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An element-based preconditioner for mixed finite element problems ∗

Tyrone Rees† and Michael Wathen†

Abstract. We introduce a new and generic approximation to Schur complements arising from inf-sup stable
mixed finite element discretizations of self-adjoint multi-physics problems. The approximation ex-
ploits the discretization mesh by forming local, or element, Schur complements and projecting them
back to the global degrees of freedom. The resulting Schur complement approximation is sparse,
has low construction cost (with the same order of operations as assembling a general finite element
matrix), and can be solved using off-the-shelf techniques, such as multigrid. Using results from
saddle point theory, we give conditions such that this approximation is spectrally equivalent to the
global Schur complement. We present several numerical results to demonstrate the viability of this
approach on a range of applications. Interestingly, numerical results show that the method gives an
effective approximation to the non-symmetric Schur complement from the steady state Navier-Stokes
equations.

Key words. saddle-point linear systems, preconditioners, Krylov subspace methods, finite element methods,
Schur complements

AMS subject classifications. 65F08, 65F10, 65F15, 65F50, 65N22, 74S05

1. Introduction. We seek (u, p) ∈ X ×M that solves the saddle point problem

a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ X ,
b(u, q) = 〈g, q〉 ∀q ∈M,

(1.1)

where X and M are two Hilbert spaces, a(·, ·) : X ×X → R and b(·, ·) : X ×M→ R are two
bounded bilinear forms, and (f, g) ∈ X ′×M′, where X ′ andM′ are the dual spaces of X and
M, respectively. This is a well-posed problem provided that it satisfies certain conditions,
given in Section 4.1. Such problems arise in fields as diverse as constrained optimization,
constrained least-squares, fluid dynamics, electomagnetics, elasticity, optimal control, and
many others (see, for example, the references within the survey of Benzi, Golub and Liesen
[8]).

We focus on the case where (1.1) comes from the solution of a partial differential equation
(PDE). We discretize using the Finite Element Method, and in particular, by choosing finite
dimensional spaces Xh ⊂ X and Mh ⊂ M. This entails overlaying the domain with a grid
and use this to define local elements, which gives an elemental structure. We select basis
functions that have support only on a small number of neighbouring elements, which are
usually chosen to be unity at one mesh point and vanish at the others.

Suppose we have such a pair of spaces defined by the basis functions φi ∈ Xh, ψi ∈ Mh;
we assume they share the same elements, but the basis functions may differ. We look for

an approximation (uh, ph) =
(∑

i uiφi,
∑

j pjψj

)
, where we find the coefficents of each basis

∗This work was supported by EPSRC Grant EP/M025179/1
†STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK (tyrone.rees@stfc.ac.uk, michael.wathen@stfc.ac.uk)

1

mailto:tyrone.rees@stfc.ac.uk
mailto:michael.wathen@stfc.ac.uk


element by solving a linear system of the form

(1.2)

[
A BT

B 0

]
︸ ︷︷ ︸

A

[
u
p

]
︸︷︷︸
x

=

[
f
g

]
︸︷︷︸
b

,

where Ai,j = a(φi, φj) ∈ Rn×n and Bi,j = b(φj , ψi) ∈ Rm×n (see, e.g., [10, 16] for more detail).
We can decompose the matrices in (1.2) into a sum of σ elemental matrices. On the eth

element, let ne and me be the number of local degrees of freedom in Xh andMh, respectively
(see Figure 1 for an example). Let the small dense matrices Ae ∈ Rne×ne and Be ∈ Rme×ne

be the element equivalents of A and B.

Figure 1: Global (left) and local (right) meshes for a P2-P1 triangulation of a domain. Here
n = 25, m = 9, ne = 6, me = 3, and σ = 8.

We introduce Boolean matrices Le ∈ Rne×n and Ne ∈ Rme×m that map the local orderings
to the global orderings. Thus, we write

(1.3) A =
∑
e

LTe AeLe := LT ÂeL, B =
∑
e

NT
e BeLe := NT B̂eL.

where LT = [LT1 , . . . L
T
σ ], NT = [NT

1 , . . . N
T
σ ], Âe = blkdiag(Ae), and B̂e = blkdiag(Be).

As we will outline in Section 3.1, preconditioners based on Schur complement approxima-
tions work well for systems of the form (1.2). In this paper we describe a sparse approximation
to the Schur complement based on local contributions by the element matrices:

(1.4) Ŝdual =
∑
e

NT
e BeYe

−1Be
TNe and Ŝprimal =

∑
e

LTe (Ae +Be
TWe

−1Be)Le,

where Ye and We are local element matrices that, if assembled, would form symmetric positive
definite weighting matrices Y and W , respectively. In (1.4), we form the Schur complement
on an element and then map the local matrix into a global matrix by using the standard
assembly process. We call the matrices BeY

−1
e BT

e and Ae +Be
TWe

−1Be the dual and primal
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element Schur complement, respectively. The idea of using elements to define preconditioners
is not new, and we outline their development in the literature in Section 2.

In Section 3, we review preconditioning for saddle point systems, in particular looking at
(ideal) Schur complement preconditioners and natural norm, or Reisz-map, preconditioners.
We further explore the link between these methods in Section 4, where we extend existing
results in the literature. In Section 5, we prove our main result that, under certain condi-
tions on Y and W , Ŝdual and Ŝprimal are spectrally equivalent to the respective global Schur
complements.

