Unltedegdom Atomic Energy Authority
.~ RESEARCH GROUP

Report

::RA;N!%j'su,B,Rofu*rcNE FOR SOLVING SYSTEMS
'OF NON-LINEAR ALGEBRAIC EQUATIONS

. J. D. POWELL

' Thebretlcal "Phys!cs' Division,
‘Atomic Energy Research Establishment.

Harwell Berkshir& S
Lt , mmsﬂ@ﬂfmim:

i, Introduction
The method of this report will be justified in a companion paper (Powell, 1969),
S0 now we state briefly the reasons for adding yet another alzorithm to the various

methods for solving numerically the system of non-linear equations

fk(xi,xz,...,xn) = O, k:I,Z,...,n. (‘)

The new algorithm cccurred from a consideration of existing algorithms, and
primarily it resulted from asking when certain useful algorithms would fail. In
particular the class of methods based on the Newton iteration (see Ostrowski, 1966,
for instance) can fail if the Jacobian matrix becomes singular, and this is the
main difficulty that we try to overcome,

Throughout this report we will use the vector notation X to indicate the vector
of unknowns (x,,xz,...,xn).

In the classical Newton iteration we have a guess X of the splution of the

system (1), and we calculate the elements of the Jacobian matrix

= ,
Ty = o T (2)
J
at the guess, Next we obtain a correction vector é by solving the system of limear

equat.ions

LY
ZJ Tei 85 = = T®s ke=t,2,eu0n, (3)
j=1

and we complete the iteration by replacing the vector x by the vector (x+§). The
success of the Newton iteration is due .o the fact that the correction is calculated
so that, if the Jacobian is non-singular at the solution and if the functions

fk(5) are twice differentiable, then near the solution
£ (x+8) =0 (|[81%), k=1,2,0.0,n. (4)
Thus the Newton iteration converges rapidly if the guess is a sufficiently good one.

However it is well known that divergence often results if a close estimate of the

solution is not available,

In the new algorithm we retain the fast convergence of the Newton method, but
we.modify tha iteration so that it is progregs:ive even il the guess X is far from
the solution. Other useful attempts to meet this objective have been made by
Barnes (1965), Broyden (1965), Fletcher (1968), Haselgrove (1961), Levenberg (1944),
Marquardt (1963), Powell (1965) and other authors, but we ciaim that the present one
has certain advantages.

The main observation of Haselgrove's (1961) paper {which is also noted by many
other authors) is that it is often worthwhile to use the correction 5y calculated from
equation (3), as a search direction in the space of the variables, Specifically
Haselgrove's iteration replaces X by (5+k§), where the value of the parameter x is
calculated by a search process, which tries to make the estimateA(§+A§) better than

the estimate Xy the criterion for success being the ineguality

F(x+no) < F(x) , | (5)

where F(g) is the sum of squares of residuals

— 2
F) = [rk(xﬂ : (8)
k=1 -

A successful value of % can be obtained if (i) the functions are differentiable,
(ii) the Jacobian is non-singular, and (iii) a solution has not been reached, because,
if the left hand side of the inequality (5) is regarded as a function of)\, we

find, using equation (3), the result

n n
3 o0 T ~
e F(x+x6i] = 2 &) J . fo{x)
A= j=1 k=1
n o2
=2) | fk(?fﬂ
L .
k=1
< 0. (7

Therefore by calculating the value of A at each iteration, the sum of squares F(§)
can-usually be made to decrease monotonically, and so we hope to reduce the left
hHand sides of the equations to values that are very close to zero. However this
hope cannot always be realised.

A different method (which we prefer) for modifying the Newton iteration, so
that it converges from a poor initial estimate of the required vector x, is suggested

by Levenberg (1944) and Marquardt (1963), It is der:ved by introducing a parameter

&

2" into the '"normal least squares" formulation of the equations (3):
n n n
ey — 7 TN) . V2 (8)
ZJ { L i kg1 8577 L Tei T®y 156,250,500
i=1 k=1 k=1

Specifically they obtain a correction vector Q* by solving the set of linear

equat ions
n n n
(A% 1 N g 3] 8% e N 3 f(x), i=1,2,..0,n
L ij + ki kjj Jj- > ki "k'~7? TraCas Rty
fd
J=1 k=1 k=1

(9}
where I is the unit matrix. We note that the systems (8) and (9) are identical
in the case 2*=0. However when, as is uwsual, A* is positive, then Q* is different
fram §, and when ¥ is very large, Q* is approximately equal to the gradient vector
of the sum of squares (6) multiplied by the small negative number —l/éx*. The
Levenberg/Marquardt iteration changes an estimate X to the estimate (éfé*), the
length of the correction being regulated by the value of 1*. It can be shown that
the inequality

F(x+8") < F(x) (10)

is obtained if * is sufficiently large, provided that the functions fk(ﬁg have
continuous first derivatives, and that the comporents of the gradient of F{x)
are not all equal to zero at the initial estimate X of the iteration.

We have described the two ideas for trying to obtain convergence, because
we prefer the method due to Levenberg and Marquardt, although most practical algorithms
are based on Haselgrove's approach. Oour reason is that Haselgrove's idea fails
more often, for equation (3) is not valid whenever the Jacobian matrix becomes

singular, while the other methods breaks down only at a stationary point of F(g).

However a singular Jacobian need not spoil Haselgrove's technique, because egquation
(3} is used Just to define the direction of the correction to be applied to x, the
length of the correction being calculated to obtain the inequality {3}, When J
tends to singularity, the direction of §, defined by equation (3), usually tends to
that of an eigenvector of .J whose eigenvalue is zero, so it is often possible to
identify it. But along such a direction the initial gradient of Fix) is zero,

g0 there need not he a value of) that satsifies the condition (3).

That singular Jacebians are not uncommon is shown bv the equations

fz(ﬁ) XX, = 1 =07,

In this case the determinant of J is ~qual to Xys which is positive at the soclution
(141). Therefore for all initial estiimates {x‘,xg) for which X, < 0, the determinant
must be zero at some point of a successful path to the solution, so we may Tind a
singular Jacobian,

The companion paper {(Powell, 1969) includes a two-equation example showing
failure of Haselgrove's idea, for (xt,xz)converges to a point at which the gradient
of F(i) is not equal to zero,

Because of the above discussion, the algorithm of this paper tends to take
steps along the steepest descent direction of F(g), if it seems that the classical
Newton iteration diverges, xThe actual method used to defipe the correction to X
at each iteration is different from the Levenberg/Marquardt technique, because our
method requires less computation when derivatives are approximated numerically.

The steepest descent. qualities of the iteration vield some reassuring theorems
on convergence (Powell, 1969), but we are content to reach a stationarv point of
F(g), even if it is not a solution to the equations. We take this view because
sometimes the algorithm will be applied to systems of equations that have no
solution, and in this case we must finish iterating at some stage. Therefore the
process finishes iff the gradient of F(5) pecomes very small, A consequence is that
on some éwkward problems the method will converge to a point at which the equations
are not satisfied, although there is a solution, so we are admitting that we are
unable to solve the familiar difficulty of recognising whether or not a point of

convergence is a global minimum of F(z). One recourse, if the subroutine fails to

obtain a solution to the equations, is to try different initial estimates of X.

To approximate derivatives numerically, the algorithm uses one of the class of
methods deseribed by Broyden (1965,1967). Not only is the Jacobian matrix J, see
equation (2), approximated, but also we keep an estimate of J", s0 that we can solve
equation (3) in only of order n2 computer operations, This saving of work is
consistent with the fact that Broyden's scheme requires only G(nz) operations to
revise the estimates to J and to J_i. Thus we obtain an important advantage over
some other algorithms, for the direct solution of equation (3) or (8) requires of
order n3 computer operations,

Another important property of the new algorithm is that, unlike earlier methods
by the author, it does not search for best points along straight lines in the
space of the variables X. Instead we heed the advice of Broyden {1963), and
usually the functions fk(f) (k=1,2,...,n) are calculated for only one value of x on
each iteration.

The sections of the report are arranged so that it is easy for the reader,
who just wishes to make use of the subroutine, to omit the details of the method.
Indeed the information that he requires, such as a description of the programme
parameter: , is given in Section 2. We summarize the method of calculation in
Section 3, and give details in the subsequent five sections: Section 4 describes
the choice of the correction vector 5, having both Newton iteration and steepest
descent characteristics, Section 3 discusses the adjustment of a step-length parameter
A, Section 6 gives the formulae that are used to revise the numerical
approximations to the Jacobian matrix and its inverse, Section 7 describes a
necessary device which ensures that successive corrections § are not linearly
dependent, and Section 8 assembles the various remaining details. In an appendix
there is a Fortran listing of the algorithm, and a test programme is included as
well to assist those who wish to try the method. Other numerical examples appear

in Section 9, and a summary of the results concludes the paper.,

2. The parameters of the subroutine

The name of the subroutine and its parameters are:
SUBROUTINE NSO!A (N,X,F,AJINV,DSTEP,DMAX ,ACC ,MAXFUN, IPRINT,W),
The name NSO1A is chosen to conform with the other names of the programmes in the Harwell
Subroutine Library. Before calling the routine the user musi assign values to the
parameters N, X(1), X(2),...,X{N),DSTEP ,DMAX ,ACC,MAXFUN, and IPRINT, and we now specify
the purpose of each of these quantities,

N is just the number of equations, and it must be greater than one.

