C=SIGNC(SARTI(NSO), -5GDHN)

11A: DT 29 I=|,N

29

an

33
34

35

3A

a7

3R

39
44

a1

VADAS

W(I+IWQ)=C*W(I+IDD)

WeI+IWRI=WCI+INDD

¥DD=IDD

D 30 1I=2,%N

NIl 30 J=1aN

KDD=KND+1

WIKDDY=W{KDN+N)

DA 31 I=1,N

KND=KDD+1

WCKDD =W I+ TWR)

1TSPRC=P

67 TN 51

caLCiLaTE THF OFNFRALLIZED KE W TN

AND PPENICT THE CHRUATIIRF AF F ALING

GGGG=U .

N7 34 I=1.N

WCI+IWAY=N.

STIM=0

J=1

K=1

IF ¢(J-1) 109,110,110

W(I+IWQJ=W(I+INA)—W(IH+V)*G(J)
SUM=GIM+ WK I*F{J)

K=K+N-=J

J=J+1

BN TN 108

na 33 J=I.N

W(I+IWQ)=W(I+INQ)—W(IH+K)*G(J)
SUM=SUM+W(K)*G(J)

K=K+1

GORGG=GRGG+SIM:G0T)D

TEST WHETHER TN geT THF CNRBRCTIT o

THF GRADIFNT

I (GOER*ARS(ANAGGEI*¥NES-[{S0**3) 15535, 37
SFT THF CNRRFCTIAN VECTOR T A MILTIPLE
=«SQRT(NSS /351D

DN 36 I=1,N

WeI+IWAY=CxGC1)

G TN 41

SET THF JPTIMAL STEFPFST NDESCENT CIRRECTINN IN WR

ANPD THFE DIFFERRENCE RFETWEEN VA AND WROIN WO
C=-G50/sGGRGG

CA=0.

Cr=0.

Pl 3R I=1,N

WCIHIWRY=C®GCI)

WCIHIWO =W T+IWAd=WCI+TWRD
CQ=CQ+W(I+IWP)*M(I+IWC)

CR=CB+W{1+IWCI**2
INTERPILATE FilR THE
C=NSS=C*C*GSN
THETA=SIGN(C/(ﬁﬂS(rq)+SQHT(CQ*CA+C*CR)),CA)

TEST WHFTHFR TN 115K THF GFENFRALIZFED NEWTAN CORRFCTINN
IF ¢(THFETA-1.) 39,41s41

Nl at I=1,N
WCT+IWAY=WCT+IWR)+THRETA*WI+IWE)
EXPRFESS THE CORRFCTINON URCTNR IN TFRMS
nsQ=h.

CONRRECTION T X
THF GRADIFNT

o MULTIPLE IF

NF THE GRADIENT

CORRFCTION URCTAR AN THE LINF wa = WR

¥ THE ROWS NF DD

H

PAGE 4 vansA

175 KDD=IDD

17412 D3 42 I=1,N

1772 DSO=NSN+W(I+IWAI k%D

1783 WCI+IWR)=0.

179: WCI+IWCI)=0.

180: DN 42 J=1,N

181 KDD=KDD+1

1827 42 WCI+IWRI=W(I+TWUBI+WCKDNDI*W(IWA+J) ‘
183:C REVISE THFE DIRFCTINNS IN THF ARRAY DD
184 S=0.

185: KK=N

18AL 43 IF (WIKK+IWR)) 4%,44,45
187: 44 KK=KK-1

1881 GN TN 43
169 45 KK=KK-1

190 IF (KK)Y AR, AR, 46

191 46 S=S+W(IWR+KK+1 I k%D

192 C=SORTISH{S+WCIWR+KKI *%0))

1931 ca=5/0

1941 CR=W(KK+IWR)Y/C

195 KND=IND+N*KK

196¢ N 47 J=1,N

197: KDD=KDD+1

198: WCJ+HIWE I =W I+ TWC I +W L T WR+KK+1)W CKDD) '
1991 47 WCKDD =CA*WCKDD=N)-CB2W(J+ W)

200 ¢ G0 TN 4%

2013 48 KDD=1DD

2021 NN 49 1=2,N

203 DN 49 J=1,N

204 KDD=KDD+1

2052 49 WCKDD)=W¢KDD+N)

206h3 C=1../5QRTI(DSO)

207 DY 50 I=1,N

2083 KDD=KDD+1

2n9: 50 WCKDDY=C*WCI+IWA)

210:0 APPLY THF CHORRFCTINN VECTAR AND CALCHILATE THE
2111C ARJECTIVE FUNCTINN

2121 51 DA 52 I=1,N
213 52 WCI+IXAX=X(Id)+WCI+10WA)

2141 MAXC=MAXC+1

215:C NATE THAT THF NEXT INSTRUCTIAN 15 NAT STANDARD F/MRTRAN
21A: CALL CALCFG (NoW(IXA+1),Fa,u(InA+]))

217:C SET THE FRROR NF THFE PREDICTFD GRADIENT IN YR

21R:1C ALSA CALCHLATE SOMFE NIIMRERS FOR REVISING THE STEP=RIMIND
219¢ DG=0.

