
Ul
of.
ui

UNCLASSIFIED

AERE - R 5947

MASTER

United Kingdom Atomic Energy

RESEARCH

Report

A FORTRAN SUBROUTINE FOR
OF NON-LINEAR

K. j. D. POWELL

Theoretical Physics Division,

Atomic Energy Research Establishment,

Harwell,

1968

Available from H. H. Stationery Office
EIGHT SHILLINGS NIT

1. Introduction

The method or this report will be justified in a companion paper (Powell, 1969),

so now we state briefly the reasons for adding yet another algorithm to the various

methods for solving numerically the system of non-linear equations

fk(x l 5x2 , .«.,xn) = O, k=l,2,...,n. (1)

The new algorithm occurred from a consideration of existing algorithms, and

primarily it resulted from asking when certain useful algorithms would fail. In

particular the class of methods based on the Newton iteration (see Ostrowski, 1966,

for instance) can fail if the Jacobian matrix becomes singular, and this is the

main difficulty that we try to overcome.

Throughout this report we will use the vector notation x to indicate the vector

of unknowns (x. ,x , , . . ,x).

In the classical Newton iteration we have a guess x of the solution of the

system (1), and we calculate the elements of the Jacobian matrix

at the guess. Next we obtain a correction vector 6 by solving the system of linear

equations

,...,n, (3)
~

£ _ |

and we complete the iteration by replacing the vector x by the vector (x+S). The

success of the Newton iteration is due to the fact that the correction is calculated

so that, if the Jacobian is non-singular at the solution and if the functions

f. (x) are twice differentiable, then near the solution

fk(x+6) = 0 (| J 6 | 2), k=1,2,...,n. (4)
Jv "̂ "̂ "v-

Thus the Newton iteration converges rapidly if the guess is a sufficiently good one.

However it is well known that divergence often results if a close estimate of the

solution is not available.

In the new algorithm w« retain the fast convergence of the Newton method, but

we modify th<; iteration so that it is progressive even if the guess x is far from

the solution. Other useful attempts to meet Uus objective have been made by

Barnes (1965), Broyden (1965), Fletcher (19B8), Haselgrove (1961), Levenberg (1944),

Marquardt (1963), Powell (1965) and other authors f but we cuaim that the present one

has certain advantages.

The main observation of Haselgrove's (1961) paper (which is also noted by many

other authors) is that it is often worthwhile to use the correction 5, calculated from

equation (3), as a search direction in the space of the variables. Specifically

Haselgrove's iteration replaces x by (x+X&), where the value of the parameter X is

calculated by a search process, which tries to make the estimate (x+X6) better than

the estimate x, the criterion for success being the inequality

F(x+X6) < F (x) , (5)

where F(x) is the sum of squares of residuals

(6)

A successful value of X can be obtained if (i) the functions are differentiable,

(ii) the Jacobian is non-singular, and (iii) a solution has not been reached, because,

if the left hand side of the inequality (5) is regarded as a function of x, we

find, using equation (3) , the result

0 . (7)

- 2 -

Therefore by calculating the value of x at each iteration, the sum of squares F(x)

can usually be made to decrease monotonically, and so we hope to reduce the left

hand sides of the equations to values that are very close to zero. However this

hope cannot always be realised.

A different method (which we prefer) for modifying the Newton iteration, so

that it converges from a poor initial estimate of the required vector x, is suggested

by Levenberg (1944) and Marquardt (1963), It is der:ved by introducing a parameter

X* into the "normal least squares" formulation of the equations (3):

n n _n
J, . J. . 6 . = - \, . f,,(x), i=1,2,.,,,n. (8)ki kj j j I j ki k ~ ' '

j=1 k=1 k=l

Specifically they obtain a correction vector 5* by solving the set of linear

equations

n n n

Jki Jkj &J = ') Jki

j=1 k=1 k=1

(9)

where I is the unit matrix. We note that the systems (8) and (9) are identical

in the case X*=O« However when, as is usual, x* is positive, then 5* is different

from 6, and when X* is very large, 6* is approximately equal to the gradient vector
*** *x.

of the sum of squares (6) multiplied by the anall negative number -1/2X . The

Levenberg/Marquardt iteration changes an estimate x to the estimate (x+S), the
"w «w *\r

length of the correction being regulated by the value of X . It can be shown that

the inequality

F(x+6*) < F(x) (10)

is obtained if X* is sufficiently large, provided that the functions f (x) have
*v "**

continuous first derivatives, and that the components of the gradient of F(x)

are not all equal to zero it the initial estimate x of the iteration.
'***•

We have described the two ideas for trying to obtain convergence, because

we prefer the method due to Levenberg and Marquardt, although most practical algorithms

are based on Haselgrove's approach. Our reason is that Haselgrove's idea fails

more often, for equation (3) is not valid whenever the Jacobian matrix becomes

singular, while the other methods breaks down only at a stationary point of F(x).

~™ O ""*

However a singular Jacobian need not spoil Haselgrove's technique, because equation

(3) is used just to define the direction of the correction to be applied to x, the

length of the correction being calculated to obtain the inequality (5). When J

tends to singularity, the direction of 6, defined by equation (3), usually tends to

that of an eigenvector of J whose eigenvalue is zero, so it is often possible to

identify it. But along such a direction the initial gradient of F(x) is zero,

so there need not he a value of X that satsifies the condition (5).

That singular Jacobianp are not uncommon is shown by the equations

f i < x) * > * , - i =0 1 C1I)

f2<x) - >,x2 - 1 = O '.

In this case the determinant of J is -qua! to x , , which is positive at the solution

(1,1). Therefore for all initial estimates (x.,x0) for which x, < 0, the determinant

must be zero at some point of a successful path to the solution, so we may find a

singular Jacobian.

The companion paper (Powell, 19B9) includes a two-equation example showing

failure of Haselgrove's idea, for (x.,x2)converges to a point at which the gradient

of F(x) is not equal to zero.

Because of the above discussion, the algorithm of this paper tends to take

steps along the steepest descent direction of F (x) 9 if it seems that the classical

Newton iteration diverges. The actual method used to define the correction to x

at each iteration is different from the Levenberg/Marquardt technique, because our

method requires less computation when derivatives are approximated numerically,

The steepest descent qualities of the iteration yield some reassuring theorems

on convergence (Prwvell, 1W59), but we are content to reach a stationary point of

F(x) , even if it is not a solution to the equations. We take this view because

sometimes the algorithm will be applied to systems of equations that have no

solution, and in this case wo must finish iterating at some stage. Therefore the

process finishes if the gradient of F (x) becomes very small. A consequence is that

on some awkward problems thf> method will converge to a point at which the equations

are not satisfied, although there is a solution, so we are admitting that we are

unable to solve the faniliar difficulty of recognising whether or not a point of

convergence is a global minimum of F(x). One recourse, if the subroutine fails ro

- 4 .

obtain a solution to the equations, is to try different initial estimates of x.

To approximate derivatives numerically, the algorithm uses one of the class of

methods described by Broyden (1965,1967). Not only is the Jacobian matrix Jt see

equation (2), approximated, but also we keep an estimate of J , so that we can solve
2

eolation (3) in only of order n computer operations. This saving of work is
2

consistent with the fact that Broyden's scheme requires only O{n) operations to

revise the estimates to J and to J . Thus we obtain an important advantage over

some other algorithms, for the direct solution of equation (3) or {9} requires of

order n computer operations.

Another important property of the new algorithm is that, unlike earlier methods

by the author, it does not search for best points along straight lines in the

space of the variables x. Instead we heed the advice of Broyden {1985), and
"w

usually the functions f,,(x) {k=1,2,...,n} are calculated for only one value of x on
K. ~~ ~-~

each iteration.

The sections of the report are arranged so that it is easy for the reader,

who just wishes to make use of the subroutine, to omit the details of the method,

Indeed the information that he requires, such as a description of the programme

parameter' , is given in Section 2. We summarize the method of calculation in

Section 3, and give details in the subsequent five sections: Section 4- describes

the choice of the correction vector &_, having both Newton iteration and steepest

descent characteristics, Section 5 discusses the adjustment of a step-length parameter

A, Section 6 gives the formulae that are used to revise the numerical

approximations to the Jacobian matrix and its inverse, Section 7 describes a

necessary device which ensures that successive corrections 6 are not linearly

dependent, and Section 8 assembles the various remaining details. In an appendix

there is a Fortran listing of the algorithm, and a test programme is included as

well to assist these who wish to try the method. Other numerical examples appear

in Section 9, and a summary of the results concludes the paper.