X is a ope~dimensional array Ter the variables of the equations, and initially
[X(1),X(2)ye00,X(N)] must be set to an estimate of the solution. This estimate is
refined during the execution of NSCiA, so that when the subroutine finishes it is
usually set to the calculated value of the solution. However, if' it happens
that execution of the subroutine is terminated because an error condition is Tound,
then {X(1),X(2),...,X(N)} is set to the best estimate of the solution, according to
the value of F(x), defined in equation (6). These error conditions are specified
below,

DSTEP must be set to a rumber that is a moderate step-length to use to
approximate first derivatives of the functions by differences between function

values., For inctance we suppose that

o (x)

~ [f“(x1 + DSTEP,X,50005X) = £ (x) DSTEP, (12)

ax1
Note that the one increment DSTEP is used for all the variables, so it is necessary
for the user to choose the variables so that their magnitudes are sim lar, We
have deliberately introduced this requirement because there are oth ¢ good reasons
for having all the variables of the same size,
DMAX must be set to a generous estimate of the "distance" of the solution from
the initial guess of (x‘,xz,...,xn); we use the Euclidean metric, so the distance

between x ard y is

d(x,y) = {: L (x; —yi)f} . (13)
1=1 -

‘DMAX is used in two separate ways. Firstly it is arranged that the change in the vector
X ‘at each iteration does not exceed DMAX, Secondly there is an error return giving
the diagnostic "Error return from NSO!A because a nearby staticnary point of F{g} is
predicted"” if it happens that the gradient of F(x) become so small that it is predicted
that steps that are much larger than DMAX are needed. MAX mast be greater than
’DSTEP.

ACC specifies the accuracy that is required in the solution. A normal return
to the calling programme occurs when a vector x 1is found such that we have the
inequality)

..} ;
£,(x) | < ACC, &
.

M
r
i

¢

ls

Fa3
i

1

Note that this convergence criterion is such that it is sensible to scale the functions
fk(g) (K=1424440yn) to have similar magnitudes. There are other good reasons for
defining the equations so that they have comparable left hand sides,

The parameter MAXFUN is included to ensure that the execution of NSOIA will
finish, The number of times that the left hand sides of the equations are worked
out is counted, and if this count attains the value MAXFUN, there is an errcr
return following the diagnostic "Error return from NSO1A because there have been
MAXFUN calls of CALFUN". Experiments show that often the subroutine requires fewer
than 19«N evaluations of the left hand sides, but MAXFUN should be set to a greater
number, unless the total amount of calculation needs to be limited by a
conservative value of MAXFUN,

The parameter IPRINT must have the value zero or one. If it is zere, there is
no printed output from the subroutine, except for a message if an error condition
is found. However, if IPRINT=1, then, each time the functiors f,(x) (k=1,2,...,n)
are calculated, the values of the functions and of the wariables XysXygeeayX, are
printed. Examples of this output are given in the appendix,

The other parameters of NSOIA are F, AJINV and W, and they are all the names
of arrays. The numbers in the arrays will be changed during the execution of the
subroutine,

The array F is one~dimensional, and it must contair at least N elements,
Usually F{k) is set to a calculated valu; of fk{§) (k=1,25+v040), but the array also

serves as working space during some of the operations of the subroutine. vhen the

subroutine finishes, the array F contains the values of the functions that are
‘obtaired for the vector of variables (xl,xz,...,xn) that is present in the array X.

AJINV is an N x N two dimensional array, and when the subroutine finishes it
contains the elements of an approximation to the matrix J_§, where J is the
Jacobian (2). We include it in the parameter iisi in case an estimate is reguired
of ‘the accuracy of the solution x: equation (3) suggests that after a normal

return from the subroutine the error in xj is approximately equal to

n
- Z AJINW(j,k) F(K), J=1,2,e00, N (15)
k=1
Also equation (3) suggests that if the functions f‘k(gt_) are changed by snall amounts

T}k"’ﬂ(k:“’ 2544450}, then the change in the required value of xj is approximately

AJITIWV(j,k) Nk? J=1425000 47 {16}

A

Thus one can estimate the sensitivity of X Lo any uncertainty in the specification
of fk’(g_c), K=1,2,0.440

The last array, W, must be one-dimensional, and its elementz are used by the
subroutine for working space. The number of elements required is n{2n+5}, It
happens that, when NSO!A finishes, the most recent approximation to the Jacobian

matrix is present at the beginning of the array:

Jk‘] = W(k{n-t] + J), j:i,.?,.;.,n‘; k:l,Z,.«.,n. {}?}
The functions fk(gg) (k=142,4404n), defining the system of nonlinear eqiations,
must be defined by another Fortran subroutine, called CALFUN. It has three
parameters

SURROUTINE CALFUN (N,X,F),

and the names of these pavameters accord with those of NEO1A, so N is the number of
equations, and X and F are one-dimensional arrays, CALFUN is called whenever
NS01A requires the functions fk(gf) to be calcelated for some vector X, and the
components of X are given in vhe array X. CALFUN must set the components of F to

the function values

F(k) = £,(X(1), X(2),.00,X(N)), Kk=1,2,..0,N, (18)

An example of the subroutine CALFUN is given in the appendix,

We have mentioned that sometimes there are error returns from NSO1A, and we have
already given twe instances when they occur, In two other situstions the
execution of the subroutine is termminated before the required accuracy is obtained,
The Tirst is when, in spite of the convergence theorems and the various strategies of
the algorithm, the subroutine is persistently unsuccessful in its attempts to decrease
the sum of squares (6). Specifically if F(g) fails to decrease on n+d4 consecutive
iterations when a decrease is predicted, and if on each of these occcasions the
vector X is within the distance DSTEP of the most successful vector of variables,
then there is an error return after the diagnostic "Error retum from MSOIA because
N+4- calls of CALFUN failed to improve the residuals", It may happen because the
value of DSTEP is too large {we explain this remark in Section 8), or because of
programming mistakes, or because the rounding errors of the computer are so large
that the required accuracy, given in expression {14), cannot be obtained.

These conditions can also cause the other error return, which is indicated by
the diagnostic "Error return from NSO1A because F(x) failed to decrease using a
new Jacobian", It happens when a completely new Jacobian has just been obtained,
by differencing along the coordinate directions in the space of the variables
(see Section 8). In this case we expect to have a reliable prediction of the
behaviour of F(gf), provided that the distance of x from the point at which the
Jacobian was calculated does not exceed DSTEP, Therefore if this hope is not
realised, and we find that F(;\(‘) does not become smaller alkthough a decrease is
predicted, the error return is made.

The regder who does not use the A.E,R,E. operating syvstem must also note that
a subroutine for inverting a matrix is required by NSO1A, The Fortran listing in
the appendix uses another Harwell library programme, named MBOIB, the 92nd instruction
being

CALL MBO1B (AJINW, N, N}.

The effect of this statement is to replace the elements of an N w N matrix bv the
elements of its inverse, Specifically, when MBOIB is calied, AJIW{i,j) is set to
Jij’ and when the execution of MBO1B is finished, the element AJINV(i,j) is set to

-1 .. .
Jij (1,0 = 1,250..,n),

3. An outline of the algorithm

The next six sections speciry the formulae that are used by the algorithm, and
they justify the decisions of the Fortran subroutine, which is listed in the appendix.
This section begins the description by summarising an iteration, in order to identify
the four main parts of the calculationh which are considered separately in Sections
4,5,6 and 7. Note that this introductory summary ignores some important points,
because its purpose is just to preovide a simple coherent picture of the method, so
that the reader can relate the subsequent details to the general strategy,

To begin an iteration of the method the fecllowing data is required:

(1) a vector of variables x, which is an estimate of the solution of the equations,
and the corresponding function values fk{g) (k=1,2,4.0,0), {ii) an approximation

to the Jacobian matrix (the Jacobian is defined by equation (2}, but now we use the
notation J for the approximation), (iii) the matrix J”i, (iv) a matrix 0 of n
directions in the space of the variables, and an associated vector of integers Ws and
(v) a step length A, The calculation of an iteration is outlined in Figure 1.

