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PRECONDITIONING ITERATIVE METHODS FOR THE OPTIMAL
CONTROL OF THE STOKES EQUATIONS∗

TYRONE REES† AND ANDREW J. WATHEN‡

Abstract. Solving problems regarding the optimal control of partial differential equations
(PDEs)—also known as PDE-constrained optimization—is a frontier area of numerical analysis. Of
particular interest is the problem of flow control, where one would like to effect some desired flow by
exerting, for example, an external force. The bottleneck in many current algorithms is the solution
of the optimality system—a system of equations in saddle point form that is usually very large and ill
conditioned. In this paper we describe two preconditioners—a block diagonal preconditioner for the
minimal residual method and a block lower-triangular preconditioner for a nonstandard conjugate
gradient method—which can be effective when applied to such problems where the PDEs are the
Stokes equations. We consider only distributed control here, although we believe other problems
could be treated in the same way. We give numerical results, and we compare these with those
obtained by solving the equivalent forward problem using similar techniques.
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1. Introduction. Suppose that we have a flow that satisfies the Stokes equations
in some domain Ω with some given boundary condition, and that we have some
mechanism—for example, the application of a magnetic field—to change the forcing

term on the right-hand side of the PDE. Let �̂v and p̂ be given functions which are
called the “desired states.” Then the question is how do we choose the forcing term

such that the velocity �v and pressure p are as close as possible to �̂v and p̂, in some
sense, while still satisfying the Stokes equations?

One way of formulating this problem is by minimizing a cost functional of tracking-
type with the Stokes equations as a constraint, as follows:

(1.1) min
�v,p,�u

1

2
‖�v − �̂v‖2L2(Ω) +

α

2
‖p− p̂‖2L2(Ω) +

β

2
‖�u‖2L2(Ω)

s.t.−∇2�v +∇p = �u in Ω,

∇ · �v = 0 in Ω,

�v = �w on ∂Ω.

Here �u denotes the forcing term on the right-hand side, which is known as the control.
In order for the problem to be well posed we also include the control in the cost
functional, together with a Tikhonov regularization parameter β, which is usually
chosen a priori. A constant α > 0 is added in front of the desired pressure to enable
us to penalize the pressure. We would normally take p̂ = 0. We specify a Dirichlet
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boundary condition with �v taking some value �w—which may or may not be taken
from the desired state—on the boundary.

There are two methods with which one can discretize this problem—we can either
discretize the equations first and then optimize that system, or alternatively carry
out the optimization first and then discretize the resulting optimality system. Since
the Stokes equations are self-adjoint we will get the same discrete optimality system
either way, provided the discretization methods are consistent between equations in
the optimize-then-discretize technique. We will therefore only consider the discretize-
then-optimize approach here.

Let {�φj}, j = 1, . . . , nv + n∂ and {ψk}, k = 1, . . . , np be sets of finite ele-
ment basis functions that form a stable mixed finite element discretization for the
Stokes equations—see, for example, [13, Chapter 5] for further details—and let �vh =∑nv+n∂

i=1 Vi�φi and ph =
∑np

i=1 Piψi be finite-dimensional approximations to �v and
p. Furthermore, let us also approximate the control from the velocity space, so
�uh =

∑nv

i=1 Ui
�φi. The discrete Stokes equation is of the form[

K BT

B 0

] [
v
p

]
=

[
Q

�v
0

]
u+

[
f
g

]
,

where v, p, and u are the coefficient vectors in the expansions of �vh, ph, and �uh
respectively,

K = [

∫
Ω

∇�φi : ∇�φj ],

B = [−
∫
Ω

ψk∇ · �φj ],

Q
�v
= [

∫
Ω

�φi · �φj ],

f =

⎡⎣− nv+n∂∑
j=nv+1

Vj

∫
Ω

∇�φi : ∇�φj
⎤⎦ ,

g =

⎡⎣ nv+n∂∑
j=nv+1

Vj

∫
Ω

ψi∇ · �φj
⎤⎦ .

Note that the coefficents Vj , j = nv+1, . . . , nv + n∂ are fixed so that �vh interpo-
lates the boundary data �w. In the above we have used the standard convention to
denote Gram matrices obtained from the set of vector-valued basis functions by an
underlined uppercase letter.

On discretizing, the cost functional becomes

min
1

2
vTQ

�v
v − vTb+

α

2
pTQpp− αpTd+

β

2
uTQ

�v
u,

where Qp = [
∫
Ω ψiψj ], b = [

∫
Ω �̂v

�φi] and d = [
∫
Ω p̂ψi].

Let us introduce two vectors of Lagrange multipliers, λ and μ. Then finding a
critical point of the Lagrangian function gives the discrete optimality system of the
form

(1.2)

⎡⎢⎢⎢⎢⎢⎢⎣

Q
�v

0 0 K BT

0 αQp 0 B 0

0 0 βQ
�v

−QT

�v
0

K BT −Q
�v

0 0

B 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

v

p

u

λ

μ

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

b

αd

0

f

g

⎤⎥⎥⎥⎥⎥⎥⎦ .

It will be useful to relabel this system so that we group together blocks represent-
ing the PDE and the mass matrices which come from the states in the cost functional.
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We label these blocks in calligraphic font. The system then becomes

(1.3)

⎡⎢⎣ Q 0 KT

0 βQ
�v

−Q̂T

K −Q̂ 0

⎤⎥⎦
⎡⎢⎣ w

u

ξ

⎤⎥⎦ =

⎡⎢⎣ c

0

h

⎤⎥⎦ ,
where Q = blkdiag(Q

�v
, αQp), K =

[ K BT

B 0

]
, Q̂ = [Q

�v
0]T and the vectorsw, ξ, c,

and h take their obvious definitions. Note that we write KT in (1.3) for clarity in
the subsequent arguments, even though K is symmetric here. For more detail on
the practicalities of discretizing control problems of this type, see, for example, Rees,
Stoll, and Wathen [24]. Finding an efficient method to solve this system will be the
topic of the remainder of the paper.

In section 2 we introduce two preconditioners that can be applied to this problem;
one block diagonal, which we apply using the minimal residual method (MINRES) of
Paige and Saunders [22], and one block lower triangular, which we use with the con-
jugate gradient (CG) method of Hestenes and Stiefel [17] applied with a nonstandard
inner product. Both of these methods rely on good approximations to the (1, 1)-block
and the Schur complement, and we discuss suitable choices in sections 2.3 and 2.4,
respectively. Finally, in section 3 we give numerical results.