2. The parameters of the subroutine

The name of the subroutine and its parameters are:

SUBROUTINE NSO1A (N,X,F,MIW,DS^P,m

The name NS01A is chosen to conform with the other names of the programmes in the Harwell

Subroutine Library. Before calling the routine the user must assign values to the

parameters N, X(1), X(2),...^X(N),DSTEP,£iilAXfAOC,MAXi:UN, and 1PRIOT, and we now specify

the purpose of each of these quantities.

N is just the number of equations, and it must be greater than one.

X is a one-dimensional array for the variables of the equations, and initially

{X<l),X(-2),.. . ,X(N)j must be set to an estimate of the solution. This estimate is

refined during the execution of NS01A, so that when the subroutine finishes it is

usually set to the calculated value of the solution. However, if it happens

that execution of the subroutine is terminated because an error condition is found,

then [K(1} ,X(2),...,X(N)| is set to the best estimate of the solution, according to

the value of F(x), defined in equation (6). These error conditions are specified

below,

DSTEP must be set to a number that is a moderate step-length to use to

approximate first derivatives of the functions by differences between function

values. For inrtance we suppose that

af,(x)

.
DSTEP, X9,...,x) - fjx)l / DSTEP,* n i — - | t

Note that the one increment DSTEP is used for all the variables, so it is necessary

for the user to choose the variables so that their magnitudes are sim lar. We

have deliberately introduced this requirement because there are oth- r good reasons

for having all the variables of the same size,

DMAX must be set to a generous estimate of the "distance" of the solution from

the initial guess of (x.,x2,...,x); we use the Euclidean metric, so the distance

between x and y_ is

d(^ = rL

- 6 -

DMAX is used in two separate wayj. Firstly it is arranged that the change in the vector

x at eaeh iteration does not exceed DMAX. Secondly there is an error return giving

the diagnostic "Error return from NSOfA because a nearby stationary point of F{x) is

predicted" if it happens that the gradient of F(x_) become so small that it is predicted

that steps that are much larger than DMAX are needed. DMAX must be greater than

DSTEP.

ACC specifies the accuracy that is required in the solution. A normal return

to the calling programme occurs when a vector x is found such that we have the

inequality
2
i

J
f.{x) f ACC, { 14)

k=1

Note that this convergence criterion is such that it is sensible to scale the functions

f. (x) (k=1,2,...,n) to have similar magnitudes. There are other good reasons for

defining the ecjjations so that they have comparable left hand sides,

The parameter MAXFUN is included to ensure that the execution of JiSOIA will

finish. The number of times that the left hand sides of the equations are worked

out is counted, and if this count attains the value MAXFUN, there is an error

return following the diagnostic "Error return from NS01A because there have been

MAXFUN calls of CALFUN". Experiments show that often the subroutine requires fewer

than 10*N evaluations of the left hand, sides, but MAXFUN should be set to a greater

number, unless the total amount of calculation needs to be limited by a

conservative value of MAXFUN.

The parameter IPRINT must have the value zero or one. If it is zero, there is

no printed output from the subroutine, except for a message if an error condition

is found. However, if IPRINT=1, then, each time the functions ffc(x) <k=l,2,...,n)

are calculated, the values of the functions and of the variables x,,x , ...»x are

printed. Examples of this output are given in the appendix,

The other parameters of NS01A are F, AJINV and W, and they are all the names

of arrays. The numbers in the arrays win be changed during the execution of the

subroutine.

The array F is one-dimensional, and it must contain at least N elements,,

Usually F{k) is set to a calculated value of fk(x) (k=t»2,, ,.,n), but the array also

serves as working space during some of the operations of the subroutine. When the

- 7 -

subroutine finishes, the array F contains the values of the functions that are

obtained for the vector of variables (x.,x2,..,,x) that is present in the array X,

AJINV is an N x N two dimensional array, and vfoen the subroutine finishes it

contains the elements of an approximation to the matrix J~ , where J is the

Jacobian (2). We include it in the parameter list in case an estimate is required

of the accuracy of the solution x: equation (3) suggests that after a normal

return from the subroutine the error in x. is approximately equal to
<J

AJINV{j,k) F(k), j=l,2,...,n. (15)

k=l

Also equation (3) suggests that if the functions fk(x) are changed by snail amounts

. ,n), then the change in the required value of x. is approximately

- \) r)k, j=t,2,...,n. (16)

k=l

Thus one can estimate the sensitivity of x to any uncertainty in the specification

of f k (x) » k=l,2,...,n.

The last array, W, must be one-dimensional, and its elements are used by the

subroutine for working space. The number of elements required is n(2m-5). It

happens that, when 1*60!A finishes, the most recent approximation to the Jacobian

matrix is present at tte beginning of the array:

JRj « W(k[n-l] 4. j), j=l,2,...,n; k=i,2,...,n. (17).

The functions fk(x) (k=1,2 f,..,n), defining the system of nonlinear equations,

must be defined by another Fortran subroutine, called CALFUN. It has three

parameters

SURROUriNE CALFUN (N.,X,F),

and the names of these parameters accord with those of NSO1A, so N is the number of

equations, and X and F are one-dimensional arrays. CALFUN is called whenever

NSOtA requires the functions f,.(x) to be calculated for some vector x. and the
K. **•- -***•

components of x are given in the array X. CALFUN must set the components of F to

the function values

— 8 •<•*

F(k) = fk(X(1),

An example of the subroutine CALFUN is given in the appendix.

We have mentioned that sometimes there are error returns from NSO1A, and we have

already given two instances when they occur. In two other situations the

execution of the subroutine is terminated before the required accuracy is obtained.

The first is when, in spite of the convergence theorems and the various strategies of

the algorithm, the subroutine is persistently unsuccessful in its attempts to decrease

the sum of squares (6). Specifically if F(x) fails to decrease on n+4 consecutive

iterations when a decrease is predicted, and if on each of these occasions the

vector x is within the distance DSTEP of the most successful vector of variables,
"V

then there is an error return after the diagnostic "Error return from NS01A because

N+4 calls of CALFUN failed to improve the residuals". It may happen because the

value of DSTEP is too large (we explain this remark in Section 8), or because of

programming mistakes, or because the rounding errors of the computer are so large

that the required accuracy, given in expression (14), cannot be obtained.

These conditions can also cause the other error return, which is indicated by

the diagnostic "Error return from N5O1A because F{x) failed to decrease using a

new Jacobian1'. It happens when a completely new Jacobian has just been obtained,

by differencing along the coordinate directions in the space of the variables

(see Section 8). In this case we expect to have a reliable prediction of the

behaviour of F(x), provided that the distance of x from the point at which the

Jacobian was calculated does not exceed DSTEP. Therefore if this hope is not

realised, and we find that F(x) does not become smaller although a decrease is

predicted, the error return is made.

The reader who does not use the A.E.R.E. operating system must also note that

a subroutine for inverting a matrix is required by NS01A, The Fortran listing in

the appendix uses another Harwell library programme, named MB01B, the 92nd instruction

being

CALL MB01B (AJI1VV, N, N).

The effect of this statement is to replace the elements of an X y N matrix by the

elements of its inverse. Specifically, when MBO1B is called, AJINV(i,j) is set to

J. ., and when the execution of MBOtB is finished, the element AJl!W(i,j) is set to
— t

J (i,j = l,2,...,n).

«. 0 *_

3 An outline of the algorithm

The next six sections specify the formulae that are used by t,he algorithm, and

they justify the decisions of the Fortran subroutine, which is listed in the appendix.

This section begins the description by summarising an iteration, in order to identify

the four main parts of the calculation, which are considered separately in Sections

4,5,6 and 7. Note that this introductory sunmary ignores some important points,

because its purpose is just to provide a simple coherent picture of the method, so

that the reader can relate the subsequent details to the general strategy.

To begin an iteration of the method the following data is required:

(i) a vector of variables x, which is an estimate of the solution of the equations,

and the corresponding function values fk(x) (k=1,2,..,sn), (ii) an approximation

to the Jacobian matrix (the Jacobian is defined by equation (2), but now we use the

notation J for the approximation), (iii) the matrix J , (iv) a matrix Q of n

directions in the space of the variables, and an associated vector of integers a, and

(v) a step length A. The calculation of an iteration is outlined in Figure 1.