The figure shows that the first operation of an iteration is to calculate
a correction & to apply to the approximation X. This calculation is described in
Section 4, so for the present we note that it is a compromise between the Newton
iteration {see equation (3)) and the method of steepest descents applied to the sum
of squares F(x). The balance between these two methods is governed by the step
length A, so that if A is sufficiently large the correction § is the pure Newton
step; thus fast ultimate convergence to the solution can be obtained, For very small
values of A, the vector é is exactly a multiple of the predicted gradient of F(g},
and in all cases the correction is such that the sum of squares F(3+§) is predicted
to be less than F(z). However this prediction may not be realised, It can be
wrong because the non-linear behaviour of the functions z‘k(%) has already caused J
to deviate from the actual Jacobian at Xs and, even if T is exact, it can be wrong
because fk(?j) does not vary linearly between x and (x+5).

We will introduce the criterion which decides whether § is "sufficiently
independent" at the end of this section; it depends on the elements of w and of (O
Usually we find that g passes the test, in which case the next step of the fiow

diagram is to calculate fk(gﬁﬁ), k=1,2,..s40n, and to revise 2,

- 10 -

Figure 1

Summary of an iteratien

|

Calculate & from
the gradient and
Newton steps to
satisfy &l < & =

Is & Yes
sufficiently
independent?

-

Set & to a
Revise J S— special value and
calculate fkiggﬁf«’:}

)

Calculate T (x+0) | S—
and revise 4

Interchange x
and x+9

- 11 =

The method for revising A, described in Sectiocn 5, is intended to find such a

small step~-length that each iteration is successful in obtaining the inequality
F(x+8) < F(x). (19)

Therefore A is reduced if the conmdition (19) is not satisfied, except that we do not
let A become less than the subroutine parameter DSTEP, which we defined in Section 2.
Also we are prepared to increase A, because an extravagant number of iterations is

required if 5 is too small, The criterion fer increasing A deperds on the accuracy

of the approximations
n

£ (x+8) = £ (%) ~ K:ﬂ J .5
k'~ k'S /., ki
J=1

j’ k:i,z,...,ﬂ, (20}

for usually the estimates (20) are close only if the size of A is conservative,

The decision of the flow diagram to interchange X and (5+§), if the inequality
(19) holds, provides the best approximation to the solution of the equations for the
next iteration (of course the function values fk(f) and fk(5f§), K=1,2,400,n,are
interchanged as well). However an important point to notice is that the interchange
does not take place if Q is set to a special value in order to provide a "sufficiently
independent" correction to Xeo The reason for this rather contentious decision is
that, if we were prepared to make the interchange after using a special value of
8, then a certain theorem (Powell, 1969) would not apply to the algorithm. The
theorem states that, given exact arithmetic, the method of the subroutine causes all
the vectors x to be within a finite distance of the initial guess of the solution,
80, even if the only solution to the equations is at infinity, we expect that the
algorithm will not cause the components of X to become too large for the computer,
We prefer not to invalidate this theorem.

The method for revising the Jacobian approximation J depends on the vector é,

and on the differences
T = T (x48) - £,(x), k=1,2,.00,n, (21)

These differences are liable to be dominated by computer rounding errors if Q is too
small, so we include the precaution of setting S to a special value if }ZQ!{ < DSTEP,

Only on this occasion is CALFUN called twice during an iteration,

- 12 -

The details of the calculation of the new Jacchian approximation, J* say, are
given in Section 6, We want to satisfy the equations
n
T J;J. 8, = vk Kk=l,2,..0,m, (22)

Ja—

J=1
because they would hold if J* were exact and the functions fk(g) were linear, so
usually we apply the formula (Broyden, 1965)

T =T (-39 5 /018117 (23)

~

However equation (23) can cause J* to be singular, and we require the elements of (J*}’i.
Therefore sometimes we apply a part of the full correction, in order to force non-
singularity.

The correction (23) has a special property, which is the reason Tor the
introduction of the device (depending on ¢ and Q) to ensure "sufficient independence
of the successive displacements é. The property is that the results of applying
both the old and the new Jacobian approximations to amy vector that is orthogonal to
Q are the same, Therefore, if it happens that all the vectors § are linearly
depehdent, there is some non-zero vector ol (orthogonal to all the vectors é? such
that JH is the same for all the Jacobian approximations, This is unsatisfactory
because the non-linearity of the equations causes the true Jacobian to change with Xy
and probably the true value of Jj changes as well. Therefore, if necessary, we
deliberately introduce extra displacements to ensure that most sets of (2n+1)
successive vectors é span the full space of the variables, The number {2n+1) was
chosen intuitively, and numerical experiments show that the extra programming that is
needed to obtain "sufficient independence" is worthwhile,

The details of the test for independence are described in Section 7. The
matrix Q and the vector w contain information about the corrections 5 that were used
in recent iterations, from which we can find out the extent of linear dependence in
the successive vectors S In accordance with the flow diagram of Figure 1, this
information is used to test the vector &, calculated by the method of Section 4,
for "sufficient irdeperdence", and if the test fails, then we change ¢ so that it
becomes practically orthogonal to the most recent 2n correction vectors &, for the

resultant revision of J is probably overdue, Like the method for changing J, this

test and the revision of 1 and w require of order n2 computer operations.
Section 8 includes details of the procedures for starting and finishing the
algorithm,

4, The calculation of 8

The calculation of é is carried out in instructions 93-1536 of the Fortran
listing of the subroutine, but these instructions irclude some other calculation.
We begin by predicting both the Newton correction, v say, 1o X, and also the

steepest descent direction g of F(x): instruction 102 calculates

n
D -1
%li = - Z JiJ f‘](%), izlgzgoon,n, (24)
J
j=1
and instruction 10! calculates
n
gi = - y in fj(’\x‘)’ i=!,2,...,n, (25)
ld
J=1

The purpose of o is to limit the size of the correctior vector 5, and we

o|| being Euclidean, in accordance with

impose the condition]{QH < &, the length |
equation (13). Because of the good cornwvergence properties of the Newton iteration,

we would like to set § to y. Therefore if the inequality

il <o (26)

holds, which is tested by instruction 120, we let $=y. Otherwise we include a

multiple of g in §, and the correction vector satisfies tiie condition Hgg = fa
The correction is just a positive multiple of g, if this choice is not greater

than the predicted displacement to the minimum of F(gg) along the steepest descent

direction, This minimum is at x+pg, where y is defined by the equation

w=llgl?] 1gll% (27)

Therefore instruction 139 tests the inequality

- 14 =

wllgll = a, (28)

and, if it holds, we set

s = a8/l lgll . (29)

If neither inequality (26) nor inequality (28) is satisfied, we let 5 be on the
straight line joining the points 94 and s SO we need the value of the positive

number 6 that is defined by the equation

Il(1~6) p:gg-i»@x” = A {30}

Straightforward algebra gives the solution

2 2
6 = - Hugil (31)
= 2.2 2 2, 2 2,.%
(ugoug) + o) - 2512 + {11ul1% - 2%100% - |1ugl]%10"
and instruction 153 calculates the components
61 = (1"’6) p,gi + Gvi, i=‘,2,a..,n. (32)

This specification of Q is preferred to the Levenberg/Marquardt choice,
because it can be calculated in of order n2 computer operations, However we cannot
match the elegant theorem that supports Marquardt's method (1963), This is not a
cause of anxiety, because we have retained the most important feature, which is that
if the length of the correction must be small, its direction is biased towards

the steepest descent direction of F(x).

- 15 -

5. The revision of 4

Usually we try to adjust A so that it is as large as possible, subject to the
condition that each Jacobian approximation provides a good prediction of the
differences {fk(5+§) - fk(5)§, k=1,2,444,0, because we would like to decrease the
sum of squares F(ﬁ) on every iteration, without taking extravagantly small steps.
The initial choice of A is specified in Section 8, and now we just discuss the
method for changing its value, This adjustment is made by instructions 241 to 256
of the Fortran listing.

