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THE ITERATIVE SOLUTION OF LINEAR SYSTEMS ARISING IN
THE PRIMAL-DUAL INTERIOR POINT ALGORITHM FOR

LINEAR PROGRAMMING

TYRONE REES∗

Abstract. A critical component of interior point algorithms is a linear system solve, and we
develop conditions on how accurate this solve must be in order to preserve the convergence of the
interior point method. We show that the error, measured in a certain norm, must be reduced

proportional to the square-root of the duality measure, µ
1/2
k , in comparison to other approaches that

suggest a reduction proportional to µk is needed. We also show that this norm is strongly related to
the natural norm in which many of the traditional iterative methods converge. We give numerical
results that suggest that this framework is descriptive of the convergence behaviour of the interior
point method in the presence of inexactness.

1. Introduction. Interior point methods have proved to be one of the most
efficient ways to solve linear programming problems. Such methods iterate towards
the optimal solution, solving a linear system at each step in order to calculate the
next search direction. The linear system is traditionally solved using direct methods.
However, the dimension of the systems that we need to solve has grown rapidly as the
volume and velocity of data has increased in recent years. Therefore we increasingly
need to replace the direct solve in interior point codes by an iterative solve; see, for
example, the work towards a matrix-free interior point method [16].

Iterative methods for linear systems, by their nature, only solve the system inex-
actly, and this can cause difficulties. To illustrate this, consider the adlittle problem
from the Netlib test set [13], which we solve in MATLAB using a modified version of
Michael Saunders’ PDCO code [40]. We changed the routine to solve the augmented
system using Matlab’s backslash, and in addition introduced an error by adding a
small perturbation (specifically, 1e -12 ∗ randn(n, 1)) to the solution. Figure 1.1 shows
the results of this test, and it’s clear that—even with a perturbation this small—the
error is significant enough to cause the interior point method to fail to converge. In
particular, the problem loses dual feasibility and never recovers.

(a) Augmented system solved with
backslash

(b) Augmented system solved with
backslash then perturbed

Fig. 1.1: Convergence measures, direct method and perturbed solution
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This example is a simple—and representative—illustration of the fact that we need
to take some care when solving for the Newton correction inexactly. In particular, it
would appear that having a small error is insufficient, and instead we need to focus
on the size of the residual.

An obvious question arises: how accurate must the solution to the linear system
be in order to retain the convergence of the exact algorithm? Researchers have been
trying to quantify this since at least the mid 1990’s [24, 4, 12], and the case where
the inexact solution is still primal feasible (for example, by solving with a constraint
preconditioner) has been particularly well studied [24, 35, 36, 2]. We describe the
prior work in more detail in Section 5, but in general these studies predict we should
solve the linear system to a tolerance proportional to the duality measure, µk. It can
be observed experimentally that we get convergence at significantly looser tolerances
[3, 37, 28].

The main contributions of this work are the following:

• We describe the inexact infeasible interior point method in Section 2. We state
three assumptions on the accuracy of the solution, including requirements

that we solve the linear system to an accuracy proportional to µ
1/2
k in a

certain norm, and that the residual is reduced. Theorem 2.7 shows that,
provided these assumptions hold, this algorithm converges at the same rate
as predicted by the theory for the equivalent interior point algorithm with
exact solves.

• We argue in Section 2.3 that we can compute a value for δk such that, if we

solve the linear system to a tolerance of δkµ
1/2
k (measured in the ‘natural’

norm), then the residual reduction requirement is satisfied. The value of δk
relies on the largest entry of the primal and dual solutions, xk and sk, and
the largest singular value of the constraint matrix, B.

• We claim that the norms predicted by the theory above are simply related to
the norms in which four commonly used iterative methods naturally converge.
In particular, we consider preconditioned conjugate gradients, conjugate gra-
dients applied to the normal equations with a constraint preconditioner, and
MINRES with Schur-complement and augmented Lagrangian precondition-
ers. We justify these claims in Sections 3.1 and 3.2.

In addition, we present numerical validation of the theoretical results above in Sec-
tions 2.5 and 4. The code used to generate these results is available to download from
https://github.com/tyronerees/IterativeInnerLP.

2. Inexactness in the interior point algorithm. We begin by developing
the framework that we will use throughout. We state a version of the inexact infea-
sible interior point algorithm (IIIP), and prove the main result of the paper, giving
conditions on the inexactness such that IIIP converges at the same rate that we can
show the (exact) infeasible interior point method converges.

2.1. Background. Consider the linear program

min fTx

s.t. Bx = g,

x ≥ 0,

(2.1)
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where we assume that B ∈ Rm×n, m < n, is of full rank. The dual problem to (2.1)
is

max gTy

s.t. BTy + s = f

s ≥ 0.

(2.2)

The primal-dual solutions of (2.1)–(2.2) are given by the Karush-Kuhn-Tucker (KKT)
conditions, the application of which gives us the non-linear system

s+BTy = f (2.3)

Bx = g (2.4)

XSe = 0 (2.5)

xi ≥ 0, si ≥ 0, (2.6)

where X = diag(x), S = diag(s) and e denotes the vector of ones. A method for
solving these equations that has proved to be particularly effective is the primal-dual
interior point method – see, e.g., Wright [45] and the references within for an overview
of the area.

The interior point method is an adaptation of the standard Newton algorithm
that biases the search direction towards the interior of the region xk, sk > 0, and
also to keep the components of xk, sk from getting too close to 0. In practice we do
this by relaxing the complementarity condition so that we allow (xk)i(sk)i ̸= 0; it is
usual to require (xk)i(sk)i = σkµk, where σk ∈ [0, 1] is a centering parameter (which
may change with each iteration) and µk = xT

k sk/n is the duality measure. It can be
shown that, with such a choice, we obtain strict complementarity at convergence.

It may not be practical to find a feasible starting point, that is a point (x0,y0, s0)
such that (2.3) and (2.4) hold exactly. For such cases the infeasible interior-point
applies, and the Newton-like iteration at each step is given by solving a system of the
form  0 BT I

B 0 0
Sk 0 Xk

 ∆x∗
k

∆y∗
k

∆s∗k

 =

 −ζk
−ξk

−XkSke+ σkµke,

 (2.7)

where ζk = sk+B
Tyk−f and ξk = Bxk−g. Once the algorithm computes the search

directions, it takes a step in that directionxk+1

yk+1

sk+1

 =

xk + αk∆x∗
k

yk + αk∆y∗
k

sk + αk∆s∗k

 ,
where αk ∈ [0, 1] is a step length, with the specific value prescribed by the flavour of
interior point method used.

Solving the linear system (2.7) is the main computational effort at each iteration
of the interior point method. We consider two ways of re-writing (2.7) to make its
solution easier. First, consider the block 2× 2 formulation, known as the augmented
system: [

X−1
k Sk BT

B 0

] [
∆x∗

k

−∆y∗
k

]
=

[
X−1

k τk − ζk
ξk

]
, (2.8)
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where τk = −XkSke+ σkµke.
The alternative formulation is to solve (2.8) using the range-space method, fur-

ther reducing the coefficient matrix to its primal Schur complement. This gives the
equations

B(S−1
k Xk)B

T∆y∗
k = ξk +BS−1

k (τk −Xkζk) (2.9)

(in this context called the normal equations), which are subsequently solved using
a Choleksy factorization of B(S−1

k Xk)B
T . This formulation is usually denser than

(2.8), and has worse stability properties, but is often used in interior point codes; see
the recent paper of Greif, Moulding and Orban [22] for a discussion of the relative
merits of these approaches.

When solving large scale optimziation problems there is a point after which it is
no longer feasible to use direct methods, and an iterative method is the only viable
approach. In response to this there has been a lot of interest recently in the so-called
‘matrix-free’ interior point method—see Gondzio [16] and the references therein—
in which the solution algorithm is only allowed access to the matrix in terms of a
matrix-vector product.

2.2. An inexact infeasible interior point algorithm. In this section we give
conditions on the accuracy with which we should solve (2.7) (or, in practice, one of
the reduced versions) so that we can prove convergence of IIIP.

First, we define a neighbourhood of the central path,

N−∞(γ, β) =


xy
s

 |
∥∥∥∥[ζξ

]∥∥∥∥ ≤ βµ

µ0

∥∥∥∥[ζ0ξ0
]∥∥∥∥ , [xs

]
> 0, xisi ≥ γµ ∀i

 , (2.10)

where γ ∈ (0, 1) and β ≥ 1 are parameters, and ζ0, ξ0 and µ0 are the primal residual,
dual residual, and duality measure evaluated at the initial point. Furthermore, ζ, ξ
and µ the equivalent quantities evaluated at the point [xT ,yT , sT ]T . We will require
the iterates to lie within this set.

The algorithm we consider here is given below as Algorithm 1. This is an extension
of that of Kojima, Megiddo and Mizuno [26], our addition being that we allow the
inexact solution of the linear system. In Section 2.2.1 we outline the proof of the usual
algorithm, with exact solves, as presented in Wright [46]. We then extend this proof
in Section 2.2.1 to cover the case where the linear system is only approximated.

2.2.1. An outline of convergence of the exact version. In the case where
we solve the linear system in Algorithm 1 using a direct method, a very nice description
of the proof is given by Wright [46, Chapter 6]. We will use this proof as the basis of
the proof of the extended algorithm in Section 2.2.2 and, for the reader’s convenience,
we repeat the main steps here.

Lemma 2.1. There is a positive constant C∗
1 such that

νk∥(xk, sk)∥1 ≤ C∗
1µk for all k ≥ 0.