We apply this preconditioner to three well-known examples of saddle-point systems, Stokes
equation (Section 6.1), Maxwell’s equation (Section 6.2) and the Navier-Stokes equation (Sec-
tion 6.3). Finally, we conclude in Section 7.

2. Related work. Many people have proposed methods that use individual elements to
accelerate the solution of systems of the form (1.2). Hughes, Levit and Winget [27] and
Ortiz, Pinksy and Taylor [40] introduced element-by-element (EBE) methods for solving self-
adjoint PDEs in the early eighties. Such methods approximate the sum in (1.3) by a product.
Nour-Omid and Parlett [39] show that we may apply the EBE method as a preconditioner
for conjugate gradients [26], and Wathen [52] and van Gijzen [51] give an analysis of such
methods for symmetric and non-symmetric problems, respectively. Gustafsson and Lindskog
[25] also exploit local contributions by developing a preconditioner based on global structure
preserving Cholesky factorizations on elements.

For symmetric positive definite systems, Kraus [30] described the use of local (dual) Schur
complements to build a preconditioner, and Axelsson, Baheta and Neytcheva [5] give de-
scriptive eigenvalue bounds for Ŝ−1

dualSdual, where Ye = Ae, which rely only on the Cauchy-
Bunyakowski-Schwarz constant. Neytcheva and co-authors [36, 37, 38] apply this idea to
non-positive definite systems, and Neytcheva [36] gives a bound on ‖Ŝ−1

dualSdual‖ (again for
Ye = Ae) based on the norms of relations involving the constituent blocks. In that work,
Neytcheva also shows numerically that this is a viable method for solving Stokes equation and
the Oseen equation.

More recently, there has been interest in multilevel preconditioners based on local subdo-
mains or elements. For example, in the context of overlapping domain decomposition, GENEO
[47, 48] is designed specifically for heterogeneities within the variational form by incorporating
local generalized eigenvalue problems on overlaps to define the coarsening. Also, for multigrid
methods, PCPATCH [19, 20] derives effective relaxation methods based on specific “patches”,
or local contributions from elements.

3. Iterative solution of saddle point systems. The convergence of a Krylov subspace
method applied to (1.2) is generally unsatisfactory unless paired with a suitable preconditioner,
P, which has two, competing, properties: a solve with P must be cheap, and the Krylov
method applied to P−1A must converge more quickly. We might satisfy the latter condition
if, for example, the eigenvalues of P−1A are in clusters away from the origin. We recommend
the surveys by Wathen [54] and Benzi, Golub, and Leisen [8] for a comprehensive overview
of the state-of-the-art in preconditioning techniques in general (in the former), and for saddle
point matrices in particular (in the latter).

In the case where the leading matrix A in (1.2) is symmetric, the saddle point system
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A is symmetric but indefinite, and MINRES [41] is the method of choice. MINRES requires
a symmetric positive definite preconditioner, and convergence is exactly described by the
eigenvalues of the preconditioned system P−1A (see, e.g., [16, Section 4.1]). For nonsymmetric
systems, GMRES [45] is often used, but in this case, as shown by Greenbaum, Pták and Strakoš
[21], clustered eigenvalues are not necessarily enough to guarantee rapid convergence.

3.1. Schur complement preconditioners. An idea that has proved successful for solving
systems of the form (1.2) is to build a preconditioner that exploits an approximation to the
Schur complement. The ideal preconditioners are

Pdual =

[
A 0
0 BA−1BT

]
, Pprimal =

[
A+BTW−1B 0

0 W

]
.

We can interpret Pdual as taking the weighting matrix Y = A. These involve the negative
of the dual Schur complement, BA−1BT , and the primal Schur complement, A + BTW−1B.
Often the choice between using Pdual and Pprimal depends on the invertibility of the leading
block, A. Murphy, Golub and Wathen [35] and Ipsen [28] show that the preconditioned
matrix, P−1

dualA, has three distinct eigenvalues. Thus, MINRES would converge in precisely
three iterations. For non-symmetric A, GMRES usually converges rapidly, but this is not
guaranteed. For the primal Schur complement, Greif and Schötzau [22] give bounds for the
eigenvalues of P−1

primalA. For the specific case where the dimension of the null space of leading
block A is m (the dimension of the dual variables), Greif and Schötzau [23] show that the
preconditioned matrix has two distinct eigenvalues.

Although in one sense these preconditioners are ideal, as convergence is rapid, forming
and solving with these is not practical as the primal and dual Schur complements are typically
dense. However, they give us something to aim for in a practical preconditioner.

3.2. Operator preconditioning for saddle point problems. Another framework for solving
systems of the form (1.2) is operator preconditioning. Given a Hilbert space V, the Riesz map
is a mapping τ : V ′ → V such that, for any r ∈ V ′,

(τr, v)V := 〈r, v〉 ∀v ∈ V.

The continuous saddle point system (1.1) is an operator L : X ×M→ X ′×M′, which returns
functions outside of the space (X ,M). Consider the Reisz map

(3.1) τ =

[
χ 0
0 µ

]
,

where χ : X ′ → X and µ : M′ → M are the Reisz maps associated with the spaces X and
M, respectively. Applying τ to (1.1) gives the transformed equation

τL (u, p) = τ (f, g) ,

where τ (f, g) ∈ X × M and τK : X × M → X × M. We now have a reformuation of
(1.1) posed entirely in the space X ×M, and the map τ is therefore analogous to applying
a preconditioner to the operator L. Furthermore, we can build a practical preconditioner
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by choosing an inner product which is sufficiently close to the bilinear forms associated with
these spaces, yet is numerically tractable. We refer the reader to the monograph by Malek
and Strakos [32], for example, for more detail.