Before beginning this part of the subroutine, we have calculated the function
values fk(5+§), K=1,2,4..40, and the sum of squares F(§+§). Also we have predicted

these quantities, using the Jacobian approximation, the predictions being

n
¢ = (%) + > g &5 % Ti(xed) (33)
ld
J=1
and
n
=,

K=

-t

The method for revising A depends on the goodness of these predictions, and in
particular we note that Q is calculated in such a way that 3 < F(ﬁ), S0 we expect
the new value of the sum of squares to be less than the old one.,

If the actual change in the sum of squares is worse than the predicted change,
it is due to a combination of the two factors which we mentioned in Section 3. One
is that, even if the current Jacobian approximation is correct, there can be errors
in the expression (33), due to the non-linearities of the functions fk{§). The
second is that there are errors in the Jacobian approximation itself, due to the
fact that J is assembled gradually, so some of the information in J is liable to be
rather inaccurate due vv the fact that it was obtained at peoints that are remote
from the.current value of X. Both errors usually become smaller if A is

decreased,

- 16 -

Therefore the subroutine reduces A if F{x+§) » F{x), but also 4 may be made smaller
when F(Efé) < F(z). The reason for this is that we are not satisfied if a reduction
in the sum of squares is much less than the predicted reduction, so instruction 242

tests the inequality

F(x+8) > F(x) ~ 0,1 [F(x) - 8} , (35)

and if it holds we replace A by the value

max (%A, DSTEP), {36)

We do not let A become less than DSTEP, because, if the user of the subroutine
follows the advice of Section 2, the lower bound on 4 will permit an adequate
Jacobian approximation, A lower bound is needed, because there is a danger that the
value of expression (21) will be daminated by computer round-off errors when § is
very small,

If the inequality (35) is not satisfied, either the value of A remains the same ,
or it is increased, The justification that we give to support the method for
increasing A is tenuous, but numerical examples show that the results of the method
are quite satisfactory,

DY

The basis of the method is that we attribute the differences §fk{x+,} = @l

{6

k=1,24¢+4,n, to terms that are of order Az, 80 if we multiply A by the factor i,

we expect the differences to be multiplied by about kz. Guided by this assumption,
we estimate the value of % that would just cause the condition {35) to fail, We
ignore the fact that a larger value of A will lead to a different value of @, and we

Calculate the value of A that makes the expression

\ _2
2{; [}fk(§+§)l + (xz-l)!fk(gfg} - & ? (37)
K

equal to the right-hand side of the inequality (35). This value is obtained by

instruction 252, which sets

DMULT
.
SF + (SP.SP + DMULT.SS)?

‘}\‘2=|+

) {38)

- 17 -

where

DMULT = F(x) - O.1 {F(x) - &} - F(x+3)
n
SP = Z £, x08) {1, (x48) = b,]! (39)
k=1
n
. 2
8S = i, (x+8) - ¢, 1 .
Z k k
k=1

The critzrion for increasing 4 depems on the value of expression (38),

We calculate) whenever condition (35) shows that A is not too large, but by
trying different strategies on some test problems, we found that it is best not to
scale A by A whenever » is calculated. One reason for this is that even when 4 is
reduced to expression (36), the function values fk(zfé),'kzl,z,...,n, can provide
such a beneficial change to the Jacobian approximation, that, on the next iteration,
multiplying the reduced step length by) would restore 2 to about its original value,
Usually this step length would have to be decreased again, so some of the strategies
that we tried caused inefficient oscillatory behavicur,

We found that the oscillations are avoided {(except in the case of an extreme
example, reported in Section 9) by the simple expedient of increasing & only when
two values of)\ have been calculated, and they must both have been obtained since the
last reduction in A. The factor by which a is multiplied is equal to the lesser
value of)\, except that we are cautious, and ensure that the factor is never
greater than two, and that A is bounded above by DMAX, To apply this strategy we
introduce a parameter v (the variable "TINI" of the subroutine is equal to TB}, which
is set to the value one both before the first iteration, and also whenever the step

length is reduced, Immediately after calculating)\, we obey the instructions

=
it

min (2,),7) ’2
Vu i (40)
min (uA,DMAX) J t

3
il

o
i

and it should be clear that they increase 4 jin the required way, Note that we

permit consecutive iterations to increase the step length,

- 18 -

The value of A may also be revised in the block of programme that calculates 5 ,
according to the method of Section 4: instruction 121} changes A to the value
max(] |y}|,,DSTEP) if § is set to the full Newton-Raphson correction (24), We do
this because consecutive successful Newton-Raphson corrections tend to decrease in
length (due to the quadratic convergence properties), and we do not want 4 to be much
larger than ||8]l..

6. The revision of J

The subroutine revises the matrices J and J-l in instructions 273-309. We use
the notation H in place of J_], and we let the revised matrices be J° and H ,

Already we have stated, in equation (23), that the formula

=3+ - 38 5/]1801° (a1)

is usually used, and the companion formula defining H* is
% o T ,
H' =H+ (§ - Hy) 5 B/(5 Hy) , {42}

where the superscript "T" indicates a row vector. However it can happen that the
scalar (QTHx) is zero, so the subroutine takes special steps to prevent a very
larée increase in the size of the elements of H*.

In fact the formmulae that are applied depend on a parameter o, and the actual

revision is specified by the equations

T =3+ aly - J38) 5/]18]1°
(43)
(g-Hy) &'H
H* =H + a T 2
a(§ Hy) + (1=a) |]8}]
To avoid singularity, instruction 295 tests the inequality
T |
[T | 5 001 [isl]? (44)

and if it holds the value a=1 is used, Otherwise instruction 296 sets a=0.8, s0
in all cases we ensure that the modulus of the denomipator of the expression for e

is at least O.1 I{gtlz. The rumber O, 1 was chosen empirically,

- 19 =

Note that the application of the formulae requires only of order n2 computer
operations. Note also that if H is the exact inverse of J, and if there are no
errors in the calculation, then H' is the exact imverse of J*, We show later that
coamputer rourd-off errors do net spoil the calculation,

We want the form:la (43) to have the property that J° i bett~r than J as an
approximation to the true Jacobian matrix, A detailed discussion of this question
is given by Powell (1969), ard he shows that if the vectors Xy obtained by tie
succeszive jterations of the algorithm, converge to a point g, then, under milg
differentiability conditions on fk(g), k=1,2,,..,n, the successive Jacobian
approximations converge to the actual Jacobian at g. To make this statement
plausible, and to give the reader same confidence in the formulae (43}, we repeat
a remark (Broyden, 1965) that applies in the simple case when the functions
fk(f) ére linear: say they are defined by the formula

n

e

k¥ Z_J T

=]

fk‘«)f} = ¢ X k:‘,z,ouw,n" {45‘?

j’

L

50 J is the true Jacobian matrix, which is independent of X Broyden notes that,

because the definition (21) provides the relation

_"‘{:35; (4’6}

-~

the formula (43) leads to the identity

/ S8 N
(J* -7 = -7 <I-—c,r — 1. (47)
: lisli®/

This relation between the error (J*~J) and the error (J-3) is very satisfactery,

because it gives the inequality

b - "’:2 r'-"*

N ka*) TN EP RN I kN § , (48)
AN lij {_J - I

ij i

and the imequality is strict unless

16=768 . (49)

Therefore an iteration reduces the Frobenius nom of the error of the Jacobian
approximation, unless the predictions (33) and (34) are exact, in which case we
expect to obtain a substantial reduction in F{x).

Because of the above remarks, the Jacobian approximations J are adequate, But
we need to consider the possibility that rounding errors of the computation may
cause the matrices H to be useless, Because we modify the matrix H on every
iteration, and every modification introduces some error, we are concerned that after
many iterations the cumilative effect of small rounding errors may be disastrous.
Fof'tunately this does not happen, because a property of the pair of formulae (41}
and (42) is that the discrepancies between J* and {H*)—} tend to be less than those
between J and H_1 in the following sense. Even if H is not the inverse of J,
then the identity {Powell, 1968b)

T
; N R
; (50)

'8 /

fe 2]

o

2
12

(J* - iﬂ*§—1 \ - (J - H-l) (1 _
/ S

is satisfied, provided that exact arithmetic is used, Therefore the discrepancy
(J-H-t) is multiplied by a projection matrix, which suppresses the accumulation of
error, Moreover, because the method of the algorithm maintains linear

independence in the successive directions é, the cumulative effect of the projection
matrices is particularly favourable,

Te Maipntaining linear indep~ndence

We remarked, in Section 3, that the method for revising the Jacobian approximacion
is such that we should avoid linear dependence in the directions ¢ that are generated
by the successive iterations of the algorithm. The calculation of Section 4 often
tends to provide dependent directions, s0, in accordance with the flow diagram
of Figure 1, the subroutine inspects the directions é, and occasionally extra
directions are introduced to ensure that independence is maintained. This part of
the calculation is carried out by instructions 150-228 of the Fortran listing in
the Appendix, and now we describe the details of the method that is used,

For the purposes of the algorithm we depart from the usual strict definition
of '"linear dependence", because we want "indeperdent directions' to be separated by
a substantial amount. We say that the vector § is independent of a set of
directions, (g‘,gz,...,gj) say, only if the least angle between é and some vector in

the space spanned by the directions is not less than thirty degrees, In the sense

- 21 -

of this definition, the subroutine ensures that, for most values of k > 2n, the

Q(k—2n+l) (k)

directions é(k-Zn), span the full space of the variables, where

,o-‘,é

_3“’) is the direction that is used in the revision of the Jacobian matrix on the

tth iteration,

The exceptional values of k occur because, if Q(k) is equal to v (see equation

(24}), then we accept é(k‘)

(é(k—?.n) , é(k-ZIH-I) ,

even if it is dependent on the set of directions

(k'”),. We make this decision because v is such that the

scesd
sum of squares of residuals F(g\ﬁg) is predicted to be equal to zero. If this
prediction is a good one, then our choice of g(k) is very successful, ard if it is
not realised, then equation (47) shows that the resultant revision of the Jacobian
matric is substantial. Therefore, in both cases, the iteration is useful in some
way.