Proof. See proof in Wright [46, Lemma 6.3]. Note that

C∗
1 =

(
βn+ n+

β

µ0

∥∥∥∥[x0

s0

]∥∥∥∥
∞

∥∥∥∥[x∗

s∗

]∥∥∥∥
1

)
/

(
min

i=1,2,...,n
min {(x0)i, (s0)i}

)
.
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Algorithm 1 Inexact Infeasible Interior Point method

1: Given γ ∈ (0, 1), β ≥ 1, 0 < σmin < σmax ≤ 0.5, ϵmax < σmax

2: Choose (x0,y0, s0) with (x0, s0) > 0
3: for k = 0, 1, 2, . . . do
4: Choose σk ∈ [σmin, σmax]
5: Choose ϵk < ϵmax

6: Solve inexactly 0 BT I
B 0 0
Sk 0 Xk

 ∆x∗
k

∆y∗
k

∆s∗k

 =

 −ζk
−ξk

−XkSke+ σkµke,

 .
7: Choose αk as the largest value α ∈ [0, 1] such that

(xk + α∆xk,yk + α∆yk, sk + α∆sk) ∈ N−∞(γ, β) (2.11)

and the following Armijo condition holds:

µk(α) :=
(xk + α∆xk)

T (sk + α∆xk)

n
≤ (1− 0.01α)µk (2.12)

8: Set

(xk+1,yk+1, sk+1) = (xk + α∆xk,yk + α∆yk, sk + α∆sk)

9: end for

The result of Lemma 2.1 is used to prove the following result, in which we bound
the size of the direction of change in the primal and dual variables in a certain norm:

Lemma 2.2. There is a positive constant C∗
2 such that

∥∆xk∥X−1
k Sk

≤ C∗
2µ

1/2
k , ∥∆sk∥S−1

k Xk
≤ C∗

2µ
1/2
k ,

for all k ≥ 0.
Proof. See proof in Wright [46, Lemma 6.5]. The proof relies on the result of

Lemma 2.1. Note that

C∗
2 = 2

C∗
1

γ1/2
max(∥x0 − x∗∥ , ∥s0 − s∗∥) +

n

γ1/2
,

Lemma 2.2 is, in turn, used to prove the final technical lemma, which guarantees
that significant progress is made at each step of Algorithm 1.

Lemma 2.3. There is a value ᾱ ∈ (0, 1) such that the following three conditions
are satisfied for all α ∈ [0, ᾱ] and all k ≥ 0:

(xk + α∆xk)
T (sk + α∆sk) ≥ (1− α)xT

k sk,

((xk)i + α(∆xk)i)
T ((sk)i + α(∆sk)i) ≥ (γ/n)(xk + α∆xk)

T (sk + α∆sk),

(xk + α∆xk)
T (sk + α∆sk) ≤ (1− .01α)xT

k sk.
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Therefore, conditions (2.11) and (2.12) are satisfied for all α ∈ [0, ᾱ] and all k ≥ 0.
Proof. See proof in Wright [46, Lemma 6.7].
Once we have the proof of Lemma 2.3, the proof of the following result is straight-

forward.
Theorem 2.4. The sequence {µk} generated by Algorithm 1 with exact solves

converges Q-linearly to zero, and the sequence of residual norms
{
∥(rfk , r

g
k)∥
}

con-

verges R-linearly to zero.

2.2.2. The proof of convergence of the inexact version. We now turn our
attention to the case where we allow an inexact solution of the linear system.

We are going to concentrate not on solving the block 3 × 3 system directly, but
instead solving the reduced augmented system (2.8) or the normal equations (2.9).
It’s easy to see that—as Xk is diagonal—either of these approaches result in an
approximate solution (∆xk,∆yk,∆sk) where the final equation in (2.7) is satisfied
exactly. We formally state our assumption below:
Assumption 1: The last row of (2.7) is satisfied exactly. That is,

Sk∆sk +Xk∆sk = (σkµk −XkSk)e.

If Assumption 1 is satisfied, the inexact solve is equivalent to solving exactly a
perturbed problem of the form 0 BT I

B 0 0
Sk 0 Xk

∆xk

∆yk

∆sk

 = −

 ζk
ξk

XkSke− σkµke

+

rfkrgk
0

 , (2.13)

where the residuals are given by rfk = BT∆xk +∆sk + ζk and rgk = B∆xk + ξk.
We follow the method of the proof outlined in Section 2.2.1, making adaptations

to suit our needs as necessary. We first prove a lemma that extends Lemma 2.2 to
the inexact case.

Lemma 2.5. Suppose the linear system (2.7) is solved inexactly in such a way
that Assumption 1 holds and, furthermore, the errors satisfy

∥∆xk −∆x∗
k∥X−1

k Sk
≤ µ

1/2
k ϵk, (2.14)

∥∆yk −∆y∗
k∥B(X−1

k Sk)−1BT ≤ µ
1/2
k ϵk. (2.15)

Then there is a positive constant C2 such that

∥∆xk∥X−1
k Sk

≤ C2µ
1/2
k ∥∆sk∥S−1

k Xk
≤ C2µ

1/2
k

for all k ≥ 0.
Proof. We apply Lemma 2.2 to get a bound on the required quantities by applying

the triangle inequality:

∥∆xk∥X−1
k Sk

≤ ∥∆xk −∆x∗
k∥X−1

k Sk
+ ∥∆x∗

k∥X−1
k Sk

≤ ∥∆xk −∆x∗
k∥X−1

k Sk
+ C∗

2µ
1/2
k

≤ (C∗
2 + ϵmax)µ

1/2
k .
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Applying a similar argument, and using the fact that the third equation in (2.13) has
zero residual, gives that

∥∆sk∥S−1
k Xk

≤ ∥∆sk −∆s∗k∥S−1
k Xk

+ C∗
2µ

1/2
k

=
∥∥X−1

k Sk(∆xk −∆x∗
k)
∥∥
S−1
k Xk

+ C∗
2µ

1/2
k

= ∥∆xk −∆x∗
k∥X−1

k Sk
+ C∗

2µ
1/2
k

≤ (C∗
2 + ϵmax)µ

1/2
k .

The result therefore holds with C2 = C∗
2 + ϵmax.

We highlight the fact that, in the statement of this result, we have made an
additional assumption about the quality of our approximate solution:
Assumption 2: The linear system is solved with an accuracy such that (2.14) and
(2.15) hold for some given ϵk > 0.

The reason for this assumption is clear from the proof, but it is somewhat un-
satisfactory as it depends on the size of the error, which, by its very nature, is not
explicitly available. Despite this limitation, we claim in Section 2.4 that this is, in
fact, a natural requirement. Furthermore, in Section 3 we show how this quantity is
related to the Krylov subspace methods typically used in this context.

We will now prove the final lemma, the inexact analogue to Lemma 2.3, which
shows that sufficient progress is made at each step of the algorithm:

Lemma 2.6. Suppose that Assumptions 1 and 2 hold, and additionally that the
residuals rfk = BT∆yk +∆sk + ζk and rgk = B∆xk + ξk satisfy∥∥∥∥[rfkrgk

]∥∥∥∥
2

≤ ϵk

∥∥∥∥[ζkξk
]∥∥∥∥

2

(2.16)

for some ϵk ∈ [0, 1). Then there is a value ᾱ ∈ (0, 1) such that the following three
conditions are satisfied for all α ∈ [0, ᾱ] and for all k ≥ 0:

(xk + α∆xk)
T (sk + α∆sk) ≥ (1− (1− ϵmax)α)x

T
k sk (2.17)

((xk)i + α(∆xk)i)
T ((sk)i + α(∆sk)i) ≥ (γ/n)(1− α)xT

k sk (2.18)

(xk + α∆xk)
T (sk + α∆sk) ≤ (1− 0.01α)xT

k sk. (2.19)

Therefore the conditions (2.11) and (2.12) are satisfied for all α ∈ [0, ᾱ] and for all
k ≥ 0.

Proof. First, we note the relationships

∆xT
k∆sk ≤ C2

2µk, sTk∆xk + xT
k∆sk = (σk − 1)xT

k sk,

which are easy to prove using Lemma 2.5 and the fact that the third equation of (2.7)
holds exactly (see the proof of Lemma 6.7 in [46]). Using these we get that

(xk + α∆xk)
T (sk + α∆sk)

= xT
k sk + α(σk − 1)xT

k sk + α2∆xT
k∆sk

≥ (1− α)xT
k sk + ασkx

T
k sk − α2C2

2µk

= (1− (1− ϵmax)α)x
T
k sk + (σk − ϵmax)αx

T
k sk − α2C2

2µk

≥ (1− (1− ϵmax)α)x
T
k sk +

(
(σk − ϵmax)α− α2C2

2

n

)
xT
k sk,
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where ϵmax = max ϵk. Hence (2.17) holds provided the final term above is non-
negative, which is true when

α ≤ (σmin − ϵmax)n

C2
2

.

To show that (2.17) implies (2.11), we first note that, using the definition of ζk+1,
ξk+1, and (2.13), it is easy to see that[

ζk+1

ξk+1

]
= (1− α)

[
ζk
ξk

]
+ α

[
rfk
rgk

]
. (2.20)

We can therefore, using condition (2.16), bound the residuals of the interior point
method by ∥∥∥∥[ζk+1

ξk+1

]∥∥∥∥ ≤ (1− α)

∥∥∥∥[ζkξk
]∥∥∥∥+ αϵk

∥∥∥∥[ζkξk
]∥∥∥∥

and hence we obtain ∥∥∥∥[ζk+1

ξk+1

]∥∥∥∥ ≤ (1− (1− ϵk)α)

∥∥∥∥[ζkξk
]∥∥∥∥ . (2.21)

Then

1

µk+1

∥∥∥∥[ζk+1

ξk+1

]∥∥∥∥ ≤ 1− (1− ϵmax)α

µk+1

∥∥∥∥[ζkξk
]∥∥∥∥ [by (2.21)]

=
n(1− (1− ϵmax)α)

(xk + α∆xk)T (sk + α∆xk)

∥∥∥∥[ζkξk
]∥∥∥∥

≤ n(1− (1− ϵmax)α)

(1− (1− ϵmax)α)xT
k sk

∥∥∥∥[ζkξk
]∥∥∥∥ [by (2.17)]

=
1

µk

∥∥∥∥[ζkξk
]∥∥∥∥

≤ β

µ0

∥∥∥∥[ζ0ξ0
]∥∥∥∥ ,

the final step holding because we are within the neighbourhood of the central path
(2.10).