2202 DGaA=0.

221 DGGD=0.

222 WRSO=0.

2231 DN 54 I=1sN

224 S1m=0.

2251 K=1

22At J=1

PRT7: 11l IF (J=-13 112,113,113
228 1172 SUM=SIIM+W(KI*W(J+1WA)

2R9: K=K+N~-J
230 J=J+ |
231: GO Tn 111

232¢ 113 DN 53 J=1,N

92

EEY o

[2CRET
a4t
2351
2RAL
237
ERCEAR
2391
onnel
a1
DHD e 595
SR/ E]
244
248:0
PAHRE
2T
DR e
A9
250:C
251
oRA:
A5
o548
2551
P25AL
o587
25431
259
2AN:C
2611C
cARAL
AR
2R
L
DRA
AT
2RH:
215
oT0h
271
2721
PT3
DT40
275
A
277
ST
279

DN .

53

54

57

58

AN
Al

AE

A4

111
115

116

&5
"(!! .
DR
a5
EAl]
CHRE
28613C
BRT:
DHE
2891
290:C

fA

67

59

vanah

SIM= GIIM+ (W N J+TWAY

K=K+1

T4+ IWRY =W I+ 1[3AY-A(TY =00
NO=NE+GC I+ T+
DOA=NRA+W(T+ I0AY*Y T+ TWAD
NARN=DEAN+SIME W T+ 1WA D
WRGN=REN+ [+ TWR) D3

TRST WHRETHRR T3 DRCFEASF THW TTRI=RTIND
IF (ITEPFr=2) B55A0,40)
IF CEA=F=-0,1%NA~N,.N5%xN55N)
NES=1 . 25«10

57557, 5R%

6N T1 AN

TFST WHFTHER T INAREAST THE STEP-RIIND
NE5=NSN

[F (WRIN-N.NG4NG7) 59,79, 2K

IF (NE=-NRA-NNA) AR 59, 54

NEC=4,%NEN

SET THFE DIFFERFNCS RETUWEEN AEADTFNTS

Nt AL I=1sW

WCT+INGY =W I+T3A)=0C 1)

SET ¥, F AMD 0 T1 THF R&aT CALSTILATED UALTINS
ITHETA=1

IF (F=FA) RUsAl, AP

F=r4

nl &3 I=1-N
MOBEISES AP

GCLY=WI+1INRA)D

CALCULATE SIME URCOTARS AND T0ALAR PRONYICTS T
REVISE GG AND H

cDM=N.

GHN=N.

SFEO=N.

DED=0.

DA AR T=14N

BCI+IXAY==-WI+TWA)

WCI+Inad=0.

K=TH+I

J=1

IF (=10 115,114,114
WEIHIXAI=WC T+ T XA+ W (J+TW0)
WCI4+InAY=WCI4+IRAY+WHI W IHTWA)
W 4N =]

JEJ+

T 114

NG AS =1,

VCT+IXA)=W I+ +U(HI* L I+ 1%0)
VEI+IBAY=UCTI+I0NAI+0)& J+]7N)
K=W=+1

M ENMAL T+ TTAY AT (T4 TEY
GHn=GHD+W(I+IWC)*W(I+IGQ)
gFG=SFG+Tf?+TNC)*N(I+]?5)
PHD=OHD+ I+ 10A) #W(T+15R8)

TEGT WHRETHFR THF 19417 C7LiGFCTIIN T AR GLVED
NEAR SINGULARITY
HDIV=SEG*PHD=GHN* GHD

AN T CAT7,70), ITHETA

IF (ARS(HDIVY-0.1xNENkNSTY AR, TN, 70

CHANGF THF DIFFFRFENCE IN ARADIFENTS T1 AUVAID

43

SINGLAL

ETT

FARE 6 VaDOa

23l A4 CA=ADTIVACDL o003+ 0a

n2380 Co=aHD/DLL=1.1

33t CAsCA/CUN+C+ SIGRCS L 1l 1A+ DL« s SO+ 00E))
"94; CR=C1le=CAY* DM/ Do .

295 DO 62 I=1,%

7263 C=CA*® (e (I +T)= I+ 020D
P37 WCIHIWEY=s (I +1 00+

295 A9 WCI+T L Coy= I+ o+

2391 ITHEIA=E

300: G i) B4

3ni:c AEVISE VHE sS/iolCEL i S0
3062s 70 CA=l./D30
303 CR=30Y* TRk

304z SoO=DHND/HADL Y

ans: Ch=GNhrsHDLI .

306kt CE=3RG/HDL Y

307 K=

Jdge NiE 71 I=1,4

309: N7 Jd=laN

310: =K+

ERO SO EIN G OR IMITE TG I BTSN GUES ENEED R I a8 DS S I I I IS I
31 P=Cra, (I+T A« {Jv] L0

313 Tl wCE+I) = (4T) =CCx L (T4 7 e (J+ 1A =Chrx (T +1 0=, {J+I)
3l4a: 1+E8D%C . CI+I 22 & C.Ie L OAY+ CIFIZ8) % (T +I35))

315 G K

KR EAD