The nxn matrix (0 and the vector w, Which has n integral components, are used
to store the history of previous iterations that is needed to meet out requirements
of linear independence, To be precise, we suppose that we are about to commence
the kt’h iteration, so we have just revised the Jacobian matrix, using the

(k-1)

correction vector §_ The purpose of ® is to provide the answer to the

question: '"for j=1,2,...,n, what is the least integer i{j) such that the i(j) most

ki@

recent correction vectors, é(k_i), Q(k'z),.. y Span j dimensions in the

space of the variables", the answer to the question being the identity

1(J) = wm‘-‘}, j=1,2,.ao,n. (5‘}

Thus the case j=1 shows that we always have mn=1, and further consideration of the
question implies the ordering Wy > Wy > see > W Another illustration of the role

of w is that if wy = 20, say, we know that the full space of the variables is

spanned by Q(k-zo)’ é(k—ng) (k-1) (k—-!Q),

a(k—m)

™

secesd » While the directions]

(k~1) are "linearly dependent',

,oco,é
The columns of () are n orthonomal vectors dys 52"“’£n’ calculated so that,

for i=1,2,,..,n, the vectors Q-n—j-f-l’ Qn~j+2"“’9n are a basis of the

J~dimensional space containing the i(j) correction vectors é(k-”, Q(k'm,...,é(k.l(j)).

Ther=fore, for instance R gn is defined by the equation

-22 -

(k—!)/ ’ (k—l)i (52)

tg ¢
It should be clear that the information in w and 0 is sufficient to discover whether
the vector g(k), generated by the method of Section 4, is "sufficiently independent",
Because our purpose is to span the full space of the variables by seqguences
of (2n+1) directions, there is no need to modify g(k) if the previocus (2n-1)
(k=2n+1) _(k-2n+2) (k-1)

vectors, ko) s & seeoy § already span the space, Therefore

-~

instruction 158 of the Fortran listing tests the inequality

s (k)

and we consider changing the dlrectlon » generated by the method of Section 4,
only if the inequal ity holds,

Even if the inequality (53) holds, we do not change i(k} if it is already
independent of the directions (d ’«5""!d)o To test whether this is the case, in
accordance with our definition of "linear independence”, instruction 159 tries the

condition

(k) ¥ (k){{

8™, a0l <% |ls 27 (54)

where the left hamd side is the modulus of a Euclidean scalar product, if the
irequality (54) fails, then‘é(k) includes a substantial component of dy, so we leave
N(k) unchanged. Otherwise, if both the conditions (53) and (54) are satisfied,
and if 6(k)£v, then it is necessary to replace 5() to maintain sufficient
independence in the successive vectors that are used in the updating of the
Jacobian matrix.

(k)

The replacement of Q is made by instructions 161-174 of the subroutine,

which set
(k)

= DSTEP d, ; (55)

8 4

we choqse a multiple of 91, because () is constructed in such a way that the
directions used to update the Jacobian during the last (w1~’) iterations are all
practically orthogonal to g . These instructions also prepare the elements of
and @ for the rext iteration, changing the columns of " t“‘dg'ms’*'°’d '91' ard the

elements of w to

=1+ @,
Wy Div1?

i=1,2,-..,n"l
} (56)

w_ =1

(k)

In the usual case when Q is not the special step {55}, and when the correction

(k)

Q is not so small that

(k)!lz < DSTEP (57)

Is

(this case is treated in Section 8), the updating of 0 and of w is less easy.

® K

We let the required new orthonormal directions be d!’ﬂz"“’g;’ and the new positive

-~

integers be w’;, w;,...,w;, and they must be calculated to provide the correct
information about the linear independence for the next iteration. Therefore, for

example, we must set

q* =+ é(k)/l ‘Q(k}i 62
* {58)
1

(x)

Further, from the definition of O and of w, we find that, if § is "indeperndent" of

d_, we must obtain the results

~n
% (k)
1 =P 4+ B 8 .
. { (59)
Wy = 0p + 1 J

where the parameters 8, and B, are calculated so that g;__‘ is normalised and is

orthogonal to g; N

(k)

Continuing inductively we see that, if) is independent of the vectors

2,...,53“, then gj must be the linear combination of d.

~j+1? gj+2""’gn and

gj-kl’ Ej-o-
k) (k) that is calculated to make the new directions orthonormal; also w;f must be

set to the value

w‘f:w. + 1 . {60)

(k)

; . *
Howvever if §_ is deperdent on the vectors Q‘j+1’gvj+2”"’g-n’ then EJ' includes a

. {k)
component of gj with some linear combination of the vectors EJH’ 5j+2”“’gn and é .

and again g,_} is calculated to be normalised, and to be orthogonal to g;_” ,

9.2-2"“’9;1' In this case it is necessary to set

- 24 -

W, = w, + 1. (6])

Fortunately, because the vectors g,,gz,...,gn are orthonormal, this updating of
1 and @ requires only of order n2 camputer operations, for we can use the idea
described by Powell (1968a). We now give the details of the updating process.
(k)

It is carried out by instructions 176-228, and first we express Q in tems

of the old directions

n
8o N o g, (62)
/[

the multipliers a; being calculated by instructicn 183 from the scalar products

Q. = (é(k), El), i=1,2,...,n . {63)

(x)

According to our definition of linear independence, Q is independent of the

directions 23+1'93+2’“"3n if and only if the inequality

oy 5 % |18%117 (64)

e

-
I
—

is satisfied. Therefore instruction 190 calculates the least value of j, m say,
such that the inequality (64) is obtained, and, in accordance with equations (60} and

(61), instructions 186 and 194 define

+ 1, J=my mtl,eee,n—1
} (65)

Cors 3 G 3

= ‘,2,0-.,““'1 .

e
}

w; + 1
j ’

(k)

Note that the definition of m ensures that contains a non-zero component

of »gm' Therefore, for j < m, we can let gj be the linear combination of the (n—~j+1)

(k)

vectors d.,d 1,...,ci d ’9m+2""’-gn and 8§, which is nommalised and which is

~ji~j+ ~m=1? ~me+1
orthogonal to g} +1? g:}' +2,...,g:. This is how we take up the freedom (noted in the
text between equations (60) and (61)), due to the fact that, for j < m, g;f is some

linear combination of (n~-j+2) vectors, which has to satisfy only (n-j+1) conditions.

- 25 -

It is convenient at this stage to eliminate the dependence on m by changing
the order of the columns of) to Qm’-gl ’22'""%-1’%1""'9:;' This operation
is carried out by instructions 197-207, and the corresponding scalar products (63) are
reordered to conform. We now call the reordered directions 31’22”"’5:1’ and we note
that, using the new nomenclature, we have to calculate g} (j=n, n-1,,..,1) to be the

(k), d ,d d that makes the new matrix (0 orthonor—al,

linrear cambination of § 9nodnapreeendyyy

The camponents of the required new directions are calculated by instructions
208-228, First instruction 209 sets.a working space vector, o say, to zero, and
then a number, s say, is set to the value a.? by instruction 211, These quantities
are used in a "do loop" to obtain the vectors g’;,g;,...,g:_i. Specifically, for

i=2,3,40e4n, we apply the operations

= i . d.
L=+ 50 Sy

2

k = -
d]_(s gi ay Ef) /\ s(s+a’

dai_ " (66)

S"S+£12
= i »

Finally g; is obtained directly from equation (58), It is straightforward to show
that this process generates the required elements of () {Powell, 1968a), and also that
the process is stable against the effects of computer rounding errors. The
description of the method for maintaining linear independence is now canplete,

8. Other details of the algorithm

In order to start the iteration, outlined in Figure 1, we need values for the
quantities listed in the second paragraph of Section 3, namely (i) Xs an estimate
of the solution of the equ‘ations, and the corresponding function values fk(-’i)
(k=1,244..,n), (ii) the approximation J, of the Jacobian, {iii} the matrix J ',
(iv) the elements of 0 and , and (v) the step-length A, The initial value of x is
specified by the user of the subroutine, and the corresponding function valués
fk(z_c) are obtained by the initial call of "CALFUN",

The initial elements of J are equal to finite differences, like expression
(12), lSpecif‘ically instructions 70-80 of Appendix A evaluate the numbers

;o fi(i‘ + Dfiav Ej) - fi(l()
ij DSTEP ’

i,J=!,2’no.,n, (67)

- 26 =

where EJ is the nomalised jth coordinate vector. Later in this section we will

find that these finite differences are also calculated at another stage of the subroutine,
Instructions 81-92 calculate the initial elements of J_l, by calling the

library subroutine that inverts the matrix J.
For definiteness and simplicity, initially) is set to the unit matrix {by

instructions 87 and 89), and instruction 90 specifies the values

w; = mi-i, i=1,2,...,0, {68)

Consequently on the first iteration the method of Section 7 is applied, supposing
that already n iterations have been carried out, and that the coordinate directions
were used in the updating of the Jacobian matrix. This supposition governs the iest
which decides whether it is necessary to revise the values of & generated by the early
iterations, in order to obtain "sufficient independence', Indeed, because of the
condition (53) and the choice (68), the special formula {55) is not applied during the
first n iterations, and it is not needed if the value of DSTEP accords with the advice
of Section 3, for then the choice (67) will be good. Numerical examples confimm that
this initial assignment of numbers to the elements of (0 and w is adequate.