The remainder of the proof is identical to that of [46, Lemma 6.7], and all the
conditions (2.17– 2.19) hold if α ∈ [0, ᾱ], where

ᾱ = min

(
n(σmin − ϵmax)

C2
2

,
σmin(1− γ)

C2
2

,
0.49n

C2
2

, 1

)
.

In proving Lemma 2.6 we made an additional assumption on the quality of the
solution, which we will now formalize.

Assumption 3: The residuals rfk = BT∆yk + ∆sk + ζk and rgk = B∆xk + ξk
satisfy (2.16) for some ϵk ∈ [0, 1).

We will give conditions on the tolerances required so that Assumptions 1 and 2
imply Assumption 3 in Section 2.3. First, we state and prove our main result.

Theorem 2.7. Suppose that (2.7) is solved in such a way that Assumptions 1—3
hold. Then the sequence {µk} generated by Algorithm 1 converges Q-linearly to zero,

and the sequence of residual norms

{∥∥∥∥[ζkξk
]∥∥∥∥} converges R-linearly to zero.
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Proof. From Lemma 2.6, there is a constant ᾱ > 0 such that αk > ᾱ for all k.
From the Armijo condition we have that

µk+1 ≤ (1− 0.01αk)µk ≤ (1− 0.01ᾱ)µk

for all k, and hence the sequence of duality gaps converges Q-linearly to zero.
Next, since ∥∥∥∥[ζkξk

]∥∥∥∥ ≤ µk · β
µ0

∥∥∥∥[ζ0ξ0
]∥∥∥∥ ,

the sequence

{∥∥∥∥[ζkξk
]∥∥∥∥} is bounded above by another sequence that converges Q-

linearly, so the sequence of residual norms is R-linearly convergent.

2.3. Removing the requirement of residual reduction. Recall Theorem 2.7
holds provided the inexact solve satisfies three requirements: Assumption 1 (the last
row of (2.7) is satisfied exactly), Assumption 2 (which bounds the error in a norm that
changes every iteration), and Assumption 3 (which bounds the residual in a global
norm). We now give a condition that enables us to select a value for ϵk in (2.14) and
(2.15) such that Assumptions 1 and 2 imply Assumption 3.

Proposition 2.8. Let ϵ ∈ (0, 1) be given. There exists δ ∈ (0, 1) such that if the
iterates satisfy

∥∆xk −∆x∗
k∥X−1

k Sk
≤ µ

1/2
k δ, ∥∆yk −∆y∗

k∥B(X−1
k Sk)

−1BT ≤ µ
1/2
k δ

then the residuals satisfy ∥∥∥∥[rfkrgk
]∥∥∥∥

2

≤ ϵ

∥∥∥∥[ζkξk
]∥∥∥∥

2

. (2.22)

Proof. Let us define H = X−1
k Sk, exk = ∆x∗

k − ∆xk, eyk = ∆y∗
k − ∆yk, and

esk = ∆s∗k −∆sk, and note that∥∥∥∥[rfkrgk
]∥∥∥∥

2

=
(
∥rfk∥

2
2 + ∥rgk∥

2
2

)1/2
≤ ∥rfk∥2 + ∥rgk∥2. (2.23)

We take the two components on the right hand side of (2.23) separately. First, note
that, since all norms in finite dimensions are equivalent, there is a constant C such

∥rfk∥2 ≤ C∥rfk∥H−1 .

We focus on the alternative norm, for which

∥rfk∥H−1 = ∥BTeyk+esk∥H−1 ≤ (∥BTeyk∥H−1+∥esk∥H−1) = ∥eyk∥BH−1BT +∥H−1/2esk∥2

Using the fact that esk = Hexk (since the last equation of (2.7) is satisfied exactly), we

therefore can bound ∥rfk∥
−1
H by

∥rfk∥H−1 ≤ ∥eyk∥BH−1BT + ∥H1/2exk∥2 = ∥eyk∥BH−1BT + ∥exk∥H
9



Therefore, using the error conditions in the statement of the proposition we obtain

∥rfk∥H−1 ≤ δ∥ζk∥2 + δ∥ξk∥2 ≤
√
2δµ1/2

∥∥∥∥[ζkξk
]∥∥∥∥

2

.

We now need to obtain a value for C. Since H−1 is symmetric positive definite, C
can be taken to be the square root of the maximal eigenvalue of H. As H = X−1

k Sk

is diagonal, the maximal eigenvalue is the largest entry. Thus

maxλ(H) = max
i
x−1
i si = max

i
(xisi)

−1s2i ≤ (γµk)
−1 max

i
s2i .

Therefore

∥rfk∥2 ≤ (2/γ)
1/2 ∥sk∥1δ

∥∥∥∥[ζkξk
]∥∥∥∥

2

. (2.24)

Taking the second term of (2.23) we see

∥rgk∥2 = ∥Bexk∥2 = ∥exk∥BTB .

There exists a constant D such that ∥x∥BTB ≤ D∥x∥H . Therefore

∥rgk∥2 ≤ D∥exk∥H ≤ Dδµ
1/2
k

∥∥∥∥[ζkξk
]∥∥∥∥

2

.

Now we just have to find the constant of equivalence D. Note that

D2 = max
x

xTBTBx

xTHx
= max

x

xTBTBx

xTx
· xTx

xTHx
≤ max

x

xTBTBx

xTx
·max

z

zTH−1z

zTHz
.

The first term on the right hand side is Σ2
max, the square of largest singular value of

B. The second term is the maximum eigenvalue of H−1, which is bounded above by
(γµk)

−1 maxi x
2
i . We therefore have that

∥rgk∥2 ≤ (γ)−1/2∥xk∥1Σmaxδ

∥∥∥∥[ζkξk
]∥∥∥∥

2

. (2.25)

Combining (2.24) and (2.25) we have that∥∥∥∥[rfkrgk
]∥∥∥∥

2

≤
√
2∥sk∥1 +Σmax∥xk∥1

(γ)1/2
δ

∥∥∥∥[ζkξk
]∥∥∥∥

2

.

Therefore taking any

δ <
(γ)1/2ϵ√

2∥sk∥1 +Σmax∥xk∥1
, (2.26)

will ensure contraction in the residual.
Proposition 2.8 tells us that, given a desired ϵk, we can prescribe an accuracy

with which we should solve the linear systems (in a norm that changes with the outer
iteration) to a reduction of the residual (in a constant norm) at each step.

We caution that, despite the fact that only an estimate of Σmax is needed in
practice, it may be the case that computing this is not possible. In practice, iterat-
ing until the condition (2.16) is satisfied may be preferable, although this generally
requires additional work per iteration.
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2.4. What is special about these norms?. In Section 2.3 we saw that if we
can solve (2.7) so that Assumption 1 holds and the errors (2.14) and (2.15) are small
enough, then Assumption 3 also holds. Before turn our attention to the linear solvers
in Section 3, it is instructive to discuss the norms that appear in Assumption 2. In
particular, we contend that far from being unnatural and technical, these are the
norms in which we should measure convergence of the inner iteration. We highlight
the fact that although all norms are equivalent in finite dimensions, the constants
involved may depend on parameters that are present in the problem (either physically
or introduced by the mathematical modelling), and we want to converge in a norm
independent of such things.

2.4.1. The normal equations. We know that the solution to the normal equa-
tions formulation (2.9) is given by ∆y∗

k, but the question is, given a perturbed solution
∆yk = ∆y∗

k + eyk, what norm ∥ · ∥♯ shall we impose on Rm so that we can ensure that
if ∥exk∥♯ is small, then ∆yk is ‘close’ to the solution we want?

One common way of answering this question is to use the fact that solving the
normal equations (2.9) is equivalent to finding v ∈ Rm that minimizes the quadratic

ϕ(v) :=
1

2
vT Ŝv − vT f , (2.27)

where Ŝ = B(S−1
k Xk)B

T and f = ξk + BS−1
k (τk − Xkζk). This is a consequence of

the fact that Ŝ is symmetric positive definite.
The quadratic ϕ forms a ‘bowl’ here, and so the solution of (2.9) is at the bottom

of the bowl. It is therefore appropriate to think of ∆yk as being ‘close to’ the exact
solution ∆y∗

k if ϕ(∆yk) also lies near the bottom of the bowl. Formally, we would
like to identify a norm ∥ · ∥♯ such that, given ϵ > 0, we can find δ > 0 such that

∥∆yk −∆y∗
k∥♯ < δ ⇒ |ϕ(∆yk)− ϕ(∆y∗

k)| < ϵ.

It is straightforward to show that ϕ(∆yk)− ϕ(∆y∗
k) = eykŜe

y
k (see, e.g., Nocedal

and Wright [30, Section 5.1]), and so choosing ∥ · ∥♯ = ∥ · ∥Ŝ satisfies this requirement
trivially. This argument is commonly used to explain why the norm in which the
conjugate gradient method converges in is reasonable; for more on this, see Section 3.2.

In our context, this is the norm that is associated with Rm in Assumption 2,
and so we argue that, far from being technical, it is the natural norm that we should
expect to see in a convergence proof.

Once we obtain a suitable vector ∆yk, we typically obtain ∆xk by solving the
first row of (2.8), obtaining

∆xk = S−1
k Xk(b+BT∆yk), (2.28)

where b = X−1
k τk − ζk. Since Sk is diagonal, we can solve this exactly. Note that

(2.28) also holds for the exact solutions, so we get that the errors are related by

(X−1
k Sk)

1/2(∆xk −∆x∗
k) = (X−1

k Sk)
−1/2BT (∆yk −∆y∗

k).

Therefore we have that, if we solve for ∆yk first,

∥∆xk −∆x∗
k∥X−1

k Sk
= ∥∆yk −∆y∗

k∥B(X−1
k Sk)−1BT , (2.29)

and so the condition on the size of exk in Assumption 2 is also natural, and holds
automatically.