2. Solution methods. The matrix in (1.3) is of saddle point form, i.e.,

(2.1) A :=

[
A CT

C 0

]
,

where A := blkdiag(Q, βQ
�v
) and C := [K − Q̂]. The matrix A is, in general, very

large—the discrete Stokes equations are just one of its components—yet it is sparse.
A good choice for solving such systems are iterative methods—in particular Krylov
subspace methods. We will consider two such methods here—MINRES and CG in a
nonstandard inner product—and extend the work of Rees, Dollar, and Wathen [23]
and Rees and Stoll [25], respectively, to the case where the PDEs are the Stokes
equations. Since the PDE is itself a saddle point problem, and hence the matrix
representation is indefinite, significant complications arise here which are not present
for simpler problems.

There is a large number of papers in the literature which deal with solving prob-
lems for the optimal control of PDEs. Below we comment on a few of these which
share the philosophy of this paper. Most of these consider the model problem of the
optimal control of Poisson’s equation; it is not clear how easily they would be applied
to the control of the Stokes equations and the additional difficulty this poses.

Schöberl and Zulehner [26] developed a preconditioner which is both optimal
with respect to the problem size and with respect to the choice of regularization
parameter β. This method was recently generalized slightly by Herzog and Sachs
[16]. A multigrid-based preconditioner has also been developed by Biros and Dogan
[3] which has both h- and β-independent convergence properties—where h is the mesh
size—but it is not clear how their method would generalize to Stokes control. We note
that the approximate reduced Hessian approximation used by Haber and Ascher [15]
and Biros and Ghattas [4] also leads to a preconditioner with h-independence. Other
solution methods employing multigrid for this and similar classes of problems were
described by Borz̀ı [5], Ascher and Haber [1], and Engel and Griebel [14].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2906 TYRONE REES AND ANDREW J. WATHEN

2.1. Block diagonal preconditioners. It is well known that matrices of the
form A are indefinite, and one choice of solution method for such systems is MINRES.
For MINRES to be efficient for such a matrix we need to combine the method with a
good preconditioner—i.e., a matrix P which is cheap to invert and which clusters the
eigenvalues of P−1A. One method that is often used—see [2, section 10.1.1] and the
references therein—is to look for a block diagonal preconditioner of the form

Pbd =

[
A0 0
0 S0

]
for some matrices A0 ∈ R2nv+np , S0 ∈ Rnv+np . Preconditioners of this form for the
optimal control of Poisson’s equation were discussed by Rees, Dollar, and Wathen
[23].

It is well known (see, for example, [13, Theorem 6.6]) that if A, A0, CA
−1CT ,

and S0 are positive definite matrices such that there exist constants δ, Δ, φ, and Φ
such that the generalized Rayleigh quotients satisfy

(2.2) δ ≤ xTAx

xTA0x
≤ Δ, φ ≤ yTCA−1CTy

yTS0y
≤ Φ

for all vectors x ∈ R
2nv+np and y ∈ R

nv+np , x, y �= 0, then the eigenvalues λ of
Pbd

−1A are real and satisfy

δ −√
δ2 + 4ΔΦ

2
≤ λ ≤ Δ−

√
Δ2 + 4φδ

2
,

δ ≤ λ ≤ Δ, or

δ +
√
δ2 + 4δφ

2
≤ λ ≤ Δ+

√
Δ2 + 4ΦΔ

2
.

Therefore, if we can find matrices A0 and S0 that are cheap to invert and are
good approximations to A and the Schur complement CA−1CT in the sense that the
constants in (2.2) are close to unity, then we will have a good preconditioner, since
the eigenvalues of Pbd

−1A will be in three distinct clusters bounded away from 0. In
the ideal case where A0 = A and S0 = CA−1CT we have δ = Δ = φ = Φ = 1. Then

the preconditioned system will have precisely three eigenvalues, 1, 1+
√
5

2 , and 1−√
5

2 ,
so MINRES would converge in three iterations [21].

2.2. Block lower-triangular preconditioners. Instead of MINRES we may
want to use a CG method to solve a saddle point problem of the form (2.1). Since
(2.1) is not positive definite, the standard CG algorithm cannot be used. However,
the matrix [

A0 0
C −S0

]−1 [
A CT

C 0

]
is self-adjoint with respect to the inner product defined for z1, z2 ∈ R3nv+2np by
〈z1, z2〉H := xT

1 Hz2, where

H =

[
A−A0 0

0 S0

]
,

provided that this defines an inner product—i.e., when A − A0 and S0 are positive
definite. Therefore, can we apply the CG algorithm with this inner product, along
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with preconditioner

Plt =

[
A0 0
C −S0

]
.

This method was first described by Bramble and Pasciak in [9], and it has since
generated a lot of interest—see, for example, [12, 18, 20, 26, 19, 28, 10]. This method
was used in a control context by Rees and Stoll [25].

Convergence of this method again depends on the eigenvalue distribution of the
preconditioned system—the clustering of the eigenvalues is given by, for example, Rees
and Stoll [25, Theorem 3.1], and the relevant result is stated below in section 2.4. Note
that in order to apply this preconditioner, only solves with A0 and S0 are needed;
hence an implicit approximation (for example, multigrid) can be used. For more detail
see, for example, Stoll [30].

One drawback of this method is that you need A − A0 to be positive definite;
this means that not just any approximation to A will do. This requirement usually
results in having to find the eigenvalues of A−1

0 A for a candidate A0 and then adding
an appropriate scaling ω so that A > ωA0—we will discuss this point further once
we’ve described possible approximations A0 in the following section.

2.3. Approximation of the (1,1) block. Suppose, for simplicity, that our
domain Ω ⊂ R

2—the extension to three dimensions is obvious. If, as is usual, we
use the same element space for all components in the velocity vector, and this has
basis {φi}, then Q

�v
= blkdiag(Qv, Qv), where Qv = [

∫
Ω φiφj ]. Then the matrix A

is just a block diagonal matrix composed of the mass matrices in the bases {φi} or
{ψi}. Wathen [33] showed that for a general mass matrix, Q, if D := diag(Q), then
it is possible to calculate constants ξ and Ξ such that the eigenvalues of D−1Q are
bounded below and above, respectively, by these constants. The values of ξ and Ξ
depend on the elements used—for example, for Q1 elements ξ = 1/4, Ξ = 9/4 and
for Q2 elements ξ =1/4, Ξ = 25/16. The diagonal matrix itself would therefore be a
reasonable candidate for A0.

However, as A is in a sense “easy” to invert, it would help to have the best
approximation here possible. Using the bounds described above we have all the in-
formation we need to use the relaxed Jacobi method accelerated by the Chebyshev
semi-iteration, given as Algorithm 1. This is a method that is very cheap to use and,
as demonstrated by Wathen and Rees in [32], is particularly effective in this case. In
particular, since the eigenvalues of D−1Q are evenly distributed, there is very little
difference between the convergence of this method and the CG method preconditioned
with D. Note that since the CG algorithm is nonlinear, we cannot use it as a pre-
conditioner for a stationary Krylov subspace method such as MINRES, unless run to
convergence. The Chebyshev semi-iteration, on the other hand, is a linear method,
and so a fixed number of iterations of this method can be used as a preconditioner.