In some sense, therefore, block diagonal preconditioners are natural for saddle point prob-
lems of the form (1.1). We refer the reader to the article by Mardal and Winther [33], which
describes in detail such preconditioners. However, their derivation requires detailed knowledge
of the problem, and may be non-trivial, especially in real-world applications.

It is well known that there is a strong link between operator preconditioning and Schur
complement preconditioning. Preconditioners for a range of problems from mixed finite ele-
ments [23, 43, 46, 53] were developed as approximations to the primal or dual Schur comple-
ment, but can be thought of as a finite dimensional analogue to τ .

4. The relationship between natural norm and Schur complement preconditioners.
Pestana and Wathen [42] describe the link between the dual Schur complement (BY −1BT )

and the Riesz map, µ, on the secondary variables for a specific choice of Y , and we give an
alternative proof of this result below. We also derive an analogous link between the primal
Schur complement (A+BTW−1B) and Riesz map, χ, on the primary variables for a specific
choice of W . These relationships are central to the theory that we develop for practical element
preconditioners in Section 5.

4.1. Saddle point theory. We assume that the operators a(·, ·) and b(·, ·) are bounded,
satisfying

|a(u, v)| ≤ Γ∗a ‖u‖X ‖v‖X ∀u, v ∈ X(4.1)

|b(u, p)| ≤ Γ∗b‖u‖X ‖p‖M ∀u ∈ X , p ∈M,(4.2)

for some positive constants Γ∗a, Γ∗b . We define the space

V := {v ∈ X : b(v, p) = 0 ∀ p ∈M}.

Brezzi’s splitting theorem [11] tells us that the mapping in (1.1) defines an isomorphism if
and only if the bilinear forms satisfy the following conditions:

1. the bilinear form a(·, ·) is V−elliptic, i.e.

(4.3) ∃α∗ > 0 s.t. a(v, v) ≥ α∗‖v‖2X ∀v ∈ V.

2. The bilinear form b(·, ·) satisfies the inf-sup condition:

(4.4) ∃β∗ > 0 s.t. inf
p∈M

sup
u∈X

b(u, p)

‖u‖X ‖p‖M
≥ β∗.

When we discretize problems of the form (1.1), we need to be careful in the choice of
approximation spaces. It is not necessarily true that the finite dimensional problem will
satisfy the equivalent inf-sup condition. In particular, we cannot choose the spaces Xh and
Mh independently; see, for example, Brezzi and Fortin [12, Chapter 2]. If the spaces are
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complimentary, we say they satisfy the Ladyshenskaja-Babuška-Brezzi (LLB) condition, or
that they are inf-sup stable. The discrete analogue to (4.4) is therefore

(4.5) inf
ph∈Mh

sup
uh∈Xh

b(uh, ph)

‖uh‖Xh
‖ph‖Mh

≥ β.

For a stable discretization, the inf-sup constant, β, is independent of the discretization pa-
rameter (mesh size).

There is an affinity between the continuous operators and their matrix representations,
and we can write the relations above in terms of matrices. In finite dimensions, (4.1) and
(4.2) become

|uTAv| ≤ Γa ‖u‖X ‖v‖X ∀u,v ∈ Rn(4.6)

|pTBu| ≤ Γb ‖u‖X ‖p‖M ∀u ∈ Rn,p ∈ Rm(4.7)

for positive constants Γa and Γb, where Xi,j = (φi, φj)Xh
and Mi,j = (ψi, ψj)Mh

are the matri-
ces that define the natural inner products of the primary and secondary spaces, respectively.
Similarly, the matrix representation of the inf-sup condition (4.5) is

(4.8) sup
u

(Bu,p)

‖u‖X
≥ β ‖p‖M ∀p ∈ Rm.

Following the theory in Braess [10, Chapter 4], we associate the mapping B : Xh → M′h
with (Buh, ph)Mh

= b(uh, ph) for all ph ∈ Mh, and its adjoint mapping B′ : Mh → X ′h
with (B′qh, vh)Mh

= b(vh, qh) for all vh ∈ Xh. The following lemma gives five alternative
statements of the inf-sup condition (4.8).

Lemma 4.1. Let Vh be the finite dimensional analogue of V. The following statements are
equivalent:

1. There exits a constant β that satisfies (4.8).
2. The operator B : V⊥h →M′h is an isomorphism, and

‖Bvh‖Mh
≥ β ‖vh‖Xh

∀vh ∈ V⊥h .

3. For all v ∈ Rn, v ∈ null(B)⊥,

‖Bv‖M−1 ≥ β ‖v‖X ,

4. The operator B′ :Mh → V0
h ⊂ X ′h is an isomorphism, and∥∥B′ph∥∥Xh

≥ β ‖ph‖Mh
∀ph ∈Mh.

5. For all p ∈ Rm, ∥∥BTp
∥∥
X−1 ≥ β ‖p‖M .

Proof. For the equivalence of 1, 2 and 4, see Braess [10, Lemma 4.2].

6



We now show 2 ⇐⇒ 3. First note that ‖vh‖2Xh
= vTXv. Since Bvh ∈Mh, Bvh =

∑
j qjψj

for some coefficients q 6= 0. Then

‖Bvh‖Mh
=
∑
i

∑
j

viqj (Bφi, ψj)Mh
=
∑
i

∑
j

viqjb(φi, ψj) = qTBv.