11



2.4.2. The augmented system. We argue similarly for the augmented system.
First, note that solving (2.8) is equivalent to solving a quadratic program, namely

min
u

1

2
uTHu− uTb (2.30)

s.t. Bu = ξk, (2.31)

with H = X−1
k Sk, b = X−1

k τk − ζk, and b = X−1
k τk − ζk. It is well-known that

minimizing (2.30) subject to (2.31) is equivalent to finding the stationary points of
the Lagrangian

L(u,p) = 1

2
uTHu− uTb− pT (Bu− ξk), (2.32)

which recovers the linear system (2.8). The solution to (2.30—2.31) is therefore
u = ∆x∗

k, which has the associated Lagrange multiplier p = −∆y∗
k.

When we solve the linear system (2.8) (or, equivalently, the quadratic program
(2.30—2.31)) only approximately, we obtain ∆xk ≈ ∆x∗

k and ∆yk ≈ ∆y∗
k. We are

interested in finding ∆xk and ∆yk not independently, but as solutions to the coupled
linear system (2.8). Subsequently, we need to select norms ∥ · ∥♯ on Rn and ∥ · ∥♭ on
Rm that reflect this.

Again, we want to ensure that we remain sympathetic to the underlying prob-
lem by considering not the matrix formulation (2.8), but the equivalent optimization
problem (2.30-2.31), and in particular the Lagrangian (2.32). As in Section 2.4.1, we
want to use norms such that, given ϵ > 0, there exists δx, δy > 0 such that

∥∆xk −∆x∗
k∥♯ < δx, ∥∆yk −∆y∗

k∥♭ < δy ⇒ |L(∆x∗
k,∆y∗

k) − L(∆xk,∆yk)| < ϵ,

where δx, δy are independent of any parameters. This will ensure we remain near to
the turning point, and hence solve the underlying (coupled) problem.

Let ∆xk = ∆x∗
k + exk and ∆yk = ∆y∗

k + eyk. Then

L(∆xk,∆yk) =
1

2
(∆x∗

k + exk)
TH(∆x∗

k + exk)− (∆x∗
k + exk)

Tb

− (∆y∗
k + eyk)

T (B(∆x∗
k + exk)− ξk)

=
1

2
(∆x∗

k)
TH∆xk − (∆x∗

k)
Tb− (∆y∗

k)
T (B∆x∗

k − ξk)

+ (∆x∗
k)

THexk − (exk)
Tb− (∆y∗

k)
TBexk − (eyk)

T (B∆x∗
k − ξk)

+
1

2
(exk)

THexk − (eyk)
TBexk

=L(∆x∗
k,∆x∗

k) + (exk)
T (H∆x∗

k −BT∆y∗
k − b)− (eyk)

T (B∆x∗
k − ξk)

+
1

2
(exk)

THexk − (eyk)
TBexk

=L(∆x∗
k,∆x∗

k) +
1

2
(exk)

THexk − (eyk)
TBexk,

where we have used the fact that the stationary points ∆x∗
k, ∆y∗

k satisfy (2.8). We
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can therefore bound the difference between the Lagrangian at the two points by:

|L(∆xk,∆yk)− L(∆x∗
k,∆y∗

k)| ≤
1

2
∥exk∥2H +

∣∣(eyk)TBexk
∣∣

=
1

2
∥exk∥2H +

∣∣∣(eyk)TBH−1/2H1/2exk

∣∣∣
≤ 1

2
∥exk∥2H + ∥H−1/2BTeyk∥2∥H

1/2exk∥2

=
1

2
∥∆x∗

k −∆xk∥2H + ∥∆y∗
k −∆yk∥BH−1BT ∥∆x∗

k −∆x∗
k∥H .

Therefore, if we have a method where the primal variables converge in the H−norm
and the dual variables converge in the Ŝ−norm, where Ŝ = BH−1BT , then we have
a method which converges to the minimum independently of any parameters. For the
interior point method applied to LPs, where H = X−1

k Sk, these again are exactly the
conditions (2.14) and (2.15) of Assumption 2.

2.5. Numerical validation. In this section we perform some numerical tests
to demonstrate empirically that the convergence of the interior point method relies

on the inner linear system being solved to an accuracy proportional to µ
1/2
k .

We run the NETLIB problem lp adlittle and solve it using a fork of Michael
Saunders’ PDCO package [40]. We ask for the interior point method to consider the
problem solved when the primal feasibility, dual feasibility, and the complimentarity
measure are all less than 10−6. The only thing that changes between the tests is the
solver for the linear system (2.7). We use Matlab’s backslash as the direct solver,
and compare with the performance of a preconditioned Krylov method.

We only give results for one test problem (which is representative of typical be-
haviour) as an illustration here; more extensive numerical tests are reported in Sec-
tion 4, where use Theorem 2.7 and knowledge of specific solvers to predict the accuracy
that we need in order to guarantee convergence.

Our aim in this test is to show that the convergence of IIIP depends on the

errors being smaller than µ
1/2
k in the norms given in Assumption 2. To this end, in

these examples we use fixed tolerances for all iterations, some of which are too loose
to allow the interior point method to converge within 50 iterations. We must use
standard Krylov methods here, but we delay a detailed discussion of their properties
until Section 3.

Example 2.9. We compare the behaviour the interior point method when solving
for the Newton direction (2.7) using the normal equation formulation (2.9). We
compare the behaviour of backslash with that of CG solved to a tolerance of 10−1,
10−3, and 10−5. We use the incomplete Cholesky routine HSL MI28 [1, 42] as a
preconditioner.

When the linear system is solved using backslash, the convergence curves of the
interior point iterations are given in Figure 2.1. Plots showing the progress of the
interior point method when the normal equations are solved inexactly, together with

the norm of the error and µ
1/2
k , are given in Figure 2.2. The figures on the left show

measures of convergence of the interior point iteration, while the figures on the right
show the norm of the error of the final iterate of CG, where the norm used is that
of Assumption 2. To get the error, we solve the equation using a direct method
(backslash) and calculate (an approximation to) ∥ek∥(H,Ŝ) from there

In Figure 2.2b the error lies above the value of µ
1/2
k , and this translates to the

lack of rapid convergence in the interior point method, as shown in Figure 2.2a. On
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the other hand, in Figure 2.2f the error is always well below the value of µ
1/2
k , and

correspondingly the interior point method convergence in Figure 2.2e follows roughly
the same pattern as that of the direct method in Figure 2.1. This behaviour is as we
might expect given Theorem 2.7, and suggests that the conditions there are descriptive
of actual convergence behaviour.

Fig. 2.1: lp adlittle, Normal equations solved with backslash

Example 2.10. We compare the behaviour the interior point method when solving
for the Newton direction (2.7) using the augmented system formulation (2.8). We
compare the behaviour of backslash with that of MINRES with a block-diagonal Schur
complement preconditioner solved to a tolerance of 10−4, 10−6, 10−8 , and 10−10. We
use HSL MI28

The ideal case, where we solve the linear system using a direct method, looks very
similar to Figure 2.1 (with only a very slight variation at the last few iterations), so
we do not reproduce it here.

Figure 2.3 shows the results of this test. As in Example 2.9, the figures on the
left show measures of convergence of the interior point iteration, while the figures on
the right show the norm of the error of the final iterate of MINRES.

It is clear from Figure 2.3 that for the two cases where the interior point method
converges in less than 50 iterations the error ∥ek∥(H,Ŝ) never strays too far above

the µ
1/2
k line, which is what was predicted by the theory above. In the cases where

the interior point algorithm fails to converge, we can see the convergence stops being
superlinear in the figures on the left by seeing the iteration number at which the error

goes above µ
1/2
k in the figures on the right, again in agreement with the theory derived

above.
It’s interesting to note that, although we solve the linear system until the relative

residual (measured in the preconditioned norm) is smaller than a fixed tolerance, after

a certain point the error measured in the (H,A) norm ‘tracks’ µ
1/2
k . This curious

behaviour is a result of the relationship between the natural norms for the interior
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(a) Interior point convergence, toler-
ance of 10−1

(b) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−1

(c) Interior point convergence, toler-
ance of 10−3

(d) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−3

(e) Interior point convergence, toler-
ance of 10−5

(f) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−5

Fig. 2.2: Solving the problem adlittle with a range of iterative solvers

point method and that of MINRES; see Section 3.2.

3. The iterative solution of the linear system. In the preceeding sections
we derived conditions on the accuracy with which we must solve the linear system to
ensure convergence of the interior point method. However, these conditions rely on
measuring the error in a non-standard norm. To be practical, we need to ensure that
we have available complementary iterative methods for solving the linear system.
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(a) Interior point convergence, toler-
ance of 10−4

(b) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−4

(c) Interior point convergence, toler-
ance of 10−6

(d) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−6

(e) Interior point convergence, toler-
ance of 10−8

(f) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−8

(g) Interior point convergence, toler-
ance of 10−10

(h) µ
1/2
k and ∥ek∥H,Ŝ for the final it-

erate, tolerance of 10−10

Fig. 2.3: Solving the problem adlittle with a range of iterative solvers
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3.1. Solving the normal equations. Recall that a popular way of solving the
linear system (2.7) is to form the normal equations (2.9) to obtain ∆y∗

k and use back
substitution to calculate the other unknowns. Note that, in this case, the only error
in the residual will come from the ∆y∗

k term, i.e., rfk = 0.
Since the system (2.9) is symmetric positive definite, the Krylov subspace method

of choice is typically preconditioned conjugate gradients (PCG), applied with a sym-
metric positive definite preconditioner, Ŝ. Note that in this case the PCD algorithm
finds the vector in the (preconditioned) Krylov subspace that minimizes

∥∆yk −∆y∗
k∥B(S−1

k Xk)B
T ,

independently of the choice of preconditioner. Recall also from (2.29) that if ∥∆yk −
∆y∗

k∥B(S−1
k Xk)B

T is sufficiently small, then the condition on the error in the primal

variable is also satisfied.
It is therefore straightforward to see that, for any choice of preconditioner, solving

the system (2.9) using PCG will give convergence in a norm that satisfies the require-
ments of Theorem 2.7. In particular, picking a convergence tolerance by applying
Proposition 2.8 will result in convergence of the interior point method.