"The initial value of A is calculated duiing the first iteration, and it is set
to the quantity u||g||, which is defined by expressions (25) and (27), except that
we demand the inequality DSTEP < A < DMAX, In the subroutine it is more convenient

to work with A2, S0 instruction 141 sets the variable DD to the sguare of

A = max (DSTEP, min[DMAX, u!|gl]]). (69)

We decided on this value by considering its effect on the first iteration. it
influences the calculated correction vector §, but, because of the method of Section 4,
the range of all possible values of 8 is very limited. Among these values, the

basic ones are the full Newton-Raphson correction y, and the best predicted
displacement along the steepest descent vector of F(E)' However if X happens to be
such that J is nearly singular, then usually l]xlf is unacceptably large, so it seems
adequate to let the first iteration calculate S=ug. Therefore, remembering the

inequality DSTEP < A < DMAX, the choice (69) is appropriate,

- 27 -

Sections 3,4,5,6 and 7 cover most of the points of the iterative process that
require explanation. For instance, among the unexplained points, the primting of
function values (instructions 59-63), and interchanging x with x+§ if F(5+§_) is less
than F(x) (instructions 257-267) are straightforward, However we will discuss in
the remainder of this section same of the Fortran instructions connecting the
separate parts of the subroutine, the case when ||§|| < DSTEP (see expression (57)),
and the conditions for finishing the execution of the subroutine,

Among the instructions connecting the different parts of the subroutine, the most
important is the one numbered 64 (we are still referring to the numbers in the
extreme left hand column of the Fortran listing). It is reached after every call of
CALFUN, unless a conditien for returning to the calling programme is recognised first.
We see that it switches the flow of the subroutine tc one of five separate points,
depending on the value of the integer IS, We now distinguish the five possible
values of IS,

1S is equal to five only for the first call of CALFUN. In this case
instruction 64 switches to the block of orders that calculates the initial Jacobian
approximation (67).

. To apply formula (67), n separate calls of CALFUN are needed, During this
operation IS is equal to three,

The other values of IS are appropriate to the calaulations of fk(f'é) that are
specified in two of the boxes of Figure 1. The value I8=2 is reserved for the case
when {5 is set to the special value (55}, when the results of CALFUN are used just to
update J. Therefore, if IS=2, instruction 64 branches directly to the part of the
programme that revises the Jacobian approximation.

Alternatively, when § is defined by the method of Section 4, IS is set to
either one or four, the value IS=4 being reserved for the case when |[§|| < DSTEP,
which we discuss below, For IS=1 we branch to the instructions that revise A (see
Section 5), and for IS=4, after branching to the part of the programme that inter-
changes x with x+§ if F(x+8) < F(x), instructions 257 and 268 lead to the orders that

change the value of § to expression (55),

We take special action in the case H [} H < DSTEP, which is recognised by
instfuction 124, because we have decided that, due to rounding errors, it is umwise
to use such a small displacement to update J. However we do revise the Jacobian on
every jiteration, so, for this revision we have to assign a special value to the
vector Q. The information in O and in w suggest that the choice (55) is particularly
suitable, and this is the value of S that is selected, by the process described in
the previous paragraph.

Cilearly the revision of ¢ and w also requires special treatment in the case
I[§|] < DSTEP, beccuse the elements of () and w concern the directions that are used
to update the Jacobian matrix. Therefore, after instructign 124 has found
IIQ‘I < DSTEP, instruction 126 branches past the part of the programme that applies
the method of Section 7. However, later in the iteration when § is changed to the
value (55), we alter the célumns of 0 t0 d,ydzseee,d s 91’ and the elements of w to
expression (56), in preparation for the next iteration.

The behaviour of the algorithm when ||§|| < DSTEP is such that it is very
important to choose a sufficiently smai! value of DSTEP, for otherwise the subroutine
may fail to calculate the required solution of the equations, The reason comes from
the observation that our requirement A > DSTEP and the inequality (26) imply that,
if the length of v does not exceed DSTEP, then the method of Section 4 invariably
sets d=y. In other words we always try and follow the ummodified Newton-Raphson
iteration, defined by equation (3), uniess {|§|| > DSTEP. But we stated in
Section 1 that the classical iteration (3) is liable to diverge unless X is
sufficiently close to a solution of the equations, so the user of the subroutine must
ensure that DSTEP is set to such a small value that, if the solution of the
equation (3) satisfies |[§|| < DSTEP, then we will obtain F(x+8) < F(x). Otherwise
our subroutine may never replace X by x+8.

This remark is illustrated well by Rosenbrock's (1960) equations

1o(x2—xf) -0 } o0
70

fzzi-x1=0

e

- 29 -

Suppose that we have reached a value of (x! ,xz) satisfying x2=x$, and it happens that
the Jacobian approximation is exact., Then we have F(x) = (l-xg)z, ard it is
straightforward to work out that, if $ is the solution of equation (3), then
F(x+8) = 100'(l-x‘)4. In other words F(x+5) < F(x) only if 0.9 < Xy < 1.1, From this
calculation we see that if X, € 0.9, ard if § }3‘} < DSTEP, there is a real danger that
our subroutine persistently calculates values of 8 satisfying F(gg-t-g) e F(§), and so
the estimate (xl,xz) is not improved, The difficulty is avoided if a sufficiently
small value of DSTEP is chosen,

Two of the five conditions, specified in Section 2, that cause the subroutine
to finish are straightforward, - They are the test (made by instruction 29) to find
out whether the accuracy (14) is obtained, and the test on the total number of calls
of CALFUN (made by instruction 55), Moreover the test to discover whether a
sequence of (n+4) iteratiohs fails to decrease the sum of sguares of residuals is
camplicated only by the fact that certain iterations may not be members of the
sequence, namely those for which 8 is the special step (55), and those for which
l|8]] > DSTEP. It is applied by instructions 38-42,

We now describe the fourth condition for returning from the subroutine.

Instruction 109 tests the inequality

gli, s (71)

F(x) > 2.DMAX.

where &, defined by equation (26), is equal to the predicted gradient of F{z}
multiplied by -%. If the inequality holds, we may leave the subroutine, because aof
the danger of converging to a minimum of F(gyc) that is not a solution to the equations.
We chose this test because it suggests that there is no solution to the equations
within distance DMAX of x (see Section 2 for the definition of DMAX), for, if there
was such a solution, then the mean gradient of F(?E) along the strg-ight line joining
X to the solution would exceed ||g||,, which is unlikely because (i) the true
gradient of F(x) is equal to zero at any solution of the equations, and (ii) the
number | |g| 52 is the greatest predicted gradient of F(x) along any line in the space
of the variables, However the test will hold near any stationary point of the sum
of squares of residuals, which is the reason for the wording of the diagnostic

printing that is given.,

- 30 =

We do not necessarily leave the subroutine if the inequality (71) holds,
because the test may be satisfied only because the Jacobian appr-oxim;ion ig wrong.
Therefore usually when a local minimun is suspected, the elements of J are re-
calculated using the finite difference formulae (87), after which a new iteration is
begun, J is not recalculated only if the Tormulae (67} were applied during the next
previous iteration, in which case the condition (71) causes the subroutine to finish.