Furthermore, we have

(Bv)j =
∑
i

vi(Bφi, ψj)Mh
= (Bvh, ψj)Mh

=
∑
k

qk (ψk, ψj)Mh
= (Mq)j ,

and so q = M−1Bv, which shows the equivalence of 2 and 3.
A similar argument gives 4 ⇐⇒ 5.

We will use these results below to show relationships between a Schur complement and
the natural norm for such problems, which will inform our choice of the weighting matrices Y
and W .

4.2. Dual Schur complements and the natural norm. For Stokes equations (see Sec-
tion 6.1), we take the weighting matrix Y = A, which can also be identified with the matrix
defining the natural norm. Figure 2a shows a plot of the entries of the resulting dual Schur
complement, where the magnitude of the entries is shown in the colour bar. The matrix is
dense, however the largest entries have a clear structure. Indeed, as we see in Figure 2b, in
this case this structure resembles the sparsity pattern of the matrix M , the mass matrix for
this example.

(a) BA−1BT – the Stokes equations (b) The P1 mass matrix

Figure 2: Plots of the entries of the Schur complements and mass matrix, P2-P1 discretization,
h = 2−3, with the Reverse Cuthill-McKee ordering.

The following theorem formalises this intuition for saddle point systems in general. We
refer the reader to Pestana and Wathen [42, Section 3] for an alternative proof of this result.
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Theorem 4.2. Suppose we have an inf-sup stable discretization of a saddle point problem
of the form (1.1) where a(·, ·) is Vh− elliptic. Let λ satisfy the generalized eigenvalue problem

BX−1BTp = λMp.

Then λ is independent of h, and lies in the range [β2,Γ2
b ].

Proof. Consider the generalized Rayleigh quotient

pTBX−1BTp

pTMp
.

We can bound this quantity from below by β2 using Condition 5 of Lemma 4.1, and from
above by Γ2

b using (4.7) with u = X−1BTp.

Theorem 4.2 suggests that the natural choice of the weighting matrix Y is the matrix that
defines the natural inner product of the primary space, X. We will use this in subsequent
sections.

Remark 4.3. From Theorem 4.2, if A can be identified with X, then the dual Schur com-
plement of the leading block of A is spectrally equivalent to the matrix M .

4.3. Primal Schur complements and the natural norm. We are unaware of a result in
the literature that links the primal Schur complement to the natural norm in a way analogous
to Theorem 4.2. Below we prove results for the cases when A is symmetric positive definite
(Theorem 4.4) and maximally rank deficient (Theorem 4.5).

Theorem 4.4. Suppose that the bilinear form a(·, ·) is elliptic with ellipticity constant αx,
and the associated matrix A is symmetric. For an inf-sup stable discretization, the generalized
eigenvalues satisfying

(A+BTM−1B)x = λXx

are such that λ ∈ [αx,Γ], where Γ = Γa + Γ2
b .

Proof. For the lower bound, we have

xT (A+BTM−1B)x = xTAx + xTBTM−1Bx ≥ xTAx ≥ αx xTXx.

For the upper bound, first note that

xTBTM−1Bx ≤ Γb‖x‖X‖M−1Bx‖M = Γb(x
TXx)1/2(xTBTM−1Bx)1/2,

where we have used (4.7). Therefore using this result, together with (4.6), we obtain

xT (A+BTM−1B)x = xTAx + xTBTM−1Bx ≤ Γa x
TXx + Γ2

b x
TXx,

which gives the required result.

Theorem 4.5. Suppose that the bilinear form is Vh-elliptic with ellipticity constant α, and
the matrix A associated with the bilinear form a(·, ·) is symmetric and positive semi-definite
with nullity n−m. For an inf-sup stable discretization, the generalized eigenvalues satisfying

(A+BTM−1B)x = λXx

are such that λ ∈ [γ,Γ], where γ = 1
2 min(α, β2) and Γ = Γa + Γ2

b .
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Proof. We can decompose x = y + z where y ∈ null(B) and z ∈ null(B)⊥. Since A has
nullity n−m, and a(·, ·) is Vh−elliptic, we must have that Az = 0.

We have that

xT (A+BTM−1B)x = yTAy + zTBTM−1Bz

≥ αyTXy + β2zTXz

≥ min(α, β2)(yTXy + zTXz)

Since (y − z)TX(y − z) ≥ 0, we have that yTXy + zTXz ≥ 2yTXz. Therefore

xT (A+BTM−1B)x ≥ min(α, β2)

(
1

2

(
yTXy + zTXz

)
+

1

2

(
yTXy + zTXz

))
≥ min(α, β2)

1

2

(
yTXy + 2yTXz + zTXz

)
= γ xTXx,

from which we obtain the lower bound. The upper bound follows the proof of Theorem 4.4.

Theorems 4.4 and 4.5 provide the motivation for the “natural” choice for the weighting
matrix W = M . From this point onwards we consider the primal Schur complement to be
A+BTM−1B.

Remark 4.6. If null(B) and null(B)⊥ are X−orthogonal subspaces, then it is straightfor-
ward to adapt the proof of Theorem 4.5 to show that minimum eigenvalue is min(α, β2). This
is the case in, for example, Maxwell’s equations [23, Section 2.2].