The figure shows that the first operation of an iteration is to calculate

a correction 6 to apply to the approximation x. This calculation is described in

Section 4, so for the present we note that it is a compromise between the Newton

iteration (see equation (3)) and the method of steepest descents applied to the sura

of squares F(x). The balance between these two methods is governed by the step

length A, so that if A is sufficiently large the correction 6 is the pure Newton

step; thus fast ultimate convergence to the solution can be obtained. For very small

values of A, the vector 6 is exactly a multiple of the predicted gradient of F(x),

and in all cases the correction is such that the sum of squares F(x+6) is predicted

to be less than F(x). However this prediction may not be realised* It can be

wrong because the non-linear behaviour of the functions f,.(x) has already caused J

to deviate from the actual Jacobian at x» and, even if T is exact, it can be wrong

because f,,(x) does not vary linearly between x and (x+S)«
K -~ ^~ ~ ^

We will introduce the criterion which decides whether 6 is "sufficiently

independent" at the end of this section; it depends on the elements of <o and of 0.

Usually we find that £ passes the test, in vifiich case the next step of the flow

diagram is to calculate fjJ.x+6), k=1 f2,...,n, and to revise A.

- JO -

Figure I

Sunmary of an iterati on

Calculate _6 from
the gradient and
Newton steps to
satisfy f|6 A

Is £
sufficiently
independent?

Set _6 to a
special value and
calculate f, (x+t)

Calculate
revise

Is F(x+6)

- 11 -

The method for revising A, described in Section 5, is intended to find such a

small step-length that each iteration is successful in obtaining the inequality

F(x+6) < F(x). (19)

Therefore A is reduced if the condition (19) is not satisfied, except that we do not

let A become less than the subroutine parameter DSTEP, which we defined in Section 2.

Also we are prepared to increase A, because an extravagant number of iterations is

required if & is too small. The criterion for increasing A depends on the accuracy

of the approximations
n

> / fftSi "\ f (Y\i %f—~ 1 *? n f OO-lf

for usually the estimates (2O) are close only if the size of A is conservative,

The decision of the flow diagram to interchange x and (x+S), if the inequality

(19). holds, provides the best approximation to the solution of the equations for the

next iteration (of course the function values f. (x) and f, (x+6), k=1,2,.*,,n,are
n, "** fV *̂ " "***

interchanged as well). However an important point to notice is that the interchange

does, not take place if 6 is set to a special value in order to provide a "sufficiently

independent" correction to x. The reason for this rather contentious decision is

that, if we were prepared to make the interchange after usiitg a special value of

6, then a certain theorem (Powell, 1969) would not apply to the algorithm. The

theorem states that, given exact arithmetic, the method of the subroutine causes all

the vectors x to be within a finite distance of the initial guess of the solution,

so, even if the only solution to the equations is at infinity, we expect that the

algorithm will not cause the components of x to become too large for the computer.

We prefer not to invalidate this theorem.

The method for revising the Jacobian approximation J depends on the vector &,
"V

and on the differences

Yk = fk(£+6) - fk<x), k=1,2,..0,n. (21)

These differences are liable to be dominated by computer rounding errors if 6 is too

small, so we include the precaution of setting £ to a special value if js|| < DSTEP.

Only on this occasion is CALFUN called twice during an iteration.

- 12 -

The details of the calculation of the new Jaccbian approximation, J* say, are

given in Section 6. We want to satisfy the equations

because they would hold if J* were exact and the functions fk(x) were linear, so

usually we apply the formula (Broyden, 1965)

J* = J + (x - J5) 6T/||5! 2 . (23)

However equation (23) can cause J* to be singular, and we require the elements of (J"")

Therefore sometimes we apply a part of the full correction, in order to force non-

singularity.

The correction (23) has a special property, which is the reason for the

introduction of the device (depending on 0 and w) to ensure "sufficient independence"
•N^

of the successive displacements 8. The property is that the results of applying

both the old and the new Jacobian approximations to any vector that is orthogonal to

8 are the same. Therefore, if it happens that all the vectors 5 are linearly

dependent^ there is some non-zero vector TJ (orthogonal to all the vectors £} such

that JQ is the same for all the Jacobian approximations. This is unsatisfactory

because the non-linearity of the equations causes the true Jacobian to change with x,

and probably the true value of J;Q changes as well. Therefore, if necessary, we

deliberately introduce extra displacements to ensure that most sets of (2n+l)

successive vectors 8 span the full space of the variables. The number (2n-i-l) was

chosen intuitiyely, and numerical experiments show that the extra programming that is

needed to obtain "sufficient independence" is worthwhile.

The details of the test for independence are described in Section 7. The

matrix n and the vector « contain information about the corrections 5 that were used
•** -V-

in recent iterations, from which we can find out the extent of linear dependence in

the successive vectors 6. In accordance with the flow diagram of Figure 1, this

information is used to test the vector 8, calculated by the method of Section 4,

for "sufficient independence", and if the test fails, then we change 6 so that it

becomes practically orthogonal to the most recent 2n correction vectors 6, for the

resultant revision of J is probably overdue. Lite the method for changing J, this

- 13 -

2
test and the revision of n and u> require of order n computer operations.

Section 8 includes details of the procedures for starting and finishing the

algorithm.

4, The calculation of 6

The calculation of 6 is carried out in instructions 93-156 of the Fortran

listing of the subroutine, but these instructions include some other calculation.

We begin by predicting both the Newton correction, \> say, to x, and also the

steepest descent direction g of F(x): instruction !O2 calculates

V ; = - > J . . f . (x) , 1=1,2,...,n, (24)= - . , ,
J J

and instruction 1O1 calculates

g. = - 3.. f.(x), i=1,2,...,n. (25)

The purpose of /\s to limit the size of the correction vector 5, and we

impose the condition |J6 | $ A, the length ||.| being Euclidean, in accordance with

equation (13). Because of the good convergence properties of the Newton iteration,

we would like to set 6 to v_. Therefore if the inequality

! v j | S A (26)

holds, which is tested by instruction 120, we let 6=v. Otherwise we include a

multiple of g in 6, and the correction vector satisfies the condition I 5! 1 = A.

The correction is just a positive multiple of g» if this choice is not greater

than the predicted displacement to the minimum of F(x) along the steepest descent

direction. This minimum is at x+(og, where ̂ is defined by the equation

= IW!2/ I^H2. (27)

Therefore instruction 139 tests the inequality

- 14 -

nl U I s A» (28)

and, if it holds, we set

6 = Ag/t |g| I • (29)

If neither inequality (26) nor inequality (28) is satisfied, we let _6 be on the

straight line joining the points jjg and y, so we need the value of the positive

number 6 that is defined by the equation

| | (1-6) jig + 0v | | = A. (30)

Straightforward algebra gives the solution

A2-ik!l2
I 2>i*HUM -^ HA - Nwg HI

(31)

and instruction 153 calculates the componaits

6 = O-e) + e V , i=1,2,...,n. (32)

This specification of £> is preferred to the Levenberg/Marquardt choice,
2

because it can be calculated in of order n computer operations. However we cannot

match the elegant theoren that supports Marquardt's method (1963). This is not a

cause of anxiety, because we have retained the most important feature, which is that

if the length of the correction must be small, its direction is biased towards

the steepest descent direction of F(x).

- 15 -

5. The revision of A

Usually we try to adjust A so that it is as large as possible, subject to the

condition that each Jacobian approximation provides a good prediction of the

differences [f. (x+6) - f.(x)j, k=1,2,...,n, because we would like to decrease the
K, ""** •*•** 1C •*•- ^

sum of squares F(x) on every iteration, without taking extravagantly small steps.

The initial choice of A is specified in Section 8, and now we just discMss the

method for changing its value. This adjustment is made by instructions 241 to 256

of the Fortran listing.

Before beginning this part of the subroutine, we have calculated the function

values f.(x+6), k=1,2.....nf and the sum of squares F(x+S). Also we have predicted
K ~ ~ ~ ~

these quantities, using the Jacobian approximation, the predictions being

Jkj

and

$ = V ^ « F(x+6) . (34)

The method for revising A depends on the goodness of these predictions, and in

particular we note that 6 is calculated in such a way that $ < F(x) , so we expect

the new value of the sum of squares to be less than the old one.

If the actual change in the sum of squares is worse than the predicted change,

it is due to a combination of the two factors which we mentioned in Section 3. One

is that, even if the current Jacobian approximation is correct, there can be errors

in the expression (33), due to the non-linearities of the functions f (x). The

second is that there are errors in the Jacobian approximation itself, due to the

fact that J is assembled gradually, so some of the information in J is liable to be

rather inaccurate due uu the fact that it was obtained at points that are remote

from the current value of x. Both errors usually become smaller if A is
*N»

decreased.