Finally, we note that, even though PCG finds the vector that minimizes the error
in the ‘right’ norm, it is not straightforward to calculate, and hence test, this quantity.
However, an easy to calculate lower bound on this quantity is described by Strakoš
and Tichý [44].

3.2. Solving the augmented system. Another choice is to solve the aug-
mented system (2.8). A number of iterative methods are commonly used for such
systems, and knowing which method is best is not always straightforward. Here we
consider two Krylov methods, projected conjugate gradients and MINRES.

3.2.1. Constraint preconditioners and PPCG. Constraint precondtioning
[25, 10] has proved particularly attractive within the optimization community. Such
a preconditioner takes the form

Pcon =

[
G BT

B 0

]
,

and gets its name from the fact that the constraint block is left untouched. Such
preconditioners can be applied with a projected preconditioned conjugate gradient
algorithm (PPCG) [27, 18, 39], which itself—provided a primal-feasible starting vector
is chosen—is equivalent to using standard PCG with a constraint preconditioner [39,
19].

This combination was shown by Rozlozńık and Simoncini [39] to (in exact arith-
metic) always generate iterates that satisfy the constraints, which is attractive from
an optimization perspective. Analyses of convergence that exploit this fact have ap-
peared in the literature; see Section 5.2.

This is the approach used to solve the linear system iteratively in KNITRO [7] and
GALAHAD [20]. HOPDM [15] also uses a variant of projected conjugate gradients
with a constraint preconditioner to solve the linear systems. For a description of
constraint preconditioners (both exact and inexact) for optimization problems, see,
e.g., the survey by D’Apusso, De Simone, and di Serafino [8] and the references therein.

PPCG is intimately related to another method for solving (2.8), the null-space
method [5, Section 6], [38]. Given any primal-feasible vector w and a matrix, Z, that
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spans the nullspace of B, we can decompose the unknown ∆x∗
k = Zz∗ +w. Thus, if

we can find the unknown z∗, which is the solution of the reduced linear system

ZT (X−1
k Sk)Zz

∗ = ZT (X−1
k (τk − Skw)− ζk), (3.1)

then we can reconstruct ∆x∗
k. Gould, Hribar and Nocedal [18] showed that PPCG

applied to (2.8) with a constraint preconditioner Pcon is equivalent to solving (3.1)
using PCG with a preconditioner ZTGZ. Therefore the vector z ≈ z∗ is found that
minimizes ∥z− z∗∥ZTX−1

k SkZ
over the Krylov subspace. This, in turn, gives us an

approximation to ∆x∗
k by taking ∆x∗

k = Zz + w. Simple manipulation then gives
that

∥z− z∗∥ZTX−1
k SkZ

= ∥Zz− Zz∗∥X−1
k Sk

= ∥Zz+w − (Zz∗ +w)∥X−1
k Sk

= ∥∆xk −∆x∗
k∥X−1

k Sk
.

This shows that constraint preconditioners applied with (projected) conjugate
gradients will give a solution to the inner iteration that converges in a norm sympa-
thetic with the outer (interior point) iteration. Furthermore, as was the case with the
normal equations, this result is independent of the choice of preconditioner.

3.2.2. MINRES with PBD. The minimal residual method (MINRES) was de-
veloped by Paige and Saunders [34] for solving symmetric, indefinite linear systems
Az = b using an underlying Lanczos process. Given a symmetric positive definite
preconditioner, P, the preconditioned MINRES method finds the vector that mini-
mizes ∥rk∥P−1 over the preconditioned Krylov subspace. As with PCG, we aim for a
preconditioner P that clusters the eigenvalues of P−1A.

For saddle point (or KKT) systems of the form[
H BT

B 0

] [
x
y

]
=

[
f
g

]
, (3.2)

where H ∈ Rn×n, B ∈ Rm×n, m < n, a popular paradigm is to select a preconditioner
that approximates the ‘ideal’ block-diagonal preconditioner

PBD =

[
H0 0

0 Ŝ0

]
≈
[
H 0
0 BH−1BT

]
.

Murphy, Golub and Wathen [29] showed that when PBD is applied exactly MINRES
will converge in at most three iterations.

Note that, as pointed out by Olivera and Sorensen [32], the primal Schur com-
plement BH−1BT and the normal equations (2.9) are identical. Therefore any pre-
conditioner for the normal equations translates to a corresponding preconditioner for
the augmented system. Gill et al [14] suggest a few block-diagonal preconditioners
specifically for interior point methods that fit into this framework.

Recall that Lemma 2.8 requires us to have a method that minimizes ∥ek∥E , where
ek is the error and E = blkdiag(H,BH−1BT ). Now

∥rk∥P−1 = ∥Aek∥P−1 = ∥ek∥AP−1A.

Since, in finite dimensions, all vector norms are equivalent, there exist constants c, C
such that

c∥ek∥E ≤ ∥ek∥AP−1A ≤ C∥ek∥E . (3.3)
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We just need to show that these constants are ‘useful’, in the sense that they are
independent of the properties of the matrices A and P.

For a general vector x, the condition (3.3) is equivalent to finding constants c, C
such that

c2xTEx ≤ xTAP−1Ax ≤ C2xTEx,

or, equivalently,

c2xTx ≤ xTE−1/2AP−1AE−1/2xT ≤ C2xTx.

The constants c and C are therefore the upper and lower bounds of the Rayleigh
quotient

xTE−1/2AP−1AE−1/2x

xTx
. (3.4)

We consider first the idealized case, P = E . In this case the Rayleigh quotient
(3.4) is bounded above and below by the largest and smallest eigenvalues respectively
of

E−1AE−1A = (E−1A)2.

The eigenvalues of E−1A are 1 or 1±
√
5

2 [29]. Hence

(
1−

√
5

2

)2

≤ xTE−1/2AE−1AE−1/2xT

xTx
≤

(
1 +

√
5

2

)2

.

Therefore in the ideal case where P = E , we will have constants

c =

∣∣∣∣∣1−
√
5

2

∣∣∣∣∣ =
√
5− 1

2
, C =

1 +
√
5

2
.

Of course, for the vast majority of cases E will not be a practical preconditioner.
However, note that we can write

xTE−1/2AP−1AE−1/2x

xTx
=

yTE1/2P−1E1/2y

yTy
· x

TE−1/2AE−1AE−1/2x

xTx
,

where y = E−1/2AE−1/2x. Therefore, in general, if P is a matrix that is spectrally
equivalent to E , in the sense that the eigenvalues of P−1E are contained in an interval
[ψ,Ψ], say, where ψ, Ψ are constants close to unity, then for x ̸= 0 we get

√
ψ(

√
5− 1)

2
≤ ∥x∥AP−1A

∥x∥E
≤

√
Ψ(1 +

√
5)

2
. (3.5)

Therefore in this case MINRES with PBD converges in the ‘right’ norm.
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3.2.3. MINRES with PAL. Another paradigm suggested for solving linear
systems of the form (3.2), particularly where the (1,1) block H is singular or ill-
conditioned, is to use MINRES with the augmented Lagrangian preconditioner:

PAL =

[
HAL 0
0 W

]
≈
[
H +BTW−1B 0

0 W

]
,

where W is some easy to invert matrix, usually a scaled identity. Preconditioners of
the form PAL have been studied in, e.g., [23], and in the specific context we consider
here in [28, 37, 43]. Note that we can think of PBD as a preconditioner with a primal
Schur complement, and PAL as a dual Schur complement preconditioner.

As in the previous section, we wish to show that also converges in a norm equiv-
alent to ∥ · ∥diag(H,BH−1BT ). We would like to find constants c, C such that, for all
z ∈ Rn+m, z ̸= 0,

c∥z∥E ≤ ∥z∥AP−1
ALA ≤ C∥z∥E .

This is equivalent to finding bounds for the generalized Rayleigh quotient

zTAP−1
ALAz

zTEz
,

or equivalently bounding the eigenvalues of E−1AP−1
ALA, or, indeed, the similar matrix

P−1
ALAE−1A. We will use this final form to derive the bounds.

Let Ŝ := BH−1BT . Then[
H BT

B 0

] [
H 0

0 Ŝ

]−1 [
H BT

B 0

]
=

[
H +BT Ŝ−1B BT

B Ŝ

]
,

and so we can just consider the generalized eigenvalue problem[
H +BT Ŝ−1B BT

B Ŝ

][
x
y

]
= λ

[
H +BTW−1B 0

0 W

] [
x
y

]
.

Consider the first row of equations. First, suppose that BTy = 0, so that

(H +BT Ŝ−1B)x = λ(H +BTW−1B)x.

Then

(1− λ) = λ
xTH−1BTW−1Bx

xTx
− xTH−1BT Ŝ−1Bx

xTx
.

Note that the last term on the right hand side is equal to 0 or 1, since the matrix is
a projection, and so we have either

(1− λ) = λν ⇒ λ =
1

1 + ν
,

or (1− λ) = λν − 1 ⇒ λ =
2

1 + ν
,

where ν := ν(x) = xTH−1BTW−1Bx
xTx

.
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Now, excluding these cases, we have that

(H +BT Ŝ−1Bx) +BTy = λ(H +BTW−1B)x.

Since we’ve excluded the case where BTy = 0, we can assume that the coefficient of
x is invertible and get

x = −((1− λ)H +BT Ŝ−1B − λBTW−1B)−1BTy,

and so substituting this into the second row we get

−B
(
(1− λ)H +BT Ŝ−1B − λBTW−1B

)−1

BTy + Ŝy = λWy.