The last condition for returning to the calling programme is when an iteration
uses a completely new Jacobian approximation (67), when HQH < DSTEP, and nevertheless
the iteration does not obtain the reduction F(§+§) < F(x). It is identified by the
first branch of instruction 42, for NTEST is set to zero by instruction 1i4, e
prefer to leave the subroutine in this case because, if DSTEP is (as it should be)
s0 small that the functions fk(zg) (k=1,2,...,n) are practically linear over
neighbourhoods of width DSTEP, then the failure to attain F(x+3) < F(x) is probably
due to rounding errors (or programming mistakes) being significant.

9 Numerical examples

The examples of this section are intended to illustrate typical behaviour of
the method, and for comparison with existing algorithms, They were all worked out
by an I.B.M. 360/65 camputer in single precision arithmetic,

We begin with the well known problem {Rosenbrock, 1960): calculate {:vc1 ,xz)
to solve the equations (70), given the starting approximation {-=1.2,1.0). We chose
the parameter values DSTEP = 0,01, DMAX = 10 amd ACC = 0,000001, and found that 28
calls of CALFUN were required by the subroutine. The values of (xg,xz,f,‘,fz,f?}
for every call of CALFUN are given in Table 1.

The asterisks in column 1 of the table indicate the calls of CALFUN that were
made just for the fevisio-n of the Jacobian approximation. The second and third calls
provide the initial approximation, the eighth, twelf'th, eighteenth and twenty second
calls ensure "sufficient independence", and the twenty seventh call was made in
accordance with the discussion of Section 8 on the case *‘ k) ‘% < DSTEP.

Table 1 also provides a good illustration of the method for changing the step
length As Initially the value of A is 0,1727, and at the ninth call of CALFUN it
has increased to 0,3568, However the tenth evaluation of F(xl,xz) showvs that o
needs to be halved, and in fact A is halved again after the fourteenth call of
CALFUN to the value 0,1078 (this amount is greater than one quarter of 0.3568, because

A is increased after the thirteenth call of CALFUN). The value 4 = 00,1078 is

-3 -

TABLE 1

Rosenbrock's example

2 X, £ 1 f‘2 F
‘ -1'@2‘303 . ‘oam _404000 2»2050 24. ‘999
2{x) -14 1800 1.,0000 —4, 1610 2» 1900 22,1099
3(x) ~ 12000 1,0100 4, 3000 202000 23,3299
4 "‘! ai)$02 2«%55 "Oo 1663 ' 42.0402 4“0 3903
5 -0, 9645 0,510 | -0.1885 1.9645 3.8B985
6 ; ~()s8380 0,6832 -, 2078 ; 1.8380 344252
7 | ~0,7038 0.4618 0, 3322 1. 7036 3.0126
8la) ~,6951 - D.4671 -0 1607 11,6851 2.8991
G © 4893 0.1785 | -0,6288 14853 2.6135
4 10 =0, 2520 -3, 0706 - 16 2447 1, 2320 3,0671
11 -, 3278 0, 1007 ~0,0671 1.3278 1, 7676
12(%) ~(3,3236 0, 1088 00,0511 . 1,3238 1. 7544
13 041825 -0 ,0028 ~3,3612 1. 1825 1,5288
14 0,0216 - =0.0724 w3, 7285 00,9784 1.4884
15 0. 1204 ~0.0291 -0,4365 0,8796 0,5541
16 0.2123 040273 Q777 G 7877 0.6320
W7 0.3433 0.0888 34 2909 0.56567 ' 0.5154
1 18(x) 0.,3476 | 0079 ~0 44108 0.6524 0.5545
19 (.4867 01942 -3 ,4270 - 0.5133 0,4459
20 00,5985 0,3326 4 2569 34015 0, 2272
¥al 0.7128 | 0.4822), 2587 09,2872 0, 1494
22() 0.7208 00,4762 -0 4334 0.2792 0, 2658
23 0,8372 | 00,6691 ~0,5182 ! 0. 1638 0, 1277
i3 : 049431 0.8670 ~0,23248 {0,0569 0,05638
25 10000 0.3937 ~0, 06833 0. 0000 0, 0040
26 10000 1.0014 0.,0144 3, 0000 0,0002
27(%) $.,0091 069973 =0, 2098 «0. 0091 0,0441
28 150000 1,0000 00003 0, 0000 0, 0000

- 32 -

increased progressively by the subsequent iterations, until, for the twenty fifth call
of CALFUN, § is equal to the full Newton-Raphson step (24).

The fact that our programme requires 27 evaluations of (f1 ,f2) to solve the
equations (70) compares favourably with other methods: Powell's (1965) method
requires 70 evaluations, Broyden's (1965) methods require 59 and 39 evaluations, ' .le
Fletcher's (1968) method calculates (f‘,fz) between 30 and 90 times, deperding on tie
value of a parameter,

However comparisons with other mgthods are more interesting when there are more
than two equations, so we have tried the subroutine on the system {Fletcher and

Powell, 1963)
n
5=t

The elements Ai and Bij are uncorrelated random integers between -100 and +100, and

J
the numbers E, are calculated to accord with a particular solution {x’;' ,x;,...,x;),
where each component xz is selected randomly from {~u,z). The initial estimate of
(xI,x2,...,xn) is 35* + 0.1 1, where, for i=1,2,...,n, n is another random mumber
fram (=n,x)s We chose the subroutine parameters DSTEP = 0,001, DMAX = 2 and

ACC = 0.001, and applied our programme for n=5,10,20 and 30. For each value of n,
two systems of equations (72) were solved, the different systems being generated by
different rardom rumbers. The number of calls of CALFUN that were required are given
in the last column of Table 2.

Also in Table 2 we quote the number of calls of CALFUN that are required hy some
ather methods on the same test problem. The method due to Powell (1965) is designed
for non-linear least squares calculations, but it has been used very succes:¥ 'ly on
systems of egquations, while Rosen's (i966) figures were obtained using a hvbrid
procedure, derived from the methods of Barnes (1965) and Broyden (1965). Because
Rosen reports that his figures are superior to those he obtained using Barnes's and
Broyden's methods separately, the new algorithm seems to compare very favourably with
four other techniques.

We also compare our method with Fletcher's (1968) recent algorithm, but
unfortunately he does not use the test problem (72). Instead he prefers the "Cheby-

quad" equations, defined in Fletcher (1965), which detemine the abscissae of the

Chebyshev quadrature formulae (see Hildebrand, 1956, for instance). %o apply our

- 3T -

TABLE 2

Number of calls of CALFUN to solve the system (72}

n Powell's Rosen's This
method figures method
5 24 44 1%
5 24 24 12
5 24
5 25
1 31
10 38 45 19
10 34 48 23
10 68
10 46
10 39
20 45 93 36
20 65 86 36
20 102
.8 106
20 86
30 75 135 47
30 61 43

programme to this problem we chose the parameters DSTEP = 00,0001, IMAX = 0.5 amd

ACC = 04,00000001, The consequent number of calls of CALFUN is given in Table 2y and
this table also displays the number of function evaluations reeded by Fletcher's
algorithm,

TABLE 3

Number of calls of CALFUN to solve Chebyquad

n [Fletcher. Fletcher This

4 decimals| 6 decimals| method
2 15 19 7
4 40 40 14
6 73 92 34
8 340 838 204
9 174 181 46

The two columns of figures quoted for Fletcher's method are the number of
function evaluations needed to obtain the components of X to four and to six decimals
accuracy; our choice of ACC yields about four decimals accuracy., The case n=8 is
special becausge there is no eight point Chebyshew quadrature formula, Therefore the
corresponding system of non-linear equations has no solution, and S0 our procedurse
terminated with the error message "Error return from NSO1A because a nearby statiopary
point of F(x) is predicted”. Fletcher's algorithm also identifies the lack of a
solution, but it is more sophisticated in this case, for it calculates the value of X
that minimizes F(g), which accounts for the large number of function evaluations needed
to improve the accuracy of x from four to six decimals,

The example given in the appendix illustfates the steps of the iterative process
when a local minimum of F(x) is found. It is the system of equations {75), due to
Freudenstein amd Roth (1963). We note that only three iterations are needed to
reduce F(x) fram 1256.0 to 54,15 (the value at the local minimum is 48.98), the length
of the step of the third iteration being ||§|| = 1.1771. However the sixth to ninth
calls of CALFUN each cause A to be halved, and so the step-length is reduced to
0.0736; Moreover, because it happens that F(§+§) > F(x) for the fourth, fifth, sixth
and seventh iterations, J is revised substantially, Consequently a nearby
stationary point is predicted after the tenth call of CALFUN, and so the eleventh and

twelfth calls of CALFUN calculate function values to derive a rew Jacobian

- 35 -

approximation, in accordance with the difference formula (67). Using this new
Jacobian, the test (71) is not satisfied, so the thirteenth call of CALFUN is made,
and it leads to a sucecessful reduction in F(g{_). However, for the new value of X, a
nearby stationary point is again predicted, and it is confirmed by the matrix J
resulting fram the fourteenth and fifteenth calls of CALFUN, Therefore there is an

error return from the subroutine,

Cur final nunerical example shows a badly scaled and difficult probliem, We
have stated that, because we measure step-lengths in a Euclidean metric, it is
preferable to scale the separate variables Xy ,xz,...,xn 80 that their magnitudes are
comparable, but it is interesting to discover what happens when this advice is not
followed, Therefore we applied the subroutine to the system

lOOOOx1 x2=1

(73)
-X -X
= 1.%! »