5. Element Schur complement preconditioners. We now turn our attention to the ele-
ment Schur complement approximations defined in (1.4). Computing these matrices requires
a dense calculation on each element. Since the matrices involved are small in comparison to
the mesh size (e.g., for P2 elements in 2D, Ae will be in R6×6) the cost of forming the element
Schur complement is asymptotically the same as standard assembly.

Let Xe and Me be the local Gram matrices defined by the norm on Xh and Mh, respec-
tively. Then we have the following results.

Lemma 5.1. Suppose we have a saddle point problem that satisfies the conditions of The-
orem 4.2. The generalized eigenvalues satisfying:

BeX
−1
e BT

e x = λMex

are bounded within some finite region [γ̂2
d , Γ̂

2
d] independently of h.

Lemma 5.2. Suppose we have a saddle point problem that satisfies the conditions of The-
orem 4.4 or Theorem 4.5. The generalized eigenvalues satisfying:

(Ae +BT
e M

−1
e Be)x = λXex

are bounded within some finite region [γ̂2
p , Γ̂

2
p] independently of h.
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Proof of Lemma 5.1 and Lemma 5.2. The discretization is inf-sup stable on any domain,
so must be so on a single element. Thus, by Theorem 4.2 (for Lemma 5.1) and Theorem 4.4
or Theorem 4.5 (for Lemma 5.2), we get the required result, with the eigenvalues bounded
above and below by the bounds in those theorems.

Theorem 5.3. Suppose we have a discretization of a saddle point problem that satisfies
the conditions of Theorem 4.2, and consider Ŝdual as defined in (1.4) with Ye = Xe. The
generalized eigenvalues satisfying

BX−1BTx = λŜdualx

are bounded independently of the mesh size.

Proof. For the upper bound, we have that

λ ≤ max
x/∈null(B)

xTBX−1BTx

xT Ŝdualx

= max
x/∈null(B)

xTBX−1BTx

xTMx
· xTMx

xT Ŝdualx

≤ Γ2
b max
x/∈null(B)

xTNTMeNx

xTNT B̂eX̂e
−1
B̂eNx

≤ Γ2
b max

e
max

z/∈null(Be)

zTMez

zTBeX
−1
e BT

e z
,

= Γ2
b/γ̂

2
d .

An analogous argument holds for the lower bound, which is given by β2/Γ̂2
d.

Theorem 5.4. Suppose we have a discretization of a saddle point problem that satisfies the
conditions of either Theorem 4.4 or Theorem 4.5, and consider Ŝprimal as defined in (1.4) with
We = Me. Then the generalized eigenvalues satisfying

(A+BM−1BT )x = λŜprimalx

are bounded away from zero.

Proof. The proof follows a similar format to Theorem 5.3. The eigenvalues are bounded
above by Γ/γ̂2

p . The lower bound is given by αx/Γ̂
2
p in the elliptic case (as in Theorem 4.4),

and γ/Γ̂2
p in the maximally rank deficient case (as in Theorem 4.5).

Theorems 5.3 and 5.4 show spectral equivalence between the element and global Schur
complements for both the dual and primal cases. The existence of a natural norm precondi-
tioner is vital in the proofs, but explicit knowledge of it is not required to form a practical
preconditioner. We provide numerical experiments in the following section to demonstrate
the performance of the element based Schur complement approximation against well-known
and state-of-the-art preconditioners on standard test problems.
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6. Numerical results. In this section, we present numerical results for both symmetric
and nonsymmetric problems, using Firedrake [44] with PETSc [6, 7] and PETSc4PY [13] as
the solver interface. We have also used FEniCS [1, 31] to generate the eigenvalue plots that
depict the theoretical bounds produced in Section 5. For systems involving simple H1 elliptic
type operators, we use an algebraic multigrid solver from HYPRE [18], and for more complex
operators, arising from H(curl) discretizations, we use the sparse direct solver MUMPS [2, 3].
We set the absolute and relative tolerance of the Krylov subspace solver to be 10−6 and 10−8,
respectively. Table 1 introduces the notation used in the results tables. We note that the
timings are for the total time to solve the model, including the assembly of both the linear
system and the preconditioners, as well as the linear solve.

Column label Linear model Nonlinear model

DoF
Total degrees of freedom
(system size)

Total degrees of freedom
(system size)

Time

Total time to solve the linear
system (including assembly of
the linear system and
preconditioner, as well as the
linear solve time)

Total time to solve the
nonlinear system (including
assembly of all linear systems
and preconditioners, as well as
linear solve time at each
nonlinear iteration)

Iteration Total number of linear iterations
Total number of nonlinear
iterations/average number of
linear iterations

Table 1: Notation used in the results tables

6.1. Stokes Flow. The Stokes equations describe viscous incompressible flow over some
bounded, sufficiently regular, domain Ω ⊂ Rd:

− 1

Re
∇2~u+∇p = ~f in Ω(6.1)

∇ · ~u = 0 in Ω,(6.2)

where ~u, p and Re are the fluid velocity, fluid pressure and the Reynolds number, respectively.
For a detailed description of the problem, see, e.g., Temam [50, Chapter 1] or Elman, Silvester
and Wathen [16, Chapter 3]. We seek a weak solution (~u, p) ∈ H1

E(Ω)d × L2(Ω) such that

1
Re(∇~u,∇~v)Ω − (p,∇ · ~v)Ω = (~f,~v)Ω, ∀~v ∈ H1

E0
(Ω)d,

−(q,∇ · ~u)Ω = 0, ∀q ∈ L2(Ω),

where H1
E(Ω)d and H1

E0
(Ω)d are subsets of H1(Ω)d that satisfy the required boundary con-

ditions. We consider the classical test problem known as the leaky cavity driven flow, see
Elman, Silvester and Wathen [16, Example 3.1.3] for full details.
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In the following we use the (inf-sup stable) P2-P1 (Taylor-Hood) element [49], although
the methods can be applied to any stable element pair. Upon discretization, we obtain a
saddle point system of the form (1.2), where A is a discrete vector Laplacian scaled by the
Reynolds number, and B is a fluid divergence operator.