Note that (B(A + BTC−1B)BT )−1 = (BA−1BT )−1 + C−1 (see, e.g., [11, Problem
12.12]), and applying this result gives

y = ((2− λ)Ŝ−1 − λW−1)(Ŝy − λWy)

= −(2λ− λ2)Ŝ−1Wy + λ2y + (2− λ)y − λW−1Ŝy.

Multiplying through on the right by yT , dividing by yTy, and setting η := η(y) =
yT Ŝ−1Wy

yTy
we get

(λ2 − 2λ)η + λ2 + (2− λ)− λ

η
= 1

or 2λ2 − (2η +
1

η
+ 1)λ+ 1 = 0

and therefore

λ =
(2η + 1

η + 1)±
√

(2η + 1
η + 1)2 − 8

4
.

Furthermore, we can link the two cases by noting that the spectrum ofH−1BTW−1B
satisfies λ(H−1BTW−1B) = {0} ∪ λ(W−1Ŝ). We’ve proved the following theorem.

Theorem 3.1. Let PAL =

[
H +BTW−1B 0

0 W

]
for some W . Then the

norm in which MINRES preconditioned with PAL minimizes the error, ∥ · ∥AP−1
ALA is

equivalent to ∥ · ∥E , i.e.

c∥z∥E ≤ ∥z∥AP−1
ALA

≤ C∥z∥E , (3.6)

where c, C are positive constants such that

c2 = min

 ηmin

ηmin + 1
, min
η∈λ(Ŝ−1W )

 (2η + 1
η + 1)±

√
(2η + 1

η + 1)2 − 8

4


and C2 = max

2, max
η∈λ(Ŝ−1W )

 (2η + 1
η + 1)±

√
(2η + 1

η + 1)2 − 8

4

 ,
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where ηmin is the smallest eigenvalue of Ŝ−1W .
Remark 3.2. Note that the constants in Theorem 3.1 only depend on the quality

of the approximation of W to BH−1BT . In the ‘ideal’ case where W = BH−1BT we
have the bounds √

1− 1√
2
∥z∥E ≤ ∥z∥AP−1

ALA ≤
√
2∥z∥E .

Provided we pick a matrix W which is close enough to the ‘ideal’ choice of the
Schur complement, then MINRES applied with the augmented Lagrangian precond-
tioner will also converge in a norm sympathetic to the underlying optimization prob-
lem. However, the constant of equivalence is a little harder to enumerate in this
case, and in general it may be more beneficial to over-solve, rather than calculate the
specific values of c and C in any given case.

Finally, we note that Morini, Simoncini, and Tani [28] recently developed an
augmented Lagrangian preconditioner for (2.8) and the equivalent preconditioner for
(2.7). They found that, in certain cases, the interior point method solved with the aug-
mented system formulation (2.8) converged when an inexact solve of the 3x3 system
(2.7) did not, a result that can be explained by the theory in Section 2 (in particular,
the requirement that the third row of (2.7) be solved exactly).

3.3. Other preconditioners. In Sections 3.1 and 3.2 we considered four of the
most popular methods. Similar arguments could be made for solving the augmented
system with, e.g., GMRES with a block triangular preconditioner (such as the pre-
conditioner proposed by Gill et al.[14]). We now highlight a few other methods for
solving the linear system that are not covered by the theory in Section 2 above.

We reiterate that it is a requirement of the theory that the final equation of (2.7)
be satisfied exactly, meaning the results of Section 3 will not be applicable to any
method that solves the block 3× 3 system (2.7).

Some preconditioners have to proposed to solve systems of the form (2.6) with
MINRES or GMRES that are as yet outside the scope of the theory of Section 3. In
particular, an approach that has attracted interest recently is to use an incomplete
factorization on the whole indefinite system [6, 21, 41]. Orban has recently applied
this approach to interior point methods [33]. The question of how such preconditioners
fit into the framework of Section 3 (if at all) is future work.

3.4. Summary. We have looked at CG on the normal equations, projected CG
on the augmented system, and MINRES with a Schur complement or an augmented
Lagrangian preconditioner on the augmented system. For each of these common
solution methods we derived the tolerance to which the iterative method should be
solved to guarantee convergence of the interior point method at the same rate as when
using a direct method. For clarity, we collect these tolerances in Table 3.1.

We highlight that in all cases the tolerance is inversely proportional to both
∥sk∥1 and ∥xk∥1. Very large entries in these terms will therefore subsequently require
a very accurate solve; see Section 4. Enforcing an additional acceptance test on the
approximate solution may safeguard against this, but we do not pursue this further
here.

While the accuracy of the solve is independent of the quality of the preconditioner
in the CG cases, for MINRES the less accurate the preconditioner, the more accurate
the solve must be. This may be one of the reasons why the CG-based methods are
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Method Preconditioner tolerance best-case reference

PCG any δkµ
1/2
k δkµ

1/2
k Sec. 3.1

PPCG
[
G BT

B 0

]
δkµ

1/2
k δkµ

1/2
k Sec. 3.2.1

MINRES
[
X−1

k Sk 0

0 Ŝ0

] √
5−1
2

√
ϕδkµ

1/2
k

√
5−1
2 δkµ

1/2
k Sec. 3.2.2

MINRES
[
HAL 0
0 W

]
σkδkµ

1/2
k

√
1− 1√

2
δkµ

1/2
k Sec. 3.2.3

Table 3.1: Recommended tolerances. Here µk is the duality measure, δk =
(γ)1/2ϵ√

2∥sk∥1+Σmax∥xk∥1
where ϵ ≤ 1 and γ ∈ (0, 1) as defined in (2.10). Ŝ0 ≈ BS−1

k XkB
T

and HAL ≈ X−1
k Sk +BTW−1B. ϕ = λmin

(
Ŝ−1
0 (BS−1

k XkB
T )
)
, and if

ηmin = λmin((BS
−1
k XkB

T )−1W ), then

σ2
k = min

(
ηmin

ηmin+1 ,minη∈λ((BS−1
k XkB

T )−1W )

(
(2η+ 1

η+1)±
√

(2η+ 1
η+1)2−8

4

))
.

so popular in the optimization community. On the other hand, understanding the
ideal properties of, say, a Schur complement preconditioner—namely that ϕ is known
and close to one—is the first step in developing fast iterative solvers based on this
paradigm in the future.

4. Numerical validation. We use a fork of Michael Saunders’ PDCO interior
point solver [40] as the basis of our numerical tests. In particular, we modified the
code to allow the use of a custom linear solver, we removed the automatic reduction
of the convergence tolerance as the iteration progresses, and we set the regularization
parameters to zero.

We consider two of the cases above, the normal equations with PCG and the
augmented system with MINRES and a block diagonal preconditioner, and test the
tolerances predicted in Section 3.

4.1. Normal equations. First, we solve problems from the Netlib test set using
preconditioned conjugate gradients. We only report results for problems where the
interior point method with a direct solver converged. We used a incomplete Cholesky
preconditioner with PCG, namely the HSL routine HSL MI28 (applied via the Matlab
interface) [42, 1]. We give the results in Table 4.1. For each problem we run three

tests: solving with backslash, and solving with PCG at tolerances of 102µ
1/2
k δk and

µ
1/2
k δk. Here, as usual, µk is the duality measure and δk = 1/(

√
2∥sk∥1+Σmax∥xk∥1) –

i.e., ϵ and γ in (2.26) are both taken to be one. We report the interior point iterations
required for backslash, and the number of extra interior point iterations required to
find the optimal solution for both the PCG tests, along with the upper and lower
bounds on the tolerance required.

The numerical results in Table 4.1 are consistent with the theory in the preceding
sections: of the 42 problems, solving to a tolerance two orders of magnitude higher
than that predicted above resulted in failures for over 20% of the problems, whereas
solving to the predicted tolerance only resulted in one failure, which in turn was due
to the fact that the minimum tolerance required was unachievable, being well below
machine precision. Furthermore, for the problems that were successful, the average
number of extra iterations was 4.64 in the case of the looser tolerance (3.5 if we exclude
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Problem b’slash N.E., tol = 102µ1/2δ N.E., tol = µ1/2δ
# its extra its max(tol) min(tol) extra its max(tol) min(tol)