Suppose we use this method to solve a system Qx = b̂ for some right-hand side
b̂. Then we can write every iteration as x(k) = T−1

k b̂ for some matrix Tk implicitly

defined by the method, which is independent of b̂. Let m denote the (fixed) number
of Chebyshev semi-iterations. A larger m would make Tm a better approximation to
Q, since x(m) will be closer to the exact solution x.

The upper and lower eigenvalue bounds can be obtained analytically—for exam-
ple, Table I in Rees and Stoll [25] gives the upper and lower bounds for each m from 1
to 20 for a Q1 discretization. Let T

v
m and T p

m denote the matrices defined implicitly by
performing m steps of the Chebyshev semi-iteration on Qv and Qp. Then the reexist
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Algorithm 1. m steps of the Chebyshev semi-iteration to approximate the solution
of Qx = b̂, where λ(D−1Q) ∈ [ξ,Ξ].

Choose y(0), w0 = 0, (y(−1) = 0)
η = (ξ + Ξ)/2
ρ = (Ξ− ξ)/(ξ + Ξ)
for k = 0, 1, . . . ,m− 1 do
wk+1 = 1

1− ρ2wk
4

ηDz(k) = b̂−Qy(k)

y(k+1) = wk+1(z
(k) + y(k) − y(k−1)) + y(k−1)

end for

constants δvm,Δ
v
m, δ

p
m, and Δp

m independent of h such that δvm ≤ λ((T v
m)−1Qv) ≤ Δv

m

and δpm ≤ λ((T p
m)−1Qp) ≤ Δp

m. Hence, we can write

(2.3) δm ≤ xTAx

xTA0x
≤ Δm

for all x ∈ R
2nv+np , x �= 0, where A0 = blkdiag(T v

m, T
v
m, αT

p
m, βT

v
m, βT

v
m), δm =

min(δvm, δ
p
m), and Δm = max(Δv

m,Δ
p
m), both independent of the mesh size h. We

therefore have an inexpensive way to make the bounds on λ(A−1
0 A) as close to unity

as required.
This choice of A0 is all we need for the block diagonal preconditioner Pbd. How-

ever, for the block lower-triangular preconditioner Plt applied with CG in a nonstan-
dard inner product we need A − A0 > 0. This is not a problem here since we can
work out these bounds accurately and inexpensively—even with a nonuniform mesh,
it is just an O(n) calculation. Therefore, the scaling parameter ω, which ensures that
A > ωA0, can be easily chosen; see Rees and Stoll [25] for more details.

2.4. Approximation of the Schur complement. Now consider the Schur
complement 1

β Q̂Q
−1

�v
Q̂T +KQ−1KT =: S. The dominant term in this sum, for all but

the smallest values of β, is KQ−1KT—the term that contains the PDE. Figure 2.1
shows the eigenvalue distribution for this approximation of S for a relatively coarse
Q2 −Q1 discretization with β = 0.01. As we can see from the figure, the eigenvalues
of (KQ−1KT )−1S are nicely clustered, and so we could expect good convergence of
MINRES if we took S0 as KQ−1KT . The effect of varying β is described in, for
example, [31].

However, a preconditioner must be easy to invert, and solving a system with
KQ−1KT requires two solves with the discrete Stokes matrix, which is not cheap. We
therefore would like some matrix K̃—not necessarily symmetric—such that K̃Q−1K̃T

approximates KQ−1KT . In order to gain a theoretical understanding of this problem,
we temporarily omit the mass matrices and look for a K̃ such that K̃K̃T approximates
KKT .

In order to achieve such an approximation, Braess and Peisker [7] show that it

is not sufficient that K̃ approximates K. Indeed, for the Stokes equations, Silvester
and Wathen [27] showed that an ideal preconditioner is K̂ = blkdiag(K,Mp), but

the eigenvalues of (K̂K̂T )−1KKT are not at all clustered, and the approximation of
KKT is a poor one in this case. Suppose we wish to solve the equation Kw̃ = b̃
for some right-hand side vector b̃ ∈ Rnv+np . Braess and Peisker, however, go on to
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Fig. 2.1. Eigenvalues of (KQ−1K)−1S.

show that if we take an approximation Kn which is implicitly defined by an iteration
w(n) = K−1

n b̃, say, which converges to the solution w̃ in the sense that

(2.4) ‖w(n) − w̃‖ ≤ ηn‖w̃‖,
then ηn = ‖K−1

n K − I‖, where the matrix norm here is that induced from the vector
norm in which we measure convergence—i.e., the spectral norm if we have convergence
in the 2-norm. One can then show that for all x ∈ Rnv+np , x �= 0 [7, section 4],

(2.5) (1− ηn)
2 ≤ xTKKTx

xTKnKT
nx

≤ (1 + ηn)
2.

Hence, approximation of KKT by KnKT
n would be suitable in this case.

Of course, in practice we cannot simply ignore the mass matrices. Note that

xTKQ−1KTx

xTKnQ−1KT
nx

=
yTQ−1y

yTy
· xTKKTx

xTKnKT
nx

· zT z

zTQ−1z
,

where y = KTx and z = KTx. Hence, by applying a result which bounds the
eigenvalues of a mass matrix, for example, [13, Theorem 1.29], we see that their
addition will simply scale the lower and upper bounds by some constants c∗ < 1 and
C∗ > 1. We therefore get

(2.6) c∗(1− ηn)
2 ≤ xTKQ−1KTx

xTKnQ−1KT
nx

≤ C∗(1 + ηn)
2.

Note that MINRES cannot be used to approximate K, unless run until conver-
gence, since—like CG—MINRES is a Krylov subspace method, and hence nonlinear.
We would therefore have to use a flexible outer method if we were to make use of an
inner Krylov process as an approximation for the Stokes operator.

Consider a simple iteration of the form

(2.7) w(k+1) = w(k) +M−1Kr(k),

where r(k) is the residual at the kth step, and with a block lower-triangular splitting
matrix

(2.8) M :=

[
K0 0
B −Q0

]
,
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where K0 approximates K and Q0 approximates Qp, which is itself spectrally equiva-
lent to the Schur complement for the Stokes problem [13, section 6.2]. This iteration
is the well-known inexact Uzawa method for solving saddle point problems [8, 11].