- 16 -

Therefore the subroutine reduces A if F(x+6) 3 F(x), but also A may be made smaller

when F(x+6) < F(x). The reason for this is that we are not satisfied if a reduction

in the sum of squares is much less than the predicted reduction, so instruction 242

tests the inequality

F(x+6) > F(x) - 0,I jF(x) - *} , (35)

and if it holds we replace A by the value

max OlA, DSTEP). (36)

We do not let A become less than DSTEP, because, if the user of the subroutine

follows the advice of Section 2, the lower bound on A will permit an adequate

Jacobian approximation. A lower bound is needed, because there is a danger that the

value of expression (21) will be dominated by computer round-off errors when 5 is

very small.

If the inequality (35) is not satisfied, either the value of A remains the same,

or it is increased. The justification that we give to support the method for

increasing A is tenuous, but numerical examples show that the results of the method

are quite satisfactory.

The basis of the method is that we attribute the differences |f. (x+g) - <f>. },
Iv. "%, "„ isL'

2
k=l,2,*..,n, to terms that are of order A , so if we multiply A by the factor X»

2
we expect the differences to be multiplied by about X . Guided by this assumption,

we estimate the value of x that would just cause the condition (35) to fail. We

ignore the fact that a larger value of A will lead to a different value of J>, and we

calculate the value of X that makes the expression

-2
f, (x+6) + (X-1) f.fx+5) -

"k
; i_

k

equal to the right-hand side of the inequality (35). This value is obtained by

instruction 252, which sets

DMULT

(37)

- f
SF + (SP.SP + DMULT.SS)5

- 17 -

where

DMULT = F<x) - 0.1 jF(x) - *j - F(x+5)

SP =

ss =

|fk(x+5) (39)

k=1

n

k=l

The criterion for increasing A depends on the value of expression (38).

We calculate X whenever condition {35) shows that A is not too large, but by

trying different strategies on some test problems, we found that it is best not to

scale A by A whenever X is calculated. One reason for this is that even when a is

reduced to expression (36), the function values f,,(x+6), k=l,2,.,»,n, can provj.de
K. •%" ""̂ -

such a beneficial change to the Jacobian approximation, that, on the next iteration,

multiplying the reduced step length by X would restore A to about its original value.

Usually this step length would have to be decreased again, so some of the strategies

that we tried caused inefficient oscillatory behaviour.

We found that the oscillations are avoided (except in the case of an extreme

example, reported in Section 9) by the simple expedient of increasing i only when

two values of X have been calculated, and they mist both have been obtained since the

last reduction in A. The factor by which A is multiplied is equal to the lesser

value of X, except that we are cautious, and ensure that the factor is never

greater than two, and that A is bounded above by DMAX. To apply this strategy we
2

introduce a parameter r (the variable "TINC" of the subroutine is equal to T), which

is set to the value one both before the first iteration, and also whenever the step

length is reduced. Immediately after calculating X, we obey the instructions

p. = min (2fX,t)

(40)

A = min (uA.DMAX) J ,

and it should be clear that they increase A in the required way. Note that we

permit consecutive iterations to increase the step length.

- 18 -

The value of A may also be revised in the block of programme that calculates _5,

according to the method of Section 4: instruction 121 changes A to the value

max(||vj |_,DSTEP) if 6 is set to the full. Newton-Raphson correction (24), We do

this because consecutive successful Newton-Raphson corrections tend to decrease in

length (due to the quadratic convergence properties), and we do not want A to be much

larger than |J6J|^.

6. The revision of J

The subroutine revises the matrices J and J in instructions 273-3Q9. We use

the notation H in place of J , and we let the revised matrices be J* and H*.

Already we have stated, in equation (23), that the formula

3* = J + (%- JS) 8T/

is usually used, and the companion formula defining H* is

-'»»// f *iH* = H + (§ - Ĥ ;) 5 H/(6 Ky) , (42)

where the superscript "T" indicates a row vector. However it can happen that the
Tscalar (5 Hy) is zero, so the subroutine takes special steps to prevent a very

large increase in the size of the elements of H*.

In fact the formulae that are applied depend on a parameter a, and the actual

revision is specified by the equations

*™t

J* = J + a(r -JS) 5T / l l6 | i2

(45)
T

H* = H + a s T
a(5 HY) + (1-a) I j S l r

J •

To avoid singularity, instruction 295 tests the inequality

6T%)| 5 0 0 t | 5 J j2 , 144)

and if it holds the value o=1 is used. Otherwise instruction 296 sets a=O.8, so

in ail cases we ensure that the modulus of the denominator of the expression for H*
f\s at least O.I | J S I . The number O 01 was chosen empirically.

- 19 -

2
•Note that the application of the fonailae requires only of order n computer

operations. Note also that if H is the exact inverse of J, and if there are no

errors in the calculation, then H* is the exact inverse of J*. We show later that

ecKiputer round-off errors do not spoil the calculation.

We want the formula (43) to have the property chat J* i^ beti~r than J as an

approximation to the true Jacobian matrix. A detailed discussion of this question

is 8iv«i by Powell (1969), and he shows that if the vectors x, obtained by the

successive iterations of the algorithm, converge to a point x, then, under mild

differentiability conditions on f , (x) , k=l,2». .. ,n, the successive Jacobian
Ix "**"

approximations converge to the actual Jacobian at x. To make this statement

plausible, and to give the reader some confidence in the formulae (43), we repeat

a remark (Broyden, 1965) that applies in the simple case when the functions

f. (x) are linear: say they are defined by the formulak **-

X

so J is the true Jac?>bian matrix, which is independent of x. Broyden notes that,

because the definition (21) provides the relation

1 = J 6 , (46)

the formula (43) leads to the identity

-T

(J* - J) = (J - J> (l - a. ~~~~ 9N| . (47)
^ I is!!2/

This relation between the error (J*-J) and the error (J-J) is veî y satisfactory,

because it gives the inequality

and the inequality is strict unless

T 8 = J 6 . (49)

- 20 -

Therefore an iteration reduces the Frobertiu= norm of the error of the Jacobian

approximation, unless the predictions (33) and (34) are exact, in which case we

expect to obtain a substantial reduction in F(x).

Because of the above remarks, the Jacobian approximations J are adequate. But

we need to consider the possibility that rounding errors of the computation may

cause the matrices H to be useless. Because we modify the matrix H on every

iteration, and every modification introduces some error, we are concerned that after

many iterations the cumulative effect of small rounding errors may be disastrous,

Fortunately this does not happen, because a property of the pair of formulae (41)

and (42) is that the discrepancies between J"* and (H*) tend to be less than those

between J and H in tlxe following sense* Even if H is not the inverse of J,

then the identity (Powell, 1968b)

,T

(j* - 1H*|~1 ^ = (J - H'1) (l -^f-\)
\ \5 /

is satisfied, provided that exact arithmetic is used. Therefore the discrepancy

(J-H) is multiplied by a projection matrix, which suppresses the accumulation of

error. Moreover, because the method of the algorithm maintains linear

independence in the successive directions 6, the cumulative effect of the projection

matrices is particularly favourable.

7. Maintaining linear independence

We remarked, in Section 5, that the method for revising the Jacobian approximation

i? such that we should avoid linear dependence in the directions 6 that are generated

by the successive iterations of the algorithm. The calculation of Section 4 often

tends to provide dependent directions, so, in accordance with the flow diagram

of Figure 1, the subroutine inspects the directions 6, and occasionally extra

directions are introduced to ensure that independence is maintained. This part of

the calculation is carried out by instructions I5O-228 of the Fortran listinjz in

the Appendix, and now we describe the details of the method that is used,

For the purposes of the algorithm we depart from the usual strict definition

of "linear dependence", because we want "independent directions" to be separated by

a substantial auount. We say that the vector j5 is independent of a set of

directions, (d.,d_,...,d.) say, only if the least angle between 5> and some vector in

the space spanned by the directions is not less than thirty degrees. In the sense

- 21 -

of this definition, the subroutine ensures that, for most values of k > 2n, the

tirec

(t)

directions S " , 5(k~2n+!) t. .,,6(k* span the full space of the variables, where

is the direction that is used in the revision of the Jacobian matrix on the

tht iteration.

(k)The exceptional values of k occur because, if 6 is equal to v (see equation
(k)(24)), then we accept _5 even if it is dependent on the set of directions

/e(k-2n) c(k-2m-l) ,(k-lK „, , 4.1.. ,u , .,.,(j5 , 6 ,...,(5) „ We make this decision because _v is such that the

sum of squares of residuals F(x+v) is predicted to be equal to zero* If this
*\ ™v

(k)prediction is a good one, then our choice of £ is very successful, and if it is

not realised, then equation (47) shows that the resultant revision of the Jacobian

matrix is substantial. Therefore, in both cases, the iteration is useful in seme

way.