lp adlittle 23 9 1.2e-01 1.7e-12 5 1.2e-03 6.9e-07
lp afiro 13 8 4.0e-01 2.2e-04 2 4.0e-03 2.2e-06
lp agg2 29 * 4.6e-03 3.9e-08 0 4.6e-05 5.3e-08
lp agg3 29 * 4.6e-03 1.0e-08 0 4.6e-05 4.4e-08
lp agg 31 * 6.0e-03 5.8e-12 0 6.0e-05 3.5e-08
lp bandm 32 1 4.6e-04 4.1e-07 0 4.6e-06 3.4e-09
lp beaconfd 26 * 4.7e-04 2.6e-27 0 4.7e-06 2.3e-13
lp blend 20 7 1.1e-02 9.2e-06 0 1.1e-04 9.2e-08
lp bnl2 57 * 7.6e-05 1.5e-23 0 7.6e-07 1.0e-13
lp czprob 75 0 5.3e-04 2.1e-07 0 5.3e-06 2.1e-09
lp d2q06c 59 0 9.1e-06 2.6e-11 0 9.1e-08 2.6e-13
lp e226 37 0 1.7e-04 2.6e-11 0 1.7e-06 2.2e-13
lp finnis 38 * 4.0e-04 5.4e-23 0 4.0e-06 9.1e-11
lp fit1d 30 0 5.6e-06 1.8e-10 0 5.6e-08 9.7e-13
lp fit1p 30 0 3.9e-06 2.0e-08 0 3.9e-08 2.0e-10
lp ganges 25 41 3.2e-02 4.9e-68 2 3.2e-04 3.8e-07
lp gfrd pnc 30 0 8.8e-06 1.4e-09 0 8.8e-08 1.4e-11
lp grow15 40 4 5.4e+00 6.5e-11 -1 5.4e-02 6.5e-13
lp grow22 41 4 3.7e+00 4.4e-11 1 3.7e-02 4.4e-13
lp grow7 34 6 1.2e+01 2.6e-10 3 1.2e-01 2.3e-12
lp israel 42 3 9.5e-04 8.8e-07 0 9.5e-06 8.4e-09
lp kb2 29 1 2.3e-03 6.3e-10 0 2.3e-05 6.3e-12
lp lotfi 36 * 2.1e-04 2.0e-25 * 2.1e-06 2.1e-29
lp sc105 17 9 5.9e-02 1.0e-07 1 5.9e-04 5.8e-07
lp sc205 17 8 2.7e-02 9.2e-06 1 2.7e-04 8.7e-08
lp sc50a 16 5 1.8e-01 1.9e-04 1 1.8e-03 1.3e-06
lp sc50b 12 14 1.6e-01 5.3e-08 2 1.6e-03 2.0e-06
lp scagr25 27 5 1.5e-02 1.1e-05 1 1.5e-04 8.1e-08
lp scagr7 23 5 5.0e-02 8.0e-05 0 5.0e-04 6.1e-07
lp scrs8 48 0 3.8e-05 4.6e-13 0 3.8e-07 4.6e-15
lp scsd1 13 4 6.1e-03 1.9e-05 0 6.1e-05 4.7e-07
lp scsd6 17 4 3.7e-03 9.0e-06 0 3.7e-05 8.7e-08
lp scsd8 16 3 1.7e-03 4.0e-06 0 1.7e-05 3.6e-08
lp sctap1 31 4 4.6e-04 3.1e-06 0 4.6e-06 2.4e-08
lp sctap2 30 3 1.1e-04 2.0e-06 0 1.1e-06 1.2e-08
lp sctap3 34 1 8.5e-05 1.7e-06 0 8.5e-07 1.3e-08
lp share1b 41 0 1.4e-04 6.6e-09 0 1.4e-06 6.6e-11
lp share2b 21 4 6.2e-04 6.6e-07 1 6.2e-06 3.5e-09
lp standata 47 * 8.6e-04 1.4e-05 0 8.6e-06 5.9e-08
lp standmps 54 * 6.7e-03 5.0e-06 0 6.7e-05 5.1e-08
lp stocfor1 22 0 5.1e-04 1.6e-08 0 5.1e-06 1.6e-10
lp stocfor2 39 0 1.9e-05 1.7e-09 0 1.9e-07 1.7e-11

Table 4.1: Convergence, conjugate gradients on the normal equations. Runs that
reach the maximum number of iterations (80) are labelled with a ‘*’.

the outlier lp ganges), compared to an average of 0.46 extra iterations if we use the
tolerance predicted in the theory above. It’s interesting to note that, since δk directly
depends on the path taken to the optimal solution, in many cases solving to a looser
tolerance initially results in requiring solves to a tighter tolerance eventually. This is
notably the case for the failures lp bnl2, lp finnis, and lp lofti, and probably
the cause of the delayed convergence in lp ganges.

4.2. Augmented system. Here we repeat the tests of Section 4.1, but solving
the augmented system (2.8). We use MINRES with a block diagonal preconditioner.
The Schur complement here is the same as the normal equations (a fact first pointed
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out in this context by Oliveira and Sorensen [31]), and so, as in Section 4.1, we again
use HSL MI28 [1, 42] as the Schur complement approximation. In practice, forming
the Schur complement—as required by most incomplete Cholesky routines—is not
advisable, as there is little (if any) benefit of doing this over solving the normal
equations. However, our focus here is not on comparing the merits of particular
solvers, but analysing the behaviour of the interior point method in the presence of
inexact solves; to that end, we want a robust preconditioner, and HSL MI28 gives us
that. The results are reported in Table 4.2.

There is a fundamental difference between MINRES-based methods and the CG-
based methods: the norm equivalence constants of (3.5) and (3.6), for example, depend
on the quality of the preconditioner. This is reflected by the results in Table 4.2. This
difference is predicted by the theory in Section 3. In order to obtain the correct bound,
we would need to calculate the smallest eigenvalue of the preconditioned system, which
is not feasible in general. In order to take into account this extra requirement we run

tests with three tolerances – {102, 1, 10−2} × µ
1/2
k δk. Note that, for convenience, we

absorb the constant (
√
5−1)/2 required in (3.5) to δk. The tightest bound corresponds

to a minimum eigenvalue of 10−4, which seems to be sufficient for most of these
problems.

With an inexact solve at the tightest tolerance, 17 of the 55 problems fail. Most
of these can be explained by the fact that the theory requires a convergence tolerance
that is at or around machine precision, and is therefore below the maximal attainable
accuracy of MINRES. This is also true for the outliers lp adlittle and lp gfrd pn,
for which the interior point iteration was able to recover convergence. However, this is
not the case for some of the problems; to see what’s happening here we look in detail
at lp standata that, having a minimum tolerance of 10−9, should be attainable by
MINRES.

Figure 4.1 shows the eigenvalues of the Schur complement, BS−1
k XkB

T , and the
preconditioned Schur complement for iteration 47 (the point at which we have conver-
gence with exact solves). The eigenvalues of the Schur complement are particularly
nastily distributed, ranging continuously from 10−20 to 108. The preconditioner does
a good job at improving the conditioning, but the smallest eigenvalue of the precon-
ditioned system is still around 10−10, meaning the smallest scaling value used in 4.2
of 10−2 is too large by three orders of magnitude.

Figure 4.2 shows the convergence curves for this problem, where we vary the

stopping tolerances (Figure 4.2a and Figure 4.2b show tolerances of 10−2δkµ
1/2
k and

10−5δkµ
1/2
k respectively). As we can see, by tightening the tolerance to that predicted

by the theory, we can achieve convergence at the same rate as the exact algorithm.

We remark that the tolerance of 10−5δkµ
1/2
k (being a worst case bound) is in fact too

tight here, and solving to a tolerance of 10−3δkµ
1/2
k obtains convergence curves with

the same behaviour as in Figure 4.2b.

5. Prior work. In this section we give a brief overview of the current under-
standing of the required accuracy of the inner solve, as given in the literature.

5.1. Approaches independent of the solution method. In the general in-
terior point context, Freund and Jarre [12, Section 3.3], propose stopping when the
norm of the residual is smaller than

η(1− αk)max(∥ζk∥, µk.)
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Problem b’slash N.E., tol = 102µ1/2δ N.E., tol = µ1/2δ N.E., tol = 10−2µ1/2δ
# its extra its min(tol) extra its min(tol) extra its min(tol)

lp adlittle 23 38 3.8e-70 26 4.5e-52 18 2.3e-31
lp afiro 13 12 1.3e-04 2 1.3e-06 0 1.3e-08
lp agg2 29 * 1.2e-08 * 1.9e-11 0 3.3e-10
lp agg3 29 * 1.1e-14 * 8.8e-13 2 2.7e-10
lp agg 31 * 1.3e-13 * 9.7e-15 0 2.2e-10
lp bandm 32 * 1.9e-09 * 2.6e-13 0 2.1e-11
lp beaconfd 26 * 1.0e-15 * 2.0e-16 * 2.9e-20
lp blend 20 5 5.7e-06 0 5.7e-08 0 5.7e-10
lp bnl2 57 * 4.5e-12 * 2.0e-14 * 1.1e-16
lp capri 44 2 3.7e-07 0 5.5e-09 0 4.4e-11
lp czprob 75 * 1.5e-09 * 6.8e-11 0 1.3e-11
lp d2q06c 59 * 5.0e-11 * 3.4e-13 * 3.3e-15
lp e226 37 * 1.0e-12 * 3.2e-14 * 3.3e-17
lp etamacro 30 * 2.0e-78 45 2.0e-73 * 2.6e-72
lp finnis 38 1 2.1e-09 0 5.6e-11 0 5.6e-13
lp fit1d 30 0 6.6e-11 0 6.0e-13 0 6.0e-15
lp fit1p 30 0 1.2e-08 0 1.2e-10 0 1.2e-12
lp ganges 25 48 6.2e-76 37 4.0e-70 0 2.0e-09
lp gfrd pnc 30 * 4.3e-67 * 2.2e-69 48 1.9e-71
lp grow15 37 * 8.9e-10 * 2.8e-12 * 1.9e-14
lp grow22 39 * 1.0e-09 24 8.3e-13 * 5.3e-14
lp grow7 34 * 2.0e-10 * 1.3e-11 * 1.0e-13
lp israel 42 2 5.7e-07 0 5.2e-09 0 5.2e-11
lp kb2 29 2 4.3e-10 0 3.9e-12 0 3.9e-14
lp lotfi 36 11 6.3e-13 5 3.4e-13 7 1.7e-15
lp maros 48 * 4.0e-13 * 4.4e-15 * 5.2e-17
lp perold 66 * 3.3e-10 * 1.8e-09 * 8.5e-12
lp pilot4 59 * 7.8e-11 * 1.8e-10 0 4.3e-13
lp pilot we 59 * 7.0e-08 * 3.0e-10 0 3.0e-13
lp recipe 24 * 9.2e-12 * 1.1e-13 * 1.1e-15
lp sc105 17 30 4.9e-57 19 1.0e-31 1 3.6e-09
lp sc205 17 29 5.1e-48 29 2.8e-50 1 6.9e-10
lp sc50a 16 34 7.2e-68 19 2.9e-35 4 1.2e-08
lp sc50b 12 33 9.7e-60 23 3.2e-38 8 6.0e-11
lp scagr25 27 7 9.7e-06 0 1.0e-07 0 8.4e-10
lp scagr7 23 5 8.6e-05 0 3.8e-07 0 3.8e-09
lp scfxm1 34 * 4.6e-13 * 1.5e-14 * 7.2e-18
lp scfxm2 39 * 1.2e-11 0 3.7e-13 0 3.7e-15
lp scfxm3 40 * 9.8e-12 * 9.1e-14 * 5.3e-16
lp scrs8 48 * 5.4e-13 * 5.3e-14 * 1.1e-16
lp scsd1 13 3 2.7e-05 0 2.9e-07 0 2.9e-09
lp scsd6 17 3 5.9e-06 0 5.4e-08 0 5.4e-10
lp scsd8 16 5 3.5e-06 0 3.8e-08 0 2.2e-10
lp sctap1 31 4 1.1e-06 0 1.5e-08 0 1.5e-10
lp sctap2 30 1 1.5e-06 0 7.3e-09 0 7.3e-11
lp sctap3 34 1 1.0e-06 0 7.7e-09 0 7.7e-11
lp share1b 41 1 5.1e-09 0 4.1e-11 0 4.1e-13
lp share2b 21 5 3.8e-07 1 6.4e-09 0 5.4e-11
lp stair 26 6 9.9e-10 0 1.5e-08 0 1.5e-10
lp standata 47 * 6.0e-08 * 3.0e-09 * 1.2e-09
lp standmps 54 * 3.3e-09 * 7.1e-11 * 5.2e-11
lp stocfor1 22 1 2.3e-08 0 9.9e-11 0 9.9e-13
lp stocfor2 39 0 1.0e-09 0 1.0e-11 0 1.0e-13
lp vtp base 31 * 3.6e-12 * 1.9e-13 * 2.3e-14
lp wood1p 65 * 3.0e-11 * 3.3e-09 1 1.0e-11