We know that if ρ(I − M−1K) < 1, where ρ denotes the spectral radius, then
the iteration (2.7) will converge in any norm, and hence ηn < 1 for sufficiently large
n. In the remainder of this section we will prove some theoretical results about the
iteration (2.7), and we will justify its use as a component in our preconditioners. We
will take the following route:

• describe bounds for the eigenvalues of M−1K;
• demonstrate that ρ(I −M−1K) < 1 for the problem considered here;
• for the case where K −K0 > 0, use our knowledge of ρ(I −M−1K) to give
an upper bound on the convergence rate when measured in the 2-norm—i.e.,
ηm in (2.6);

• show that, given a smallest possible h, we can pick the approximation to K
such that ηn is independent of h.

2.4.1. Eigenvalues of M−1K. First, we look at the generalized eigenvalues λ
of

(2.9)

[
K BT

B 0

] [
x̃
ỹ

]
= λ

[
K0 0
B −Q0

] [
x̃
ỹ

]
.

We ignore the one zero eigenvalue of K which is due to the hydrostatic pressure here,
and in what follows, if we start an iteration orthogonal to this kernel, we will remain
orthogonal to the kernel [13, section 2.3].

We consider two cases—K −K0 positive definite and K −K0 indefinite.

K0 −K positive definite. In the first case, it can be shown [25, Theorem 3.1],
[34, Theorem 4.1] that if K0 and Q0 are positive definite matrices such that

(2.10) υ ≤ xTKx

xTK0x
≤ Υ, ψ ≤ yTBK−1BTy

yTQ0y
≤ Ψ,

where x ∈ R
nv and y ∈ R

np , x,y �= 0, then λ in (2.9) is real and positive, and
moreover satisfies

(1 + ψ)Υ−√
(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)υ −√

(1 + Ψ)2υ2 − 4Ψυ

2
,

υ ≤λ ≤ Υ, or

(1 + ψ)υ +
√
(1 + ψ)2υ2 − 4ψυ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
.

K0−K indefinite. The situation is more complicated in the case whereK−K0

is indefinite, as now the generalized eigenvalues of (2.9) will, in general, be complex.
We still assume that K, K0 and Q0 are positive definite and satisfy (2.10).

Consider an eigenvector in (2.9) where Bx̃ = 0. Then it is clear that ỹ = 0,

and hence the associated eigenvalue is λ = x̃TKx̃
x̃TK0x̃

; hence the generalized eigenvalues

associated with eigenvectors of this form must be real with

υ ≤ λ ≤ Υ.

Suppose now that Bx̃ �= 0. We can rearrange the second row in (2.9) to give

ỹ =
λ− 1

λ
Q−1

0 Bx̃,
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and substituting this into the first equation and rearranging gives

λ = λ2
x̃TK0x̃

x̃TKx̃
+ (1 − λ)

x̃TBTQ−1
0 Bx̃

x̃TKx̃
.

If we define

κ := κ(x̃) =
x̃TKx̃

x̃TK0x̃
, σ := σ(x̃) =

x̃TBTQ−1
0 Bx̃

x̃TKx̃
,

then we can write this as

λ2/κ+ (1− λ)σ − λ = 0,

or, alternatively,

λ2 − (σ + 1)κλ+ σκ = 0.

Therefore, the eigenvalues satisfy

λ =
(σ + 1)κ±√

(σ + 1)2κ2 − 4σκ

2
.

We now consider the sign of the discriminant. As we have assumed that K and
K0 are positive definite, κ > 0; hence the discriminant is only negative if

κ <
4σ

(1 + σ)2
.

We will complete our discussion by arguing for different values of κ.

K − K0 indefinite, κ > 1. Here, the result given above for K −K0 positive
definite will still hold, and we have λ ∈ R which satisfies

(ψ + 1)Υ−√
(ψ + 1)2Υ2 − 4ψΥ

2
≤ λ ≤ (Ψ + 1)Υ +

√
(Ψ + 1)2Υ2 − 4ΨΥ

2
.

K −K0 indefinite, κ ∈ (0, 4σ
(1+σ)2

). Since the discriminant is negative in this

case, there will be a pair of complex conjugate zeros. In this case,

λ =
(σ + 1)κ± i

√
4σκ− (σ + 1)2κ2

2

⇒ |λ|2 =
(σ + 1)2κ2 + 4σκ− (σ + 1)2κ2

4
= σκ.

Therefore the complex eigenvalues satisfy

(2.11)
√
υψ ≤ |λ| ≤

√
Ψ.

Moreover, Re(λ) = (σ+1)κ
2 > 0, so all the complex eigenvalues live in the right-hand

plane. Also,

|Im(λ)|
Re(λ)

=

√
4σκ− (σ + 1)2κ2

2
· 2

(σ + 1)κ

=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
.
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If we define

F (σ, κ) :=

√
4σκ− (σ + 1)2κ2

(σ + 1)κ
,

then

∂F

∂σ
=

2(σ − 1)

(σ + 1)2
√
(4− 2κ)κσ − κ2(σ2 + 1)

,

so

∂F

∂σ
= 0 ⇒ σ = 1.

This critical point is clearly a maximum. This means that, for any fixed κ, F (σ, κ)
has its maximum at σ = 1. Therefore,

|Im(λ)|
Re(λ)

= F (σ, κ) ≤
√
κ− κ2

κ
=

√
1

κ
− 1 ≤

√
1

υ
− 1.

Therefore, putting this together with (2.11) above, the complex eigenvalues satisfy
(2.12)

λ ∈
{
z = reiθ ∈ C :

√
υψ ≤ r ≤

√
Ψ, − tan−1(

√
υ−1 − 1) ≤ θ ≤ tan−1(

√
υ−1 − 1)

}
.

K − K0 indefinite, κ ∈ [ 4σ
(1+σ)2

, 1]. What about the remaining case? Here

too, the bounds given for when κ > 1 hold, since in the derivation we required
no information about δ, all that is assumed is that λ ∈ R—see [25, Theorem 3.1].
Verifying the inner bounds required that δ > 1, so these do not carry over, but there
is no such problem with the outer bounds.

We have proved the following theorem.
Theorem 2.1. Let λ be an eigenvalue associated with the generalized eigenvalue

problem [
K BT

B 0

] [
x
y

]
= λ

[
K0 0
B −Q0

] [
x
y

]
,

where K, K0 and Q0 are positive definite and satisfy (2.10). If λ ∈ R, then it satisfies

(1 + ψ)Υ −√
(1 + ψ)2Υ2 − 4ψΥ

2
≤λ ≤ (1 + Ψ)Υ +

√
(1 + Ψ)2Υ2 − 4ΨΥ

2
or υ ≤λ ≤ Υ,

and if λ ∈ C, then λ = reiθ, where r and θ satisfy√
υψ ≤ r ≤

√
Ψ, − tan−1(

√
υ−1 − 1) ≤ θ ≤ tan−1(

√
υ−1 − 1).