The natural norm preconditioner for the Stokes problem is analogous to the approximate
Schur complement preconditioner of Silvester and Wathen [46, 53] and is given by

P =

[ 1
ReK 0

0 ReQp

]
,

where Qp is the pressure mass matrix and K is the discrete vector Laplacian; see Mardal and
Winther [33, Example 7.1] for full details.

Since the leading block of the Stokes problem defines the natural inner product on the
primary space, then from Theorem 5.3 the element and global dual Schur complements are
spectrally equivalent. However, in the construction of the element Schur complement, it is
necessary to invert the local element matrices of the Laplacian. These local matrices are
singular so we shift the matrix to form the element Schur complements as follows:

Ŝdual =
∑
e

NT
e Be

(
1

Re
(Ke + εQe)

)−1

Be
TNe where ε = 10−6,

Ŝprimal =
1

Re

∑
e

LTe
(
Ke +Be

T [Qp]
−1
e Be

)
Le.

Here Be and Ke are defined as before, Qe is the velocity element mass matrix and [Qp]e is the
pressure element mass matrix. The shift in the dual Schur complement corresponds to using
a weighting matrix Y = 1

Re(K + εQ).
We first numerically examine the eigenvalue bounds derived in Theorems 5.3 and 5.4.

Figure 3 depicts the computed (blue) eigenvalues of

ReBK−1BTx = λŜdualx and
1

Re
(K +BTQ−1

p B)x = λŜprimalx,

where the pressure mass matrix, Qp, is the matrix associated with the norm on the pressure
space, together with the bounds. The computed bounds are shown with square and regular
parentheses for the primal and dual Schur complement, respectively. Finally, the y-axis shows
the order of the mixed discretization used, see Periodic Table of the Finite Elements [4] for
the key.

From the figure, we see that the computed eigenvalues for both Schur complements remain
constant, and within the bounds, as the order of the discretization is increased. The bounds
are not tight in this example, but are similar in value to equivalent bounds obtained for the
natural norm preconditioners (see, for example, Elman, Silvester and Wathen [16, Section
3.5.1]), which our estimates rely on. We observe that the both the computed eigenvalues and
the bounds are well away from zero. The worst case in Theorems 5.3 and 5.4 would give a
small condition number, and in practice we see the eigenvalues are much more tightly clustered
than the worst case predicts.
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Figure 3: Eigenvalue bounds for different discretization orders for the Taylor-hood mixed
element for the Stokes example in Section 6.1.

Tables 2 and 3 give the two and three dimensional timing and iteration results for a
constant Reynolds number, Re = 1000. For the two dimensional results in Table 2, we see
that the iterations for both element Schur complement preconditioners and the natural norm
preconditioner do not grow significantly as we refine the mesh, and the performance of all
preconditioners is comparable. Also, for all preconditioners, the time scales linearly with the
degrees of freedom. For the three dimensional results in Table 3, we see that the iterations for
the dual element Schur complement appear to increase mildy, however, the iterations for the
natural norm and the primal element Schur complement preconditioner are almost identical
and are scalable with respect to the mesh.

Dual element Primal element Natural norm
Schur complement Schur complement preconditioner

DoF Time Iteration Time Iteration Time Iteration

2,467 0.2 45 0.2 40 0.2 38
9,539 0.4 43 0.3 42 0.3 41
37,507 0.8 45 1.1 45 0.7 41
148,739 3.0 50 5.6 45 3.6 43
592,387 12.1 52 18.3 48 13.0 51

2,364,419 53.8 58 56.4 45 60.2 55
9,447,427 197.9 50 239.0 51 209.3 53

Table 2: Iteration and timing results for the two-dimensional Stokes leaky cavity driven flow
problem with Re = 1000.
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Dual element Primal element Natural norm
Schur complement Schur complement preconditioner

DoF Time Iteration Time Iteration Time Iteration

402 0.2 45 0.2 52 0.2 41
2,312 0.3 60 0.3 56 0.2 54
15,468 1.8 69 2.5 62 1.8 61
112,724 20.5 75 27.3 65 18.1 66
859,812 219.2 83 279.6 69 186.1 68

Table 3: Iteration and timing results for the three-dimensional Stokes leaky cavity driven flow
problem with Re = 1000.

6.2. Mixed formulation of Maxwell’s equations. We now consider the time-harmonic
Maxwell equation in mixed form [23, 24, 34]. The continuous problem is given as follows:

(6.3)
1

Rem
∇× ∇× b +∇r = f in Ω

∇ · b = 0 in Ω,

where b is the magnetic field, r is the Lagrange multiplier associated with the divergence
constraint on the magnetic field and Rem is the magnetic Reynolds number. For this problem,
we set the forcing terms and Dirichlet boundary conditions corresponding to the exact solution

~u =

[
exp(x) cos(y)
exp(x) sin(y)

]
and p = xy.