[¢:]
+
o
t

starting at the estimate (xl,xz) = (0,1)s The other input variables were set to the

values: DSTEP = 0,001, DMAX = 20, and ACC = 107/, After 223 calls of CALFUN, the

accuracy criterion (14) was satisfied, and the final values of the variables were

-5 : -
Xy = 1.106 « 10 , Xy = 9.038, although the solution is Xy = 1,098 « 10 5,

X 9. 106, Some of the 223 values of F(xl,xz) that were calculated by the subroutine

2
are listed in Table 4,

In fact Table 4 records the number of calls of CALFUN that were required to
reduce F(x1,x2) to less than lok for k=1, 0, =1,444,~10, In case the figures
suggest to the reader that the slow convergence is due to the limited accuracy of
single length arithmetic, or to a programming mistake, or to a poor choice of the
parameter DSTEP, we must explain the difficulty of the example. It is that the
quadratic convergence properties of the Newton-Raphson process do not dominate

until the value of F(x,,xz) becames extremely smali,

-36 -

TABLE 4

Number of calls of CALFUN to solve the eguations (73

Cgﬁgugf Xy X 10° X2 Fxg,%,)
1 0.0000 1.0000 1.1353 » 10°
4 10.0004 1.0010 1.3492 » 107
15 7.9132 1.2560 | 8.1043 » 1072
21 4.2065 2.4662 | 8.5846 x 107
27 2,5948 3.8917 | 5.0809 x 107
33 2.1592 4.6422 | 9.6142 » 107°
51 1.7203 5.8132 | 8.2463 » 1070
77 1.4573 6.8624 8.7854 x 1077
13 1,2887 7.7601 9,9477 x 1070
159 1. 1805 8,4710 | 9.7010 x 1072
199 1.1274 8.8698 | 9,0726 » 10" '°
223 1. 1064 9.0380 | 7.3881 x 10”1

- 37 -

To be specific we suppose that (x‘,xz) satisfies the first of equations (73)
exactly, and that the full Newton-Raphson correction, defired by the system (3), is

applied. Thern (x‘,xz) is altered to (x1—h Xy XA x2), shere) is the expression

-X -X

e '+e 2 - 1.0001
A=
-X -X
2 1
X, € X, €
*y 0 %
~ 1000<e + e - l.OOOI) R (74}
X2 T
the number 1000 being the nearest integer to the value of the factor 1/ (xze -xie b

-X
at the solution to the equations. Now if we let (e

-X

e 2-1.0001) = ps wWe have

Ff(xl,xz) = pz, and, assmniqg the approximation (73) to be exact, we find that the

sum of squares of residuals after the iteration is bounded by the expression

2
F(x‘-‘,\ Xy XpHh x2)

A\

{10000 (x,-k x‘)(xzﬂ xz) - 13

-

::'A,4

- 10'?)t (75)

4

because of our hypothesis that 10000 x'x2=1. Therefore the iteration decreases the

‘2, so we cannot expect Table 4

sum of squares of residuals only if F(x;,X,) < 10~
to exhibit the quadratic convergence properties of our algorithm. Note that this
remark about the unmodified Newton-Raphson iteration applies even if the variables

x, and Xy are scaled so that they are of the same magnitude, because a property of

1
this iteration is that the change in F‘(x‘,xz) is indeperdent of linear transformations
of the variables,

We found that, in spite of the method that we use for adjusting the step-iength
(see Section 5), the example (74) leads to oscillatory behaviour in the value of A,
Specifically, after 30 calls of CALFUN, the behaviour of the alg: +ithm repeats itself
every four iterations: one iteration uses the previous value of A, the next
iteration uses a step-length that is close to or equal to the value 23, the rext
jteration uses half this step-length, and the fourth call of CALFUN is needed to
maintain sufficient linear independence in the directions that are used to revise the
Jacobian approximation, These inefficiencies can be avoided by changing the scale

of the variables,

- 38 =

10, Conclusion

Because this report contains so much detail, we conclude by isolating the
points that seem to be particularly important, The most prominent is that the
numerical examples indicate that the new algorithm is more efficient that its
campetitors, Much of this gain is obtained by two features: (i) the iterations do
not include any searches along lines in the space of the variables, so most iterations
require only one call of CALFUN, and (ii)} the correction vectors 5 interpolate between
the Newton-Raphson and the steepest descent corrections in a way that gives fast
ultimate convergence, and that is sensible when the estimate X is a long way from the
solution.

However a deficiency of the algorithm is that the user has toc make some decisions
carefully. In particular the parameter DSTEP must be so small that, for

t[é‘l < DSTEP, f, (x+§), K=1,2,...,0, is nearly a lirear function of # (the remarks

2on

of Section 8 on this question are more explicit), but it must not be so small that

the differences (67) are dominated by computer rounding errors. Also the user's
scaling of the unknowns (x‘,xz,...,xn) must be such that it is sensible to apply the
usual Euclidean definitions of vector scalar products and orthogonality. We admit
thaﬁ the assignment of suitable parameters was easy in the numerical examples of
Section 9, but the success of the subroutine on the trigonometric equations (72) is
encouraging, because these equations become very ill-conditioned as n increases. it
would be valuable to extend the algorithm so that DSTEP and the metric of the variables
are assigned automatically.

Finally we wish to state the opinion that our main strategy could provide very
good algorithms for many calculations that involve searching in many variable space.
This strategy is to have a step-length parameter A, and, on each iteration, a
correction § is predicted subject to |[5|| < A+ The step-length 4 is adjusted
automatically, according to the success of o Thus in many calculations one can

manage with only one rew value of the objective functions on each iteration,

-39 -

References

Barnes, J.G,P. (1965) "An algorithm for solving non-linear equations based on the
secant method", Computer Journal, Vol. 8, pp.66-72.

Broyden, C.G. (1965) "A class of methods for solving non-linear simultaneous
equations', Math., Comp., Vol., 19, pp.577-593.

Broyden, C.G. (1967) "Quasi-Newton methods, and their application to function
minimisation", Math, Comp., Vol, 21, pp.368-381,

Fletcher, R, (1865) "Function minimization without evaluating derivatives -
‘a review", Computer Journal, Vol. 8, pp.33-41.

Fletcher, R. (1968) "Generalised inverse methods for the best least squares solution
of systems of non-linear equations", Computer Juurnal, Vel, 10, pp.392-399.

Fletcher, R, and Powell, M.J.D. (1963) "A rapidly convergent descent method for
minimisation", Computer Journal, Vol, 6, pp.163-168,

Freudenstein, F. and Roth, B, (1963) "Numerical solutions of systems of non-linear
equations" J. Assoc, Comput, Mach., Vol, 10, pp.550-556,

Haselgrove, C.B., (1961) "The solution of non-linear equations and of differential
equations with two-point boundary conditions, Computer Journal, Vol. 4,
Pp+255=259,

Hildebrand, F.B. (1956) "Introduction to numerical analysis", McGraw-Hill (New York).,

Levenberg, K. (1944) "A method for the solution of certain non-linear problems in
least squares", Quart. Appl, Math,, Vol, 2, pp.164-168,

Marquardt, Donald W, (1963) "An algorithm for least squares estimation of non-
linear parameters", J, Soc., Ind. Appl., Math., Y2l. 11, pp.431-441,

Ostrowski, AM. (1966) "Solution of equations and systems of equations",
Academic Press {New York).

Powell, M,J.D. (1965) "A method for minimizing a sum of squares of non-linear
functions without calculating derivatives”, Computer Journal, Vol. 7, pp.303-307,

Powell, M.J.D. (1968a) "On the calculation of orthogenal vectors”, Computer
Journal, Vol. 11, pp.302-304,

Powell, M,J.D, (1968b) "A theorem on rank one modifications to a matrix and its
inverse", Report No., T.P. 355.

Powell, M.,J.D. (1969) "A hybrid method for non-linear equations", in preparation.

Rosen, Edward, M. (1966) "A review of Quasi-Newton methods in non-linear equation
solving and unconstrained optimization", Proc. 21st A.C.M. National Conf., pp.37-41,

Rosenbrock, H.H. (1960) "An autamatic method for finding the greatestor the
least value of a function", Computer Journal, Vol. 3, pp.175~184,