Table 4.2: Convergence, MINRES with a Schur complement preconditioner on the
augmented system. Runs that reach the maximum number of iterations (80) are
labelled with a ‘*’.
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Fig. 4.1: Eigenvalues of the Schur complement and preconditioned Schur complement,
standata eigs

(a) tol = 10−2δkµ
1/2
k (b) tol = 10−5δkµ

1/2
k

Fig. 4.2: Convergence curves for standata, varying the tolerance of the inner solve

For this choice of stopping criterion a reduction in the residual can be proved, and
problems with convergence are guarded against, but a naive application will only
guarantee linear convergence.

An approach that has been successful for getting sharper convergence estimates of
convergence behaviour is to cast the problem in the framework of an inexact Newton
method [9]. Note that we can rewrite (2.13) as 0 BT I

B 0 0
Sk 0 Xk


︸ ︷︷ ︸

F ′(xk,yk,sk)

∆xk

∆yk

∆sk

 = −

 ζk
ξk

XkSke


︸ ︷︷ ︸
F (xk,yk,sk)

+

 0
0

−σkµke


︸ ︷︷ ︸

rµk

+

rfkrgk
rhk


︸ ︷︷ ︸

rk

, (5.1)
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where we have relaxed the assumptions of this paper by allowing an error in the third
equation. If we had a true Newton method, where rµk , then we could directly apply
the theory of inexact Newton methods. In this cased we know that the method will
converge (locally) if we solve the system to an accuracy such that rk satisfies

∥rk∥
∥F (xk,yk, sk)∥

≤ ηk

for some forcing sequence ηk, where necessarily ηk < 1. If the forcing sequence ηk → 0
sufficiently fast, then we get superlinear convergence [9, Corollary 3.5].

However, since the interior point method is based on a perturbed Newton iteration
we have to be more careful. In particular, since we only enforce complimentarity at
convergence, the σkµk term must be treated carefully.

There are two competing properties here. First, the interior point method must
converge, and so we need ∥rµk + rk∥/∥F (xk,yk, sk)∥ ≤ ηk for some forcing sequence
ηk. Note that, if the linear system is solved by a direct method, then this converges
by virtue of the fact that µk → 0.

However, we only have explicit control over the size of the µk-less residual rk, and
so we can adjust the stopping criterion to make ∥rk∥/∥F (xk,yk, sk) + rµk∥ ≤ ϵk for
any suitable ϵk, but need to choose this latter tolerance to be sympathetic with the
outer iteration.

Bellavia [4] showed that, since ∥F (xk,yk, sk)∥2 ≤ xT
k sk√
n
, (where n is the length of

xk), we have

∥rk + rµk∥ ≤ ∥rk∥+ µk

√
n.

Therefore, assuming that µk satisfies µk = β1
xT
k sk
n , and that we use the stopping

rule ∥rk∥2 ≤ ηkx
T
k sk, Bellavia was able to show that

∥rµk + rk∥ = (β1 +
√
nηk)∥F (xk,yk, sk)∥2,

and so β1 +
√
nηk can be taken to be the forcing sequence.

Since xk and sk approach complimentarity as the interior point converges, the
stopping criterion xT

k sk can be very stringent, and the additional requirements on ηk
exasperate this problem. In particular, the analysis requires that ηk < (1− β1)/

√
n.

Baryamureeba and Steihaug [3] note that the choice of norm is unimportant,
and if we instead consider the 1-norm then, since ∥F (xk,yk, sk)∥1 ≥ xT

k sk, simply
requiring that ∥rk∥1 ≤ ηkx

T
k sk is enough to show

∥rk + rµk∥1 ≤ (β1 + ηk) ∥F (xk,yk, sk)∥1 .

We therefore remove the factor of 1/
√
n from the tolerance (but are measuring con-

vergence in the unnatural 1-norm).
These approaches are nice, in they do not prescribe any specific iterative method,

but they do not explain why the interior point method converges at looser convergence
tolerances, as shown in the numerical experiments above.

5.2. Approaches that require primal feasibility. In our analysis above we
assumed that the third equation of (2.7) must be satisfied exactly. A number of people
have considered the case where, instead, the second equation is solved without error
at certain points of the iteration. This is known in the optimization context as primal
feasibility.
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Ito, Kelley and Sachs [24] and Portugal et al [35, 36] describe methods which
need to remain primal feasible once the approximate solution lies on the constraint
manifold, as the primal residual lies on the right hand side of the stopping condition.

Similar to our proof of Theorem 2.7, Al-Jeiroudi and Gondzio [2] adapt the proof
of [46, Theorem 6.1] to show convergence of an inexact interior point method for linear
programming under the assumption that the primal residual is zero at each iteration.
The theory here recommends using the stopping condition

∥rhk∥∞ ≤ ηkµk,

where ηk is a forcing term that is sufficiently small (see [2, Lemma 4.3 p. 243]).
Gondzio [17] later extended this result to show convergence of a feasible interior point
method for quadratic programs under the condition that the primal residual remains
zero.

6. Conclusion. We have described conditions that the solution given by an
iterative solver should satisfy in order to guarantee convergence of the interior point
method. In particular, if the third equation of (2.7) is satisfied exactly, and need

the error in the approximation to [∆x∗
k,∆y∗

k] in bounded by δµ
1/2
k (for some known

constant δ) in the (X−1
k Sk, BS

−1
k XkB

T )-norm, then we can guarantee convergence.
This differs from what’s known in the literature, since it measures the error in an
iteration-dependent norm, and predicts a looser stopping tolerance.

We also show that, despite the norm being iteration-dependent, it is closely re-
lated to the natural norm in which certain Krylov subspace methods that satisfy an
optimality property converge in. We show this explicitly for CG (applied to both
the normal equations and the augmented system) and MINRES with block-diagonal
preconditioners. We also present numerical experiments that appear to show that the
theory developed is descriptive of the true convergence behaviour of the interior point
method under inexact solves.

We have presented the theory exclusively for linear programming, but numerical
experiments show that a similar result holds true for quadratic programs. We hope
that, as has proved to be the case for solving linear systems arising from discretizations
of systems of PDEs, an understanding of the norm in which the algebraic error should
be naturally measured will lead to better preconditioners for this important class of
problems.
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[27] L. Lukšan and J. Vlček, Indefinitely preconditioned inexact newton method for large sparse
equality constrained nonlinear programming problems, Numerical linear algebra with ap-
plications 5 (1998), no. 3, 219–247.

[28] Benedetta Morini, Valeria Simoncini, and Mattia Tani, Unreduced symmetric KKT systems
arising from interior point methods. Part II: preconditioning, Tech. report, http://www.
optimization-online.org/DB_HTML/2014/07/4418.html, 2014.

[29] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen, A note on preconditioning for
indefinite linear systems, SIAM J. Sci. Comput. 21 (2000), no. 6, 1969–1972.

[30] Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer, 1999.
[31] A.R.L. Oliveira and D.C. Sorensen, Computational experience with a preconditioner for interior

point methods for linear programming, Tech. Report CRPC-TR97772, Center for Research
on Parallel Computation, Rice University, 1997.

[32] Aurelio R.L. Oliveira and Danny C. Sorensen, A new class of preconditioners for large-scale
linear systems from interior point methods for linear programming, Linear Algebra and its
applications 394 (2005), 1–24.

[33] Dominique Orban, Limited-memory LDLT factorization of symmetric quasi-definite matrices
with application to constrained optimization, Numerical Algorithms (2014), 1–33.

[34] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal. 12 (1975), no. 4, 617–629.

[35] Luis Portugal, Luis Fernandes, and Joaquim Judice, A truncated Newton interior-point algo-

30

https://github.com/inutard/matrix-factor
http://www.optimization-online.org/DB_HTML/2014/07/4418.html
http://www.optimization-online.org/DB_HTML/2014/07/4418.html


rithm for the solution of a multicommodity spatial equilibrium model, Tech. report, De-
partment of Mathematics, University of Coimbra, 1995.

[36] Luis F. Portugal, Mauricio G.C. Resende, Geraldo Veiga, and J.J. Júdice, A truncated primal-
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[42] Jennifer Scott and Miroslav Tůma, On positive semidefinite modification schemes for incom-
plete Cholesky factorization, SIAM Journal on Scientific Computing 36 (2014), no. 2,
A609–A633.

[43] Amir Shahzad, Eric C. Kerrigan, and George A. Constantinides, Preconditioners for inexact
interior point methods for predictive control, American Control Conference (ACC), 2010,
IEEE, 2010, pp. 5714–5719.
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