The standard weak form is: find (~b, r) ∈ H(curl,Ω)×H1
E(Ω) such that

1
Rem

(∇×~b,∇× ~c)Ω + (~c,∇r)Ω = (f ,~c)Ω, ∀~c ∈ H(curl,Ω),

(~b,∇s)Ω = 0, ∀s ∈ H1
E0

(Ω).

In the mixed Maxwell case, A in (1.2) is the discrete curl-curl operator, 1
Rem

K.

The primal element Schur complement is formed using the matrix associated with the
natural inner product for H1

0 (Ω), the Laplacian operator, L, and so we take this to be the

weighting matrix, W . The natural norm preconditioner is blkdiag
(

1
Rem

K +Q,L
)

, where Q

is a vector mass matrix; see Mardal and Winther [33, Example 7.4]. Greif and Schötzau [23]
derive the same preconditioner using a Schur complement argument. They show directly that
BTL−1B is spectrally equivalent to the vector mass matrix, Q. Thus, their proposed precon-
ditioner is identical (under mild parameter assumptions) to the natural norm preconditioner.
We also consider the dual element Schur complement preconditioner, taking Y as 1

Rem
K+Q.

Figure 4 shows the eigenvalue distribution, following the same conventions introduced for
Figure 3. The computed eigenvalues and corresponding bounds for the dual Schur complement
are precisely 1, since the dual element and global Schur complement are identical; this can
be seen from identities established by Greif and collaborators [17, 23, 24]. We see that the
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Figure 4

bounds on the primal element Schur complement are looser, however, the bounds seem to be
fairly descriptive of the eigenvalues and range between 0.95 and just over 1.

Table 4 gives the timing and iteration results for this example. In general, the number of
iterations for all three preconditioning techniques do not grow significantly as the system gets
larger. The timings do not scale linearly in this case, which is due to our use of a direct solver
to apply the preconditioner. The iteration counts for the dual element Schur complement and
the natural norm preconditioner are identical. Since we are applying the preconditioner with
a direct solver we do not provide three dimensional results for this example.

Dual element Primal element Natural norm
Schur complement Schur complement preconditioner

DoF Time Iteration Time Iteration Time Iteration

4,225 0.4 33 0.4 33 0.4 33
16,641 0.6 30 0.7 30 0.6 30
66,049 1.8 33 2.9 33 1.9 33
263,169 6.6 33 9.4 33 8.4 33

1,050,625 27.4 33 31.0 33 30.2 33
4,198,401 113.9 34 116.3 35 121.9 34
16,785,409 596.9 35 638.3 40 590.8 35

Table 4: Timing and iterations results for the mixed Maxwell equations with Rem = 100.

6.3. The Navier-Stokes equations. Finally, we consider the Navier-Stokes equations,
given by

− 1

Re
∇2~u+ ~u · ∇~u+∇p = ~f

∇ · ~u = 0.
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The presence of the advection term (~u · ∇~u) provides both non-linearity and non-symmetry
in the model, which are two key differences between this example and the previous ones. The
nonlinear scheme we use is Newton’s method with absolute and relative tolerances of 10−6

and 10−8, respectively.
A standard mixed formulation of this model is: find (u, p) ∈ H1

0 (Ω)d × L2(Ω) such that

1
Re(∇~u,∇~v)Ω + (~u · ∇~u,~v)Ω + (p,∇ · ~v)Ω = (~f,~v)Ω, ∀~v ∈ H1

0 (Ω)d,

(q,∇ · ~u)Ω = 0, ∀q ∈ L2(Ω).
.

Upon discretization and linearization, we obtain a saddle point system of the form (1.2) with
A = 1

ReK +C, where K is the vector Laplacian and C is the advection diffusion matrix, and
B is the divergence matrix.

Due to their non-symmetric nature, the discrete Navier Stokes equations do not fit into
the framework for natural norm preconditioners, thus we cannot apply the theory in Sec-
tions 4 and 5. However, we can still form local Schur complements using Y = 1

ReK +C, and
use this as a heuristic preconditioner. We compare this approach with the Pressure Convection
Diffusion (PCD) preconditioner of Kay, Loghin and Wathen [29].

For this example we will use the full LTDL decomposition:

P−1 =

[
I −Â−1BT

0 I

] [
Â−1 0

0 Ŝ−1

] [
I 0

−BÂ−1 I

]
where the action of Â−1 is performed by a multigrid V-cycle approximating the inverse of
A. For Ŝ we either use the dual element Schur complement or the PCD approximation,
Ŝ = ApF

−1
p Qp (where Ap, Fp and Qp are the pressure space Laplacian, convection-diffusion

operator and mass matrix, respectively). We use the implementation of PCD distributed with
Firedrake.

Tables 5 and 7 show timing and iteration results for a two-dimensional cavity driven
flow (described in Elman, Silvester and Wathen [16, Example 8.1.2]) and flow over a two-
dimensional backwards facing step (described in Elman, Silvester and Wathen [16, Example
8.1.3]), respectively. The backwards facing step is more complicated due to both the nonconvex
domain and the natural outflow conditions on the rightmost boundary. Table 6 shows timing
and iterations results for a three-dimensional cavity driven flow problem.

From Table 5, we see that for both PCD and dual element Schur complement precondi-
tioners exhibit mesh independent iterations. However, for both Reynolds numbers the dual
element Schur complement preconditioner converges in noticeably fewer Krylov iterations. For
the timing results, we see that both preconditioners scale linearly with the system size. We
highlight that the time to solve the system with the element Schur complement preconditioner
is about 75% of the equivalent solve for the PCD preconditioner. As well as needing to take
fewer iterations, the element Schur complement requires only one sparse system solve per ap-
plication, as opposed to two solves and a matrix-vector multiply for the PCD preconditioner.