2.4.2. Spectral radius of M−1K. The next step is to get bounds for ρ(I −
M−1A). Figure 2.2 is a diagram of the geometry which shows how this shift affects
the complex eigenvalues. All the eigenvalues will be contained in the unit circle if the
line d labeled on the diagram is less than unity. By the cosine rule:

d2 = 1 +Ψ− 2
√
Ψcos θ,
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√
Φ

1

d

θ

Fig. 2.2. Diagram of the geometry containing the complex eigenvalues. θ =
√
υ−1 − 1 and d is

the unknown length.

where tan θ =
√
υ−1 − 1. Therefore, all the complex eigenvalues are in the unit circle

if
√
Ψ

2
< cos θ.

Note that, using the same argument, the distance from the origin to the point where
the circle of radius

√
ψυ and center −1 touches the ray that makes an angle θ with

the x axis is √
1 + ψυ − 2

√
ψυ cos θ.

There follows Corollary 2.2.
Corollary 2.2. Suppose that the eigenvalues of the generalized eigenvalue prob-

lem (2.9) are as described in Theorem 2.1. Define

ξ := max

{
1− υ,Υ− 1, 1− (1 + ψ)Υ−√

(1 + ψ)2Υ2 − 4ψΥ

2
,

(1 + Ψ)Υ +
√
(1 + Ψ)2Υ2 − 4ΨΥ

2
− 1,

√
1 + Ψ− 2

√
Ψcos θ,√

1 + ψυ − 2
√
ψυ cos θ

}
.

Then a simple iteration with splitting matrix

M =

[
K0 0
B −Q0

]
will converge if ξ < 1, with the asymptotic convergence rate being ξ.

Zulehner also derived an approximation to the convergence factor [34, Theo-
rem 4.3]. Note that Corollary 2.2 differs slightly from the result in Zulehner—this is
because neither the result given here nor in [34] are sharp with regards to the complex
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(a) h = 0.25, K0 given by 1 AMG V-cycle with
1 pre- and 1 post-smoothing step
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(b) h = 0.25, K0 given by 1 AMG V-cycle with
2 pre- and 2 post-smoothing steps
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(c) h = 0.25, K0 given by 2 AMG V-cycles with
2 pre- and 2 post-smoothing steps
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(d) h = 0.125, K0 given by 1 AMG V-cycle with
1 pre- and 1 post-smoothing step

Fig. 2.3. *’s denote computed eigenvalues of M−1K for different approximations to K with
Q = Q0. Lines, from left to right, are at 0, ((ψ + 1)Υ −√

(ψ + 1)2Υ2 − 4ψΥ)/2, υ, Υ and

((Ψ + 1)Υ +
√

(Ψ + 1)2Υ2 − 4ΨΥ)/2, (the last two virtually coincide here). Dashed region is the
bounds of Theorem 2.1 for the complex eigenvalues. Also shown is the unit circle centered at z = 1.

eigenvalues. The two results are obtained in very different ways, and neither can be
said to be a better approximation than the other one.

Figure 2.3 shows the bounds for the eigenvalues of M−1K predicted above—
together with actual computed eigenvalues—for a number of approximations to the
matrix K. For clarity in producing this plot we have taken Q0 = Q, with a direct
solve used where needed.

2.4.3. Bounding ηn for K − K0 > 0. The results so far have shown that
we will get asymptotic convergence—i.e., there is some n such that (2.4) holds with
ηn < 1. However, there may be some significant transient behavior in the convergence.
For this iteration to be practical as a preconditioner, we need a good approximation
from a small number of iterations.

Luckily, in practice we see good results from the first iteration. Also, the theory
above is equally valid for the block upper -triangular approximation to the discrete
Stokes matrix, whereas in practice we observe that it takes far more iterations with
this upper-triangular splitting to converge. Below we explain why the lower-triangular
splitting behaves so well.
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Let us again return to the case where K −K0 is positive definite. Then we know
(c.f. section 2.2) that

M−1K =

[
K0 0
B −Q0

]−1 [
K BT

B 0

]
is self-adjoint in the inner product defined by

Ĥ =

[
K −K0 0

0 Q0

]
.

If we define K̂ := M−1K, then we have that K̂ is Ĥ−normal, i.e.,

K̂†K̂ = K̂K̂†,

where K̂† = Ĥ−1K̂T Ĥ. The iteration matrix I −M−1K is therefore Ĥ−normal, and
so

‖I −M−1K‖
̂H = ρ(I −M−1K),

which tells us that—if again Kw = b̃, say—the nth iterations satisfies

‖w(n) −w‖
̂H ≤ ρn‖w‖

̂H,

where ρ = ρ(I − M−1K), the spectral radius of the iteration matrix. To apply the
result of Braess and Peisker (2.5) we need a constant ηn such that the error converges
the 2-norm, i.e.,

‖w(n) −w‖2 ≤ ηn‖w‖2.
We know that over a finite-dimensional vector space all norms are equivalent, though
the equivalence constants may be h-dependent for a discretized PDE problem. Thus,
there exist positive constants γ and Γ such that

√
γ‖x‖2 ≤ ‖x‖

̂H ≤
√
Γ‖x‖2

for all x ∈ Rnv+np , and hence

(2.13) ‖xk − x‖2 ≤ 1√
γ
‖xk − x‖

̂H ≤ ρm√
γ
‖x‖

̂H ≤
√
Γρm√
γ

‖x‖2.

We can therefore bound the constant ηn above by ρm multiplied by the constant√
Γ/γ. By the results in section 2.4.2 we know that ρ is independent of h—if Γ/γ can

be shown to be independent of h, then the simple iteration (2.7) can be used as a
component of an optimal (with respect to mesh size) preconditioner.

Recall standard bounds for two-dimensional finite element matrices—see, for ex-
ample, Theorems 1.32 and 1.29 in [13]—we have that, under mild assumptions, there
exist positive constants c1, C1, c2, and C2 such that

c1h
2yTy ≤ yTKy ≤ C1y

Ty,

c2h
2zT z ≤ zTQpz ≤ C2h

2zT z

for all y ∈ Rnv and z ∈ Rnp . We will use this to give estimates for Γ and γ below.
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The upper bound. First, condsider Γ such that xT Ĥx ≤ ΓxTx. This means
that

yT (K −K0)y + zTQ0z ≤ Γ(yTy + zT z).