The nxn matrix ft and the vector co, which has n integral components, are used

to store the history of previous iterations that is needed to meet out requirements

of linear independence. To be precise, we suppose that we are about to commence

the k iteration, so we have ju^t revised the Jacobian matrix, using the
(k-1)correction vector _5 . The purpose of w is to provide the answer to the

question: "for j=1,2,...,n, what is the least integer i(j) such that the i{j) most

recent correction vectors, _5 ~ , £ ,...,£ ~ , span j dimensions in the

space of the variables", the answer to the question being the identity

j=1,2,...,n. (51)

Thus the case j=1 shows that we always have co =1, and further consideration of the

question implies the ordering tu. > w2 > ••• > to • Another illustration of the role

of w is that if w1 = 20, say, we know that the full space of the variables is

spanned by 6(k~2O), 6(k~I9),...,6(k~l), while the directions S(k~19*»

nlinearly dependent" .

The columns of ft are n orthononaal vectors d. , d , ...,d , calculated so that,

for j"1,2,...,n, the vectors d _. ., d ,...,d are a basis of the

j -dimensional space containing the i(j) correction vectors 6 , 5 2 ,.„,,£ ^ .

Therefore, for instance, d is defined by the equation

- 22 -

(52)

It should be clear that the information in w and fi is sufficient to discover whether

(k)the vector 6 , generated by the method of Section 4, is "sufficiently independent",

Because our purpose is to span the full space of the variables by sequences

(k)of (2n+f) directions, there is no need to modify 6 if the previous (2n-l)
•"v

, _(k-2n+l) .(k-2n+2) t(k-1) , , ., „, „
vectors, 5 ,6 ,...,5 already span the space. Therefore

instruction 158 of the Fortran listing tests the inequality

W. > 2n, {53}

(k)and we consider changing the direction 6 , generated by the method of Section 4,

only if the inequality holds.

(k)Even if the inequality (53) holds, we do not change 5 if it is already

independent of the directions (d_,d,,..*,d). To test whether this is the case, in

accordance with our definition of "linear independence", instruction 159 tries the

condition
i\.\)

where the left hand side is the modulus of a Euclidean scalar product. If the

neq

(k)

(k)inequality (54) fails9 then 6 includes a substantial component of d,. so we leave*•*

unchanged* Otherwise, if both the conditions (53) and (54) are satisfied,

and if £ /^, then it is necessary to replace _6 to maintain sufficient

independence in the successive vectors that are used in the updating of the

Jacobian matrix.
(k)The replacement of 6 is made by instructions 161-174 of the subroutine,

which set
(k)

5 ; = DSTEP d, ; (55)" -

we choose a multiple of d., because fi is constructed in such a way that the

directions used to update the Jacobian during the last (o>.-1) iterations are all

practically orthogonal to d.. These instructions also prepare the elements of o

and co for the next iteration, changing the columns of Q to d2,d_,«.<,,d ,d , and the

elements of to to

- 23 -

to, = 1 -«• co , i=lf2,...,n-I
(56)

o,n = 1

(k)In the usual case when 6 V is not the special step (55), and when the correction
(k)6 ' is not so small that

5(k)||2 < DSTEP (57)

(this case is treated in Section 8) , the updating of .Q and of co is less easy.
jfe if #We let the required new orthonormal directions be d,,d ,..,,d , and the new positive

integers be wt» co~»...,oo*, and they must be calculated to provide the correct

information about the linear independence for the next iteration. Therefore, for

example, we must set

d* = ±
(58)

(k)Further, from the definition of Q and of w, we find that, if 6 is "independent" of

d . we must obtain the results

(59)

where the parameters p . and p2 are calculated so that d* is normalised and is

orthogonal to d* .

(k)Continuing inductively we see that, if <5 is independent of the vectors

d. , d. ,...,d , then d* nwst be the linear combination of d . , d. »...,d and

8 that is calculated to make the new directions orthonormal; also co* must be
~ J

set to the value

co* = coJ+) + 1 . (60)

(k) *However if 5 is dependent on the vectors d. , ,d . ,...,d , then d . includes a~- ~ -
component of d . with some linear combination of the vectors d. ,, d. _,.,..d and 5~j ~ - -
and again a* is calculated to be normalised, and t

d* _,...fd*. In this case it is necessary to set~

and again a* is calculated to be normalised, and to be orthogonal to d* ,

- 24 -

w* = co, + 1. (61)

Fortunately, because the vectors d,,d0,..,,d are orthonormal, this updating of
""**" I **^'£r *s-ll

2
n and co requires only of order n computer operations, for we can use the idea

described by Powell (1968a). We now give the details of the updating process.

(k)It is carried out by instructions 176-228, and first we express 6 in terms

of the old directions

L _ i

the multipliers a. being calculated by instruction 183 from the scalar products

it
a. = (6 l , d .) , i=1,2,...,n . (63)

A *v" *x*,L

(k)According to our definition of linear independence, 8 is independent of the

directions d4i1,o\,... ,dn if and only if the inequality

j_
2 i i (k-} i 2** \, \ \n.l \ f n * \^ js }* j |J5 \ * •

i=1

is satisfied. Therefore instruction 190 calculates the least value of j, m says

such that the inequality (64) is obtained, and, in accordance with equations (6O) and

(61), instructions 186 and 194 define

CD . = co . . + 1, j = m , m+1,...,n-1 -\ J+1 (65)

co. = to - + 1, j = 1,2,...,m-1 .
J «J

(k)Note that the definition of m ensures that £ contains a non-zero component

of d . Therefore, for j ̂ m, we can let d* be the linear combination of the (n-j+l)

(k)vectors d.,d. 1f...,d ,d ,d ,...,d and 6̂ , which is normalised and which is

orthogonal to jd* ., d* „,...,d*. This is how we take up the freedom (noted in the

text between equations (60) and (61)), due to the fact that, for j s ra, d* is some

linear combination of (n-j+2) vectors, which has to satisfy only (n-j-t-1) conditions.

- 25 -

It is convenient at this stage to eliminate the dependence on m by changing

the order of the columns of n to jd^dj »d2»' ••»^n_j»A1H.i '•"*'5n* This operation

is carried out fay instructions 197-2O7, and the corresponding scalar products (63) are

reordered to conform. We now call the reordered directions d.,d , . ,,,d , and we note

that, using the new nomenclature, we have to calculate d* (j=n, n-1,.,.,1) to be the
(k) ~Jlinear combination of 6 , d . d ,,..., d . that makes the new matrix n orthonor*>al.~ -v-n -vn— i "̂ JT" I

The components of the required new directions are calculated by instructions

208-228. First instruction 209 sets a working space vector, cr say, to zero, and
2

then a number, s say, is set to the value a« by instruction 211, These quantities

are used in a "do loop" to obtain the vectors d*,d*,...,d* ,. Specifically, for"~ I ~z ~n— 1
i=2,3,...,n, we apply the operations

<r = cr + a. . d._.

5-r(s 5i~ ai £} /' s(s+a'} (66)

s = s + a.

FinalJy d* is obtained directly from equation (58). It is straightforward to show

that this process generates the required elements of n (Powell, 1968a), and also that

the process is stable against the effects of computer rounding errors. The

description of the method for maintaining linear independence is now complete.

8. Other details of the algorithm

In order to start the iteration, outlined in Figure 1, we need values for the

quantities listed in the second paragraph of Section 3, namely (i) x, an estimate

of the solution of the equations, and the corresponding function values ft(x)

(k=1,2,...,n), (ii) the approximation J, of the Jacobian, (iii) the matrix J f

(iv) the elements of Q and o>, and (v) the step-length &. The initial value of x is

specified by the user of the subroutine, and the corresponding function values

f. (x) are obtained by the initial call of "CALFUN".

The initial elements of J are equal to finite differences, like egression

(12). Specifically instructions 7O-8O of Appendix A evaluate the numbers

f.(x + DSTEP e.) - f.(x)
T --^ ^ î - , i,j=1,2,...,n, (67)

- 26 -

where e. is the normalised j coordinate vector. Later in this section we will
~J

find that these finite differences are also calculated at another stage of the subroutines

Instructions 81-92 calculate the initial elements of J , by calling the

library subroutine that inverts the matrix J.