We can also apply the element Schur complement preconditioner in three dimensions, as
shown in Table 6. Here the difference between the element Schur complement preconditioner
and the PCD preconditioner is more pronounced. The iterations for the element preconditioner
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Re = 1 Re = 100
Dual element PCD Dual element PCD

Schur complement preconditioner Schur complement preconditioner
DoF Time Iteration Time Iteration Time Iteration Time Iteration

2,467 0.3 2/24.0 0.4 2/34.5 0.7 4/59.8 1.0 4/99.5
9,539 0.5 2/26.0 0.6 2/36.0 1.6 4/63.2 2.6 4/104.5
37,507 2.1 2/27.0 4.0 2/38.5 8.8 4/65.0 14.1 4/103.0
148,739 7.5 2/27.5 14.0 2/39.0 33.7 4/68.2 49.7 4/99.2
592,387 26.6 2/28.0 39.5 2/40.5 128.1 4/73.8 173.0 4/99.5

2,364,419 108.2 2/29.0 188.1 3/33.3 520.6 4/77.5 741.9 4/107.5
9,447,427 439.9 2/29.0 676.6 2/41.5 1651.1 3/79.0 2162.2 3/103.3

Table 5: Results for preconditioning GMRES for the Navier-Stokes equations with Re = 1
and Re = 100 for the 2D cavity driven flow problem.

Dual element PCD
Schur complement preconditioner

DoF Time Iteration Time Iteration

402 - -/- 3.0 5/103.0
2,312 1.7 4/80.8 4.3 4/219.2
15,468 18.4 4/63.8 51.2 4/190.2
112,724 170.7 4/71.5 488.4 4/216.2
859,812 1810.9 4/82.5 4986.4 4/238.2

Table 6: Results for preconditioning GMRES for the Navier-Stokes equations with Re = 100
for the 3D cavity driven flow problem.

are similar to those for the two-dimensional problem in Table 5, whereas the linear iteration
count for the PCD preconditioner approximately doubled.

For the backwards facing step, Table 7, the Firedrake implementation of the PCD pre-
conditioner does not converge, and so we only report the element Schur complement results.
While the iterations grow with the mesh size, this growth appears to be stabilizing. Again,
the timings scale linearly with the problem size.

We remark that by carefully considering the boundary conditions, the PCD preconditioner
can be modified to yield scalable iterations for outflow problems (see, for example, Elman,
Silvester and Wathen [16, Section 9.2.2] and Bootland [9, Chapter 5]), but these are not yet
implemented in Firedrake. We speculate that similar considerations would also improve the
performance of the element Schur complement approach considered here; this is beyond the
scope of this paper.

The element Schur complement preconditioner was robust with respect to different mesh
tessellations (both triangles and quadrilaterals) in our tests. This is also the case for the PCD
preconditioner. However, for other preconditioners for Navier-Stokes, specifically the Least-
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Dual element Schur complement
DoF Time Iteration

24,498 7.1 3/79.3
61,659 20.1 3/89.0
133,092 39.2 3/87.3
271,286 93.8 3/103.3
599,892 234.4 3/117.3

2,455,263 972.5 3/119.0

Table 7: Results for preconditioning GMRES for the Navier-Stokes equations with Re = 10
for the backwards facing step problem.

squares commutator preconditioner [15], it has been observed that the performance degrades
for triangular cells; see Bootland [9, Chapter 6.3.1] and the references within.

Finally, in our numerical experiments for the Navier-Stokes equations we saw that, for
an initial guess that interpolates the Dirichlet boundary conditions, reassembling the element
Schur complement preconditioner at each nonlinear iteration did not significantly reduce the
number of Krylov iterations. However, it seemed necessary to reassemble the PCD precondi-
tioner to obtain a scalable solver.

7. Conclusion and outlook. In this work, we presented effective sparse Schur complement
approximations for inf-sup stable mixed finite element discretizations of self-adjoint problems.
Our new preconditioner is based on forming local, or element, Schur complements and project-
ing them back to the global degrees of freedom. Utilizing the existence of matrices associated
with the natural inner products of the underlying function spaces, we show spectral equiva-
lence between global and local Schur complements under mild conditions. However, given the
algebraic nature of these preconditioners, they can also be used as a “black-box”.

From the numerical results, the element based Schur complement preconditioners perform
similarly to the natural norm preconditioners for the self-adjoint multi-physics problems we
have considered. Interestingly, for the nonsymmetric and nonlinear Navier-Stokes example,
where the theory breaks down, our new Schur complement approximation outperforms the
well-known PCD preconditioner in our tests. One possible area of future work would be to
extend the theory to cover nonsymmetric systems.

We only consider single element contributions, but grouping multiple local elements to-
gether to form slightly larger local Schur complements may lead to a better approximation,
requiring only marginally more storage.

We focus on problems from mixed finite elements, but the ideas should work for any
partially separable functions which can be represented as a sum of element functions (see
Daydé, L’Excellent and Gould [14]). This may allow us use similar ideas to build fast solvers
for problems that do not come from PDEs, and where the natural norms are not obvious. The
extension of element preconditioners to these problems is left for future work.

Code availability. Together with the written manuscript, we provide the code which was
used to generate the results [55].
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