Therefore, if we can find constants Γ1 and Γ2 such that

yT (K −K0)y ≤ Γ1y
Ty and zTQ0z ≤ Γ2z

T z,

then we could take Γ = max (Γ1,Γ2).
First, note that from (2.10) we have that

xTKx ≤ ΥxTK0x,

ΥxTKx− (Υ − 1)xTKx ≤ ΥxTK0x,

Υ(xTKx− xTK0x) ≤ (Υ− 1)xTKx,

xT (K −K0)x ≤ C1(Υ− 1)

Υ
xTx,

∴ xT (K −K0)x

xTx
≤ C1(Υ− 1)

Υ
.

Therefore,

Γ1 =
(Υ− 1)C1

Υ
.

Let Q0 = T p
m represent m steps of the Chebyshev semi-iteration, as defined in sec-

tion 2.3, where

δpm ≤ xTQpx

xTT p
mx

≤ Δp
m.

Then

zTQ0z

zT z
=

zTT p
mz

zT z
=

zTT p
mz

zTQpz
· z

TQpz

zT z
≤ C2h

2

δpm
.

Therefore, we can take Γ2 = C2h
2, and hence

(2.14) Γ = max

(
(Υ − 1)C1

Υ
,
C2h

2

δpm

)
satisfies xT Ĥx ≤ ΓxTx for all x ∈ Rnv+np .

The lower bound. Now we turn our attention to a lower bound. Similarly to
above, we take γ = min (γ1, γ2), where γ1 and γ2 satisfy

γ1y
Ty ≤ yT (K −K0)y and γ2z

T z ≤ zTQ0z

for all y ∈ Rnv , z ∈ Rnp . Again, we have from (2.10) that

υyTK0y ≤ yTKy

= υyTKy + (1− υ)yTKy,

(υ − 1)yTKy ≤ υyT (K −K0)y,

(υ − 1)c1h
2

υ
≤ yT (K −K0)y

yTy
.
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Again arguing as above,

zTQ0z

zT z
=

zTT p
mz

zTQpz
· x

TQpx

xTx
≥ c2h

2

Δp
m
.

Therefore, we can take

(2.15) γ = min

(
(υ − 1)c1h

2

υ
,
c2h

2

Δp
m

)
,

which satisfies γxTx ≤ xT Ĥx for all x ∈ Rnv+np .

2.4.4. An “optimal” precondtioner. By (2.13) the contraction constant for
convergence in the 2-norm is given by ρm

√
Γ/

√
γ. It is clear that—irrespective of

which term in (2.15) is smallest—
√
γ = νh for some constant ν.

In order to have preconditioner that is robust with respect to mesh size we also
need the numerator to be dependent on h—i.e., we need that

(2.16)
(Υ − 1)C1

Υ
<
C2h

2

δpm
.

At first glance, this seems unlikely, as the left-hand side above is a constant, whereas
the right-hand side is dependent on the small parameter h. However, we have control
over the value of Υ, as this measures the accuracy of the approximation to K. Recall
that K0 is a good approximation to K if Υ is close to unity. We will generally take
K0 to be some iterative procedure—for example, a multigrid process—and hence we
can make this parameter as close to 1 as required by simply taking more iterations.
In the case of a multigrid approximation, this could mean using more V-cycles, better
smoothing, etc.

Therefore, if we can ensure that K0 is a good enough approximation to K that
(2.16) holds, then

(2.17) ηn = min

(
(υ − 1)c1

υ
,
c2
Δp

m

)
ρnδpm
C2

,

which is a constant—at least up to some predetermined value of h. Note that we
have knowledge of all the parameters involved, so given a smallest required value of
h—which one will know a priori—one can pick an approximation K0 which gives a
reasonable method. The quantity ρn also appears in the numerator, so convergence
can be improved by taking more inexact Uzawa iterations.

The above argument only holds when K −K0 is positive definite. Note that for
any approximation K0 it is possible to scale it by a parameter ω̂—as in Bramble–
Pasiak CG case—so that K > ω̂K0. Since the eigenvalue problem to be solved to
determine ω is much more expensive here than it was in section 2.2, such a scaling can
add significantly to the cost of the method. In practice, if we take K0 to be defined
implicitly by a multigrid method, we see the mesh-independent behavior described
above without such a scaling, so we speculate that a similar result to (2.17) holds
true for any K0 sufficiently close to K. The fact that the complex eigenvalues in the
general case don’t stray too far into the complex plane for a high enough value of
n—see Figure 2.3—gives some heuristic justification for this conjecture.
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Since solving the approximation to K is particularly expensive here, it is worth
getting the approximation to the mass matrix, Q0, as close to Q as possible. There-
fore, in the results that follow we take Q0 to be defined implicity by 20 steps of the
Chebyshev semi-iteration applied to the appropriate mass matrix.

The inexact Uzawa method can be improved with the introduction of a parameter
τ in front of the approximation to the Schur complement [12]. In the inexact obtaining
the optimal parameter is infeasible, but a good approximation is (φ + Φ)/2, where
λ(S−1

0 S) ∈ [φ,Φ]. For Q1 elements and a Dirichlet problem, λ(Q−1
p S) ∈ [0.2, 1] [13, p.

271], so we take our scaling parameter as τ = 3/5. Note that the preceding analysis in
Theorem 2.1 remains vaild, simply by replacing Q0 by τQ0 and scaling the constants
φ and Φ accordingly. On the basis of the theoretical results presented above, we
advocate a practical splitting matrix for inexact Uzawa iteration (2.7) of

(2.18) M =

[
K0 0
B −τQ0

]
.

2.5. Summary. Now that we have developed appropriate approximations for
the blocks in the block diagonal preconditioner and block lower-triangular precon-
ditioner—as described in sections 2.1 and 2.2, respectively—we can describe a prac-
tical preconditioner. Consider first the block diagonal case. Based on the results in
the preceding sections, a matrix of the form

Pbd :=

[
A0 0
0 KnQ−1KT

n

]
,

where A0 is composed of Chebyshev approximations and Kn denotes n steps of the
simple iteration (2.7) based on the splitting matrix M, as defined in (2.18), should
therefore be an effective preconditioner for the matrix A. This preconditioner is
summarized as Algorithm 2 below.

Solving with the block lower-triangular preconditioner

Plt :=

[
Ā0 0
C KnQ−1KT

n

]
is a slight modification of Pbd and is also described in Algorithm 2. There are two
differences here. First, we need scale A0 as described in Rees and Stoll [25] so that
A− Ā0 > 0. Second, there is an extra matrix-vector multiply with C.

Algorithm 2 presupposes that we have two subroutines at our disposal: a Cheby-
shev semi-iteration routine cheb semi it (see 1) and some multigrid routine mg, both
of which perform a fixed (m or t, respectively) number of iterations.