For definiteness and simplicity, initially n is set to the unit matrix (by

instructions 87 and 89), and instruction 9O specifies the values

co. = n+1-i, i=l,2,...,n. (68)

Consequently on the first iteration the method of Section 7 is applied, supposing

that already n iterations have been carried out, and that the coordinate directions

were used in the updating of the Jacobian matrix. This supposition governs the test

which decides whether it is necessary to revise the values of _6 generated by the early

iterations, in order to obtain "sufficient independence". Indeed, because of the

condition (53) and the choice (68), the special formula (55) is not applied during ti»e

first n iterations, and it is not needed if the value of DSTEP accords with the advice

of Section 3, for then the choice (67) will be good. Numerical examples confirm that

this initial assignment of numbers to the elements of Q and w is adequate.

The initial value of A is calculated during the first iteration, and it is set

to the quantity ji |gj |, which is defined by expressions (25) and (27), except that

we demand the inequality DSTEP ^ A ̂ DMAX. In the subroutine it is more convenient
2

to work with A , so instruction 141 sets the variable DD to the square of

A = max (DSTEP, min[DMAX, u||g (]). (69)

We decided on this value by considering its effect on the first iteration. It

influences the calculated correction vector J3, but, because of the method of Section 4,

the range of all possible values of £ is very limited. Among these values, the

basic ones are the full Newton-Raphson correction ̂ , and the best predicted

displacement along the steepest descent vector of F(x). However if x happens to be

such that J is nearly singular, then usually | y| is unacceptably large, so it seems

adequate to let the first iteration calculate j5=fa§. Therefore, remembering the

inequality DSTEP s A s DMAX, the choice (69) is appropriate.

- 27 -

Sections 3,4,5,6 and 7 cover most of the points of the iterative process that

require explanation. For instance, among the unexplained points, the printing of

function values (instructions 59-63), and interchanging x with x+6 if F(x+6) is less

than F(x) (instructions 257-267) are straightforward. However we will discuss in

the remainder of this section some of the Fortran instructions connecting the

separate parts of the subroutine, the case when ||<5J i < DSTEP (see expression (57)),

and the conditions for finishing the execution of the subroutine.

Among the instructions connecting the different parts of the subroutine, the most

important is the one numbered 64 (we are still referring to the numbers in the

extreme left hand column of the Fortran listing). It is reached after every call of

GALFUN, unless a condition for returning to the calling prograume is recognised first.

We see that it switches the flow of the subroutine to one of five separate points,

depending on the value of the integer IS. We now distinguish the five possible

values of IS.

IS is equal to five only for the first call of CALFUN. In this case

instruction 64 switches to the block of orders that calculates the initial Jacobian

approximation (67).

To apply formula (67), n separate calls of CALFUN are needed. During this

operation IS is equal to three.

The other values of IS are appropriate to the calculations of f, (x-t-5) that are

specified in two of the boxes of Figure 1. The value IS=2 is reserved for the case

when 5 is set to the special value (55), when the results of CALFUN are used just to
*%, * *•"

update J. Therefore, if IS=2, instruction 64 branches directly to the part of the

programme that revises the Jacobian approximation.

Alternatively, when £ is defined by the method of Section 4, IS is set to

either one or four, the value IS=4 being reserved for the case when ! 6 j < DSTEP,

which we discuss below. For IS=t we branch to the instructions that revise A (see

Section 5), and for IS=4, after branching to the part of the programme that inter-

changes x with x+5 if F(x+6) < F(x), instructions 257 and 268 lead to the orders that

change the value of 5 to expression (55).

- 28 -

We take special action in the case j|6J| < DSTEP, which is recognised by

instruction 124, because we have decided that, due to rounding errors, it is unwise

to use such a small displacement to update J. However we do revise the Jacobian on

every iteration, so, for this revision we have to assign a special value to the

vector 6. The information in fi and in w suggest thnt the choice (55) is particularly
*\t "w

suitable, and this is the value of j5 that is selected, by the process described in

the previous paragrapho

Clearly the revision of Q and CD also requires special treatment in the case

8|1 < DSTEP, beecuse the elements of Q and u> concern the directions that are used
*v.' i ••"w

to update the Jacobian matrix. Therefore, after instruction 124 has found

||6J| < DSTEP, instruction 126 branches past the part of the programne that applies

the method of Section 7. However, later in the iteration when _8 is changed to the

value (55), we alter the columns of n to d ,d,,...,d . d , and the elements of to to-\-̂ -̂o ~n "~ i ~~

expression (56), in preparation for the next iteration.

The behaviour of the algorithm when \\b\\ DSTEP is such that it is very

important to choose a sufficiently smai1 value of DSTEP, for otherwise the subroutine

may fail to calculate the required solution of the equations. The reason comes from

the observation that our requirement A z DSTEP and the inequality (26) imply that,

if the length of ̂ does not exceed DSTEP, then the method of Section 4 invariably

sets 8=v» In other words we always try and follow the unmodified Newton-Raphson

iteration, defined by equation (3), unless j J6|I > DSTEP. But we stated in

Section 1 that the classical iteration (3) is liable to diverge unless x is

sufficiently close to a solution of the equations, so the user of the subroutine must

ensure that DSTEP is set to such a small A'alue that, if the solution of the

equation (3) satisfies I 16 I ̂ DSTEP, then we will obtain F(x-t-6) < F(x). Otherwise
' '%- ' . •"%• *N- *%•

our subroutine may never replace x by x+5.
*%, -X. fN»

This remark is illustrated well by Rosenbrock's (I960) equations

f s 10(x_-x?) = 0
1 2 1 i (70)
f2 a 1 - X, = 0

- 29 -

2Suppose that we have reached a value of (x,,x2) satisfying x==x , and it happens that
2

the Jacobian approximation is exact. Then we have F(x) = (1-x,) , and it is

straightforward to work out that, if 8 is the solution of equation (3), then

F-tx+,6) = 1OO(1-x.)4. In other words F(x+5) < F(x) only if O.9 < x, < 1.1, From this
-*_, ̂ \- I

calculation we see that if x. a 0.9, and if | _ v j j s DSTEP, there is a real danger that

our subroutine persistently calculates values of i5 satisfying F(x+6) ^ F(x), and so

the estimate (x.,x2) is not improved. The difficulty is avoided if a sufficiently

small value of DSTEP is chosen.

Two of the five conditions, specified in Section 2, that cause the subroutine

to finish are straightforward. They are the test (made by instruction 29) to find

out vtfiether the accuracy (14) is obtained, and the test on the total number of calls

of CALFUN (made by instruction 55). Moreover the test to discover whether a

sequence of (n+4) iterations fails to decrease the sum of squares of residuals is

complicated only by the fact that certain iterations may not be members of the

sequence, namely those for which 6 is the special step (55), and those for which

| |_6| | > DSTEP. It is applied by instructions 38~42.

We now describe the fourth condition for returning from the subroutine.

Instruction 109 tests the inequality

F(x) > 2.DMAX.||g 2 , (71)

where g, defined by equation (26), is equal to the predicted gradient of F(x)

multiplied by -̂ , If the inequality holds, we may leave the subroutine, because of

the danger of converging to a minimum of F(x) that is not a solution to the equations.

We chose this test because it suggests that there is no solution to the equations

within distance DMAX of x (see Section 2 for the definition of UMAX), for, if there

was such a solution, then the mean gradient of F(x) along the straight line joining

x to the solution would exceed | |g|)„, which is unlikely because (i) the true

gradient of F(x) is equal to zero at any solution of the equations, and (ii) the

number | gj L is the greatest predicted gradient of F(x) along any line in the space

of the variables. However the test will hold near any stationary point of the sum

of squares of residuals, which is the reason for the wording of the diagnostic

printing that is given.

- 30 -

We do not necessarily leave the subroutine if the inequality (71) holds,

because the test may be satisfied only because the Jacobian approximation is wrong.

Therefore usually when a local minimum is suspected, the elements of J are re-

calculated using the finite difference formulae (67), after which a new iteration is

begun. J is not recalculated only if the formulae (67) were applied during the next

previous iteration, in which case the condition (71) causes the subroutine to finish.

The last condition for returning to the calling programme is when an iteration

uses a completely new Jacobian approximation (67), when ! JSJ | « DSTEP, and nevertheless

the iteration does not obtain the reduction F(x+S) < F(x). It is identified by the
f^f *S* *•>-•

first branch of instruction 42, for NTEST is set to zero by instruction 114. We

prefer to leave the subroutine in this case because, if DSTEP is (as it should be)

so small that the functions fk(x) (k=1,2,..,,n) are practically linear over

neighbourhoods of width DSTEP, then the failure to attain F(x+6) < F(x) is probably

due to rounding errors (or programming mistakes) being significant,

9. Numerical examples

The examples of this section are intended to illustrate typical behaviour of

the method, and for comparison with existing algorithms, They were all worked out

by an I.B.M. 360/65 computer in single precision arithmetic.