3. Numerical results. First, consider the following forward problem, which
sets the boundary conditions that we will use for the control problem. This is a
classic test problem in fluid dynamics, called leaky cavity flow, and a discussion is
given by Elman, Silvester and Wathen [13, Example 5.1.3].

Example 3.1. Let Ω = [0, 1]2, and let �i and �j denote unit vectors in the direction
of the x and y axis, respectively. Let �v and p satisfy the Stokes equations

−∇2�v +∇p = �0 in Ω,

∇ · �v = 0 in Ω,

and let �v = �0 on the boundary except for on x = 1, 0 ≤ y ≤ 1, where �v = −�j.
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Algorithm 2 . An application of the preconditioner Pbd or Plt, where we solve

P [v̂T p̂T ûT λ̂
T
μ̂T ]T = [vT pT uT λT μT ]T .

if preconditioner= Plt then
Calculate scalings ωp and ω�v

else
ωp = 1, ω�v = 1

end if
v̂ = cheb semi it(ω�vQ�v

,v,m)

p̂ = 1
αcheb semi it(ωpQp,p,m)

û = 1
βcheb semi it(ω�vQ�v

,u,m)

if preconditioner= Plt then[
λ
μ

]
=

[
K BT −Q

�v
B 0 0

]⎡⎣ v̂
p̂
û

⎤⎦−
[

λ
μ

]
end if
[λ̄

T
μ̄T ]T = [0T 0T ]T

for i=1 . . . n do[
rλ

rμ

]
=

[
λ
μ

]
−
[
K BT

B 0

] [
λ̄
μ̄

]
λ̄ = λ̄ + mg(K, rλ, t)
μ̄ = μ̄− 1

τ cheb semi it(Qp, r
μ −Bλ̄,m)

end for
μ̄ = μ̄− (

∑np

i=1 μ̄i)/np) ∗ 1
λ̄ = Q

�v
λ̄

μ̄ = αQpμ̄
μ̄ = μ̄− (

∑np

i=1 μ̄i)/np) ∗ 1
[λ̂

T
μ̂T ]T = [0T 0T ]T

for i=1 . . . n do[
rλ

rμ

]
=

[
λ̄
μ̄

]
−
[
K BT

B 0

] [
λ̂
μ̂

]
μ̂ = μ̂− 1

τ cheb semi it(Qp, r
μ,m)

λ̂ = λ̂ + mg(K, rλ −BT μ̂, t)
end for

We discretize the Stokes problem using Q2 −Q1 elements and solve the resulting
linear system using MINRES [22]. As a preconditioner we use the block diagonal ma-

trix blkdiag(K̂, T20), following Silvester and Wathen [27], where K̂ denotes one AMG
V-cycle (using the HSL MI20 AMG routine [6] applied via a MATLAB interface), and
T−1
20 is 20 steps of the Chebyshev semi-iteration applied with the pressure mass ma-

trix. The problem was solved using MATLAB R2009b, and the number of iterations
and the time taken for different mesh sizes is given in Table 3.1. The constant number
of iterations independent of h and linear growth in CPU time (i.e., linear complexity
of the solver) are well understood for this problem—see [13, Chapter 6].
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Table 3.1

Number of MINRES iterations and time taken to solve the forward problem in Example 3.1.

h size CPU time (s) Iterations

2−2 187 0.015 25
2−3 659 0.029 27
2−4 2,467 0.076 28
2−5 9,539 0.349 30
2−6 37,507 1.504 30
2−7 148,739 6.616 30
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Fig. 3.1. Solution of Example 3.1.
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Fig. 3.2.

Figure 3.1 shows the streamlines and the pressure of the solution obtained. Note
the small recirculations present in the lower corners—these are Moffatt eddies. Adding
a forcing term that reduces these eddies will be the object of our control problem,
Example 3.2.

Example 3.2. Let Ω = [0, 1]2, and consider an optimal control problem of the
form (1.1) with Dirichlet boundary conditions as given in Example 3.1 (leaky cavity

flow). Take the desired pressure as p̂ = 0, and let �̂v = y�i − x�j. The exponentially
distributed streamlines of the desired velocity are shown in Figure 3.2.
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Table 3.2

Comparison of idealized solution methods for solving Example 3.2 using MINRES precondi-
tioned with Pbd with n steps of inexact Uzawa with exact Schur complement approximating K and
t AMG V-cycles approximating K.

h size Exact, n = 1 n = 1, t = 1 n = 1, t = 2 n = 1, t = 3 n = 1, t = 4
time its time its time its time its time its

2−2 344 0.089 25 0.092 29 0.079 27 0.082 27 0.085 27
2−3 1512 0.382 27 0.432 35 0.352 27 0.365 27 0.380 27
2−4 6344 3.192 25 7.359 65 3.179 27 3.235 27 3.296 27
2−5 25992 60.063 25 403.933 179 72.858 31 64.028 27 64.055 27

h size Exact, n = 2 n = 2, t = 1 n = 2, t = 2 n = 2, t = 3 n = 2, t = 4
time its time its time its time its time its

2−2 344 0.073 21 0.100 27 0.099 25 0.096 23 0.101 23
2−3 1512 0.408 23 0.429 29 0.400 25 0.423 25 0.450 25
2−4 6344 3.466 23 3.954 31 3.347 25 3.193 23 3.319 23
2−5 25992 57.284 21 98.885 39 65.489 25 60.051 23 61.398 23

We discretize (1.1) usingQ2−Q1 elements, also usingQ2 elements for the control.
Table 3.2 shows the results for solving the problem using MINRES, with right-hand
side as in Example 3.2 and with β = 10−2 and α = 1.

We take as our approximation to K, K0, t HSL AMG MI20 V-cycles. First we
would like to show some numerical experiments which point us towards the number
of inexact Uzawa iterations, n, and the number of V-cycles, which also give numerical
evidence for our conclusions in section 2.4. To this end, as a preconditioner we use
the Pbd with K approximated by n steps of the simple iteration with splitting matrix

M =

[
K0 0
B −S

]
,

where S = BK−1BT is the exact Schur complement of the Stokes equation. This
is not a practical preconditioner since it includes the exact Schur complement of the
Stokes matrix—solved using a direct method. We can see clearly, however, that if the
approximation K0 is not good enough we do not—even in this idealized case—get an
optimal preconditioner. This phenomenon is explained by the theory in section 2.4.
It is therefore vital that the approximation K0 is close enough to K—i.e., Υ is close
enough to unity—in order to get an effective practical preconditioner.

As we saw in section 2.4, a practical preconditioner can be obtained by replacing
the exact Stokes Schur complement by the pressure mass matrix—or more generally,
by something that approximates the pressure mass matrix. We take this to be 20
steps of the Chebyshev semi-iteration applied to the relevant matrix, as described in
section 2.3. Experimentation suggests that taking two steps of the inexact Uzawa
method, in which K−1

0 is given by three HSL MI20 AMG V-cycles, will give a good
preconditioner. In the results that follow we take β = 10−2, α = 1 and solve to a
tolerance of 10−6 in the appropriate norm.