We begin with the well known problem (Rosenbrock, I960): calculate (x,»x2)

to solve the eolations (70), given the starting approximation (-1,2,i.O}» We chose

the parameter values DSTEP = 0.01, DMAX = 1O anl ACC = O.OOOOOl, and found that 28

calls of CALFUN were required by the subroutine. The values of (x.,x ,f ,f2,F)

for every call of CALFUN are given in Table U

The asterisks in column ! of the table indicate the calls of CALFUN that were

made just for the revision of the Jacobian approximation. The second and third calls

provide the initial approximation, the eighth, tweJfth, eighteenth and twenty second

calls ensure "sufficient independence", and the twenty seventh call was made in

accordance with the discussion of Section 8 on the case)jsji < DSTEP,

Table 1 also provides a good illustration of the method for changing the step

length A. Initially the value of A is 0,1727, and at the ninth call of CALFUN it

has increased to 0,3568, However the tenth evaluation of F(x,,x2) shows that i

needs to be halved, and in fact A is halved again after the fourteenth call of

CALFUN to the value 0.1O78 (this amount is greater than one quarter of 0.35.68., because

A is increased after the thirteenth call of CALFUN). The value A = 0.1078 is

- 31 -

TAB&E I

Roseabrock* s example

t
2(*>
3(*)
4
5
6
7
»<*)
&

10
11
12(*)
13
t4
15
16
17
18(«)
19
20
21
22(*>
23
24
25
26
271*)
28

Xl

-1.2000
-1.1900
-1.2000
-1.0402
-O.9645
-O.839O
-0.7036
-0.6951
-O.4893
-0.2320
-C.3278
-0.3236
-O. 1825
O.0216
O.J2O4
0.2123
0.3433
O.3476
0.4867
0,5985
0.7128
0.72O8
0.8372
0.9431
toOOOO
l.OOOO
1.0091
1.0000

X2

1.0000
1.0000
1.0100
I .0655
O.9103
0.6832
0.4618
O.467I
0.1765

-O.Q7O6
0.1007
O.1O98

-0.0028
-O.O724
-0,0291
0.0273
0,0888
0.0797
0.1942
0,3326
O.4822
0.4762
0.6691
0.8670
0,3937
1.0014
0.9973
1.0000

fl
-4.4CQG
-4. 1610
-4.3000
-0.1663
-0. 1985
-O.2078
-O.33 22
-O. t6O7
-0.6288
-1.2447
-0.0671
O*051 1

"•0,3612
-O.T289
-O.4365
-0.1777
-O.2909
-0*4108
-0.4270
-0,2589
-0.2587
-O.4334
-0.3182
-O.2248
-O.0633
O.0144

-O.2O98
O.O003

f2

2.2DOO
2,1900
2.2DOO
2.0402
1.9645
1.8390
1.7036
1.69S1
1,4893
1,2320
1.3278
1.3236
1.1825

O.97&4
0,8798
G..7877
0.6567
0.8524
0.5133
tMOIS
0.2872
O.2792
0. 16128
0.0569
o.oooo
0*0000

-O.009I
0.0000

F

24, 1999
22. 1099
23,3299
4.1903
3.8985
3.4252
3.O126
2.8991
2,6135
3.O671
1.7676
1.7544
1.5288
1.4884
0.&S41
0.6520
O.5159
O.S94S
0.4459
0.2272
0. 1494
0,2658
0. 1277
O.O538
O.O04O
O.0002
O.O441
O.OOOO

- 32 -

increased progressively by the subsequent iterations, until, for the twenty fifth call

of CALFUN, 6 is equal to the full Newton-Raphson step (24).

The fact that our programne requires 27 evaluations of (f,,f) to solve the

equations (70) compares favourably with other methods: Powell's (1965) method

requires 70 evaluations, Broyden's (1965) methods require 59 and 39 evaluations, ,Ie

Fletcher's (1968) method calculates (f.,f) between 30 and 9O tiiaes, depending on the

value of a parameter.

However comparisons with other methods are more interesting when there are more

than two equations, so we have tried the subroutine on the system {Fletcher and

Powell, 1963)
n

A. . sin x. + B. . cos x. = E., i=1,2,...,n, {72}
X j J -Lj j X

The elements A. and B. . are uncorrelated random integers between -100 and +100, and
Aj J

the numbers E. are calculated to accord with a particular solution (x*,x*,...,x*),

where each component x* is selected randomly from (-/c,7t). The initial estimate of

(x,,x2,...,x) is x* + 0.1 TJ, where, for i=1,2».,.,n, m is another random number

from (-K»7t)» We chose the subroutine parameters DSTEP = 0,001, EMAX = 2 and

ACC = 0.001, and applied our programme for n=5,10,20 and 30. For each value of n,

two systems of equations (72) were solved, the different systems being generated by

different random numbers. The number of calls of CALFUN that were required are given

in the last column of Table 2.

Also in Table 2 we quote the number of calls of CALFUN that are required !v some

other methods on the same test problem. The method due to Powell (1965) i? esigned

for non-linear least squares calculations, but it has been used very succes y on

systems of equations, while Rosen's (1966) figures were obtained using a 5^'riti

procedure, derived from the methods of Barnes (1965) and Broyden (1965). Because

Rosen reports that his figures are superior to those he obtained using Barnes's and

Broyden's methods separately, the new algorithm seems to compare very favourably with

four other techniques.

We also compare our method with Fletcher's (1968) recent algorithm, but

unfortunately he does not use the test problem (72), Instead he prefers the "Cheby-

quad" equations, defined in Fletcher (1965), which detennine the abscissae of the

Chebyshev quadrature formulae (see Hildebrand, 1956, for instance). To apply our

- 33 -

TABLE 2

Number of calls of CALFUN to solve the system (72)

1
!

n

5

S

S

5

5

1O

10

10

10

10

20

20

20

20

20

SO

30

Powell ' s
method

24

24

38
34

46

65

75

61

Rosen's
figures

44

24

24

25

31

45

48

68

46

39

93

86

102

106

86

135

This
method

11

12

19

23

36

36

47

43

- 34 -

programme to this problem we chose the parameters DSTEP = O.OQQ1, DMAX = 0.5 and

ACC = 0.00000001, The consequent number of calls of CALFUN is given in Table 3, and

this table also displays the number of function evaluations needed by Fletcher's

algorithm.

TABLE 3

Number of calls of GALFUN to solve Chebyquad

11

2
4
6
8
9

Fletcher
4 decimals

15
40
73

340
!74

Fletcher
6 decimals

19
40
92

838
181

This
method

7
14
34

204
46

The two columns of figures quoted for Fletcher's method are the number of

function evaluations needed to obtain the components of x to four and to six decimals

accuracy; our choice of ACC yields about four decimals accuracy. The case n=8 is

special because there is no eight point Chebyshev quadrature formula. Therefore the

corresponding system of non-linear equations has no solution, and so our procedure

terminated with the error message "Error return from NS01A because a nearby stationary

point of F(x) is predicted"„ Fletcher's algorithm also identifies the lack of a

solution, but it is more sophisticated in this case, for it calculates the value of x

that minimizes F(x), which accounts for the large number of function evaluations needed

to improve the accuracy of x from four to six decimals.

The example given in the appendix illustrates the steps of the iterative process

when a local minimum of F(x) is found. It is the system of equations (75), due to

Freudenstein and Roth (1963). We note that only three iterations are needed to

reduce F(x) from 1256,0 to 54,15 (the value at the local minimum is 48.98), the length

of the step of the third iteration being = 101771, However the sixth to ninth

calls of CALFUN each cause A to be halved, and so the step-length is reduced to

O.0736. Moreover, because it happens that F(x+5) > F(x) for the fourth, fifth, sixth
-S. **~

and seventh iterations, J is revised substantially. Consequently a nearby

stationary point is predicted after the tenth call o.f CALFUN, and so the eleventh and

twelfth calls of CALFUN calculate function values to derive a new Jacobian

- 35 -

approximation, in accordance with the difference formula (67). Using this new

Jacobian, the test (71) is not satisfied, so the thirteenth call of CALFUN is made,

and it leads to a successful reduction in F(x). However, for the new value of x, a

nearby stationary point is again predicted, and it is confirmed by the matrix J

resulting from the fourteenth and fifteenth calls of CALFUN. Therefore there is an

error return from the subroutine.