As we see from Table 3.3, the overall technique which we have described seems
to be a good method for solving the Stokes control problem. Comparing the results
here with those to solve the forward problem in Table 3.1, the iteration numbers are
not that much more, and they do not increase significantly with the mesh size; the
solution times also scale roughly linearly. Solving the control problem using the block
triangular preconditioner is just over a factor of 10 more expensive that solving a
single forward problem for every grid size—an overhead that seems reasonable, given
the increased complexity of the control problem in comparison to the forward problem.
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Table 3.3

Comparison of solution methods for solving Example 3.2 using MINRES and BPCG precon-
ditioned with the block diagonal and block lower-triangular preconditioners, respectively, with two
steps of inexact Uzawa approximating K and three AMG V-cycles approximating K.

h size MINRES BPCG backslash

time its time its time

2−2 344 1.366 21 1.157 14 0.043
2−3 1,512 1.646 27 1.453 19 0.12
2−4 6,344 3.161 29 2.527 20 1.2
2−5 25,992 11.685 29 8.359 19 12.5
2−6 105,224 46.813 31 34.875 22 —
2−7 423,432 178.808 31 130.054 22 —
2−8 1,698,824 837.691 35 587.139 24 —
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Fig. 3.3. Plot of problem size vs iterations needed for different β, where α = 1.
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Fig. 3.4. Plot of problem size vs. iterations needed for different α, where β = 10−2.

Figures 3.3 and 3.4 show the number of iterations taken to solve this problem for
different values of β and α in (1.1), respectively. These show that—as we might expect
from the theory—decreasing β and increasing α increases the number of iterations
required to solve the system using our methods. From the plots in Figures 3.5 and 3.6
it seems that the value α = 1 gives a pressure of the same order as the uncontrolled



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONERS FOR STOKES CONTROL 2923

0

0.5

1

0

0.5

1
−200

−100

0

100

200

Pressure
Streamlines

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a) Computed state for β = 10−2, α = 1
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(b) Computed state for β = 10−2, α = 10

Fig. 3.5. Computed states for Example 3.2 in two dimensions, β = 10−2.

problem, the solution of which is shown in Figure 3.1. However, one can conceive of
situations where we require a tighter bound on the pressure, and hence a higher value
of α.

Example 3.3. Let Ω = [0, 1]3, the unit cube, and consider an optimal control prob-
lem of the form (1.1) with the three-dimensional equivalent of the Dirichlet boundary
conditions as given in Example 3.1; i.e., �v = �0 on the boundary except on the face
where y = 1 and z = 1 when �v = −�j. We take the desired pressure as p̂ = 0 and

�̂v = y�i− x�j+ z�k.
We solve this three-dimensional problem using the equivalent of the precondi-

tioners employed for Example 3.2. Here K−1
0 is given by three geometric multigrid

V-cycles, which use two steps of relaxed Jacobi as a pre- and post-smoother. The
results are presented in Table 3.4. As we can see, the preconditioners perform as
well—if not better—in three dimensions.

We have only presented a simple distributed control problem here. It is possible to
solve other types of control problems using the same method—see [23] for a discussion
in the simpler case of Poisson control. It is also possible to use this method together
with bound constraints on the control—Stoll and Wathen [29] discuss this approach
in consideration of the Poisson control problem.
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Fig. 3.6. Computed states for Example 3.2 in two dimensions, β = 10−5.

Table 3.4

Comparison of solution methods for solving Example 3.3 using MINRES and BPCG precon-
ditioned with the block diagonal and block lower-triangular preconditioners, respectively, with two
steps of inexact Uzawa approximating K and three GMG V-cycles approximating K.

h size MINRES BPCG
time its time its

2−2 3,337 3.286 33 1.940 18
2−3 31,833 38.128 36 19.985 18
2−4 277,945 536.566 40 189.921 18
2−5 2,322,297 4660.230 42 2565.626 20

4. Conclusions. In this paper we have presented two preconditioners—one for
MINRES, and one for CG in a nonstandard inner product—that can be used to solve
problems in Stokes control. These both rely on effective approximations to the (1,1)
block, which is composed of mass matrices, and to the Schur complement. We advo-
cate using the Chebyshev semi-iteration used to accelerate a relaxed Jacobi iteration
as an approximation to the (1,1) block, and an inexact Uzawa-based approximation
for the Schur complement. We have given some theoretical justification for the effec-
tiveness of such preconditioners and have given some numerical results in both two
and three dimensions.
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We compared these results with those for solving the equivalent forward problem,
and the iteration count is only marginally higher in the control case, and it behaves
in broadly the same way as the iterations taken to solve the forward problem as the
mesh size decreases. These approximations therefore seem reasonable for problems of
this type.

In practice one may only be able to control part of the domain, which would give
a singular (1,1) block. At present our technique is unable to handle this situation,
but we hope that—with further work—the same paradigm will be effective in this
situation.

While the problems we have discussed are artificial, the ideas presented here have
the potential to be extended to develop preconditioners for a variety of problems, with
the additional constraints and features that real-world applications require.
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[26] J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point prob-
lems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal.
Appl., 29 (2007), pp. 752–773.

[27] D. Silvester and A. Wathen, Fast iterative solution of stabilised Stokes systems. Part II:
Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), pp. 1352–1367.

[28] M. Stoll and A. Wathen, Combination preconditioning and the Bramble–Pasciak+ precon-
ditioner, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 582–608.

[29] M. Stoll and A. Wathen, Preconditioning for Active Set and Projected Gradient Methods
as Semi-smooth Newton Methods for PDE-constrained Optimization with Control Con-
straints, Technical report 09/25, Oxford Centre for Collaborative Applied Mathematics,
2009.

[30] M. Stoll, Solving Linear Systems Using the Adjoint, Ph.D. thesis, University of Oxford, 2009.
[31] H. S. Thorne, Properties of linear systems in PDE-constrained optimization. Part I: Dis-

tributed control, Technical report RAL-TR-2009-017, Rutherford Appleton Laboratory,
2009.

[32] A. J. Wathen and T. Rees, Chebyshev semi-iteration in preconditioning for problems includ-
ing the mass matrix, Electron. Trans. Numer. Anal., 34 (2009), pp. 125–135.

[33] A. J. Wathen, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal.,
7 (1987), pp. 449–457.

[34] W. Zulehner, Analysis of iterative methods for saddle point problems: A unified approach,
Math. Comp., 71 (2001), pp. 479–505.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