Our final numerical example shows a badly scaled and difficult problem. We

have stated that, because we measure step-lengths in a Euclidean metric, it is

preferable to scale the separate variables x,,x2»...fX so that their magnitudes are

comparable, but it is interesting to discover what happens when this advice is not

followed. Therefore we applied the subroutine to the system

10000 x x = 1

1 2e -t- e * = J.0001

(73)

starting at the estimate (x^x,,) = (0,1). The other input variables were set to the

values: DSTEP = 0.001, DMAX = 20, and ACC = 10~10. After 223 calls of CALFUN, the

accuracy criterion (14) was satisfied, and the final values of the variables were
—5 ' 5X j = 1.106 x 10 , x = 9.038, although the solution is x? = 1,098 x 1O ,

x? = 9.106. Some of the 223 values of F(x ,x?) that were calculated by the subroutine

are listed in Table 4.

In fact Table 4 records the number of calls of CALFUN that were required to
i-

reduce Ffx^.x^) to less than 1O for te=1, O, -1,...,~1O. In case the figures

suggest to the reader that the slow convergence is due to tl>e limited accuracy of

single length arithmetic, or to a programing mistake, or to a poor choice of the

parameter DSTEP, we must explain the difficulty of the example. It is that the

quadratic convergence properties of the N'ewton-Raphson process do not dominate

until the value of F(x ,x2) becomes extremely small.

- 35 -

TABLE 4

Number of calls of CALFUN to solve the equations (73)

Calls of
CALFUN

1

4

15

21

27

33

51

77

113

159

199

223

xt x 105

0.0000

1O.OOO4

7.9132

4.2065

2.5948

2. 1592

1.7203

1 .4573

1.2887

1.1805

1.1274

1.1064

X2

1.OOOO

1.00 1O

1.256O

2.4662

3.8917

4.6422

5.8132

6.8624

7.76O1

8,4710

8.8698

9.0380

F<V*2>

t . 1353 x 1O°

1.3492 x 1O~1

8.1O43 x 1O~2

8.5846 x XT'3
-4

5.0809 x 10

9.6142 y 1Q~°

8.2463 x 10~6

8.7854 x 1O~7

9.9477 x 1O~8

9.7O10 x »0~9

9.O726 x 1O~!°

7.3881 x 1O"11

- 37 -

To be specific we suppose that (x.,x2) satisfies the first of equations (73)

exactly, and that the full Newton-Raphson correction, defined try the system (3), is

applied. Then (x.,x) is altered to (x.-X x* , x«+X *„), vhere X is the expression

« .̂

1 - 2e + e - 1.0001
n **"

"X

e

w 1000 / e + e - 1.0001 , (74)

~ 2 ~ 1the number 1000 being the nearest integer to the value of the factor 1/(x2e -x?e)
~xl ~X2at the solution to the equations. Now if we let (e +e -1.00O1) = p, we have

o
F(x.,x_) = p , and, assuming the approximation (73) to be exact, we find that the

sum of squares of residuals after the iteration is bounded by the expression

X Xj, x2+X x2) > 10000 (Xj-X xt)(x2+X X2> - 1
L

= x4

= 1012 p4, (75)

because of our hypothesis that 10000 x.x^l. Therefore the iteration decreases the

— 12sum of squares of residuals only if F(x.,x_) < 10 , so we cannot expect Table 4

to exhibit the quadratic convergence properties of our algorithm. Note that this

remark about the unmodified Newton-Raphson iteration applies even if the variables

xf and x, are scaled so that they are of the same magnitude, because a property of

this iteration is that the change in F(x.,x2) is independent of linear transformations

of the variables.

We found that, in spite of the method that we use for adjusting the step-length

(see Section 5), the example (74) leads to oscillatory behaviour in the value of A,

Specifically, after 30 calls of CA1FUN, the behaviour of the alg< Ithra repeats itself

every four iterations: one iteration uses the previous value of A, the next

iteration uses a step-length that is close to or equal to the value 2A, the next

iteration uses half this step-length, and the fourth call of CALFUN is needed to

maintain sufficient linear independence in the directions that are used to revise the

Jacobian approximation. These inefficiencies can be avoided by changing the scale

of the variables,

- 38 -

10. Conclusion

Because this report contains so much detail, we conclude by isolating the

points that seem to be particularly important. The most prominent is that the

numerical examples indicate that the new algorithm is more efficient that its

competitors. IVftich of this gain is obtained by two features: (i) the iterations do

not include any searches along lines in the space of the variables, so most iterations

require only one call of CALFUN, and (ii) the correction vectors 5 interpolate between

the Newton-Raphson and the steepest descent corrections in a way that gives fast

ultimate convergence, and that is sensible when the estimate x is a long way from the

solution.

However a deficiency of the algorithm is that the user has to make sane decisions

carefully. In particular the parameter DSTEP must be so anall that, for

| |6|| s; DSTEP, f .(x+§), k=1,2,...,n, is nearly a linear function of .*> (the remarks
'""•' 1C •%. '^ "*"

of Section 8 on this question are more explicit), but it must not be so small that

the differences (67) are dominated by computer rounding errors. Also the user's

scaling of the unknowns (x.,x ,...,x) must be such that it is sensible to apply the

usual Euclidean definitions of vector scalar products and orthogonality. We admit

that the assignment of suitable parameters was easy in the numerical examples of

Section 9, but the success of the subroutine on the trigonometric equations (72) is

encouraging, because these equations become very ill-conditioned as n increases. It

would be valuable to extend the algorithm so that DSTEP and the metric of the variables

are assigned automatically.

Finally we wish to state the opinion that our main strategy could provide very

good algorithms for many calculations that involve searching in many variable space.

This strategy is to have a step-length parameter A, and, on each iteration, a

correction 6 is predicted subject to 1 6 ! I « A. The step-length A is adjusted
•"\ *>— •

automatically, according to the success of 5. Thus in many calculations one can

manage with only one new value of the objective functions on each iteration,

- 39 -

References

Barnes, J.G.P. (1965) "An algorithm for solving non-linear equations based on the
secant method", Computer Journal, Vol. 8, pp.66-72.

Broyden, C.G. (1965) "A class of methods for solving non-linear simultaneous
equations", Math. Comp., Vol. 19, pp.577-593.

Broyden, C.G. (1967) "Qjasi-Newton methods, and their application to function
minimisation", Math. Comp., Vol. 21, pp.368-381.

Fletcher, R. (1965) "Function minimization without evaluating derivatives -
a review", Computer Journal, Vol. 8, pp.33-41.

Fletcher, R. (1968) "Generalised inverse methods for the best least squares solution
of systems of non-linear equations", Computer Journal, Vol. 1O, pp.392-399.

Fletcher, R. and Powell, M.J.D. (1963) "A rapidly convergent descent method for
minimisation", Computer Journal, Vol. 6, pp.163-168.

Freudenstein, F, and Roth, B. (1963) "Numerical solutions of systems of non-linear
equations" J. Assoc. Comput. Mach., Vol. 10, pp.550-556.

Haselgrove, C.B. (1961) "The solution of non-linear equations and of differential
equations with two-point boundary conditions", Computer Journal, Vol. 4,
pp.255-259.

Hildebrand, F.B. (1956) "Introduction to numerical analysis", McGraw-Hill (New York),

Levenberg, K. (1944) "A method for the solution of certain non-linear problems in
least squares", Quart. Appl. Math., Vol. 2, pp.164-168.

Marquardt, Donald W. (1963) "An algorithm for least squares estimation of non-
linear parameters", J. Soc. Ind. Appl. Math., Vol. 11, pp.431-441.

Ostrowski, A.M. (1966) "Solution of equations and systems of equations",
Academic Press (New York).

Powell, M.J.D. (1965) "A method for minimizing a sum of squares of non-linear
functions without calculating derivatives", Computer Journal, Vol. 7, pp.3O3-3O7.

Powell, M.J.D. (1968a) "On the calculation of orthogonal vectors", Computer
Journal, Vol. 11, pp.3O2-3O4.

Powell, M.J.D. (1968b) "A theorem on rank one modifications to a matrix and its
inverse", Report No. T.P. 355.

Powell, M.J.D. (1969) "A hybrid method for non-linear equations", in preparation.

Rosen, Edward, M. (1966) "A review of Quasi-Newton methods in non-linear equation
solving and unconstrained optimization", Proc. 21st A.C.M. National Conf., pp.37-41,

Rosenbrock, H.H. (1960) "An automatic method for finding the greatestor the
least value of a function", Computer Journal, Vol. 3, pp.175-184.

- 40 -

