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1 Introduction

In this paper, we consider the distributed control problem which consists of a cost
functional (1.1) to be minimized subject to a partial differential equation problem posed
on a domain Ω ⊂ R

2 or R
3:

min
u,f

1

2
||u− û||2L2(Ω) + β||f ||2L2(Ω) (1.1)

subject to −∇2u = f in Ω (1.2)

with u = g on ∂Ω1 and
∂u

∂n
= g on ∂Ω2, (1.3)

where ∂Ω1 ∪ ∂Ω2 = ∂Ω and ∂Ω1 and ∂Ω2 are distinct.
Such problems were introduced by J.L. Lions in [21]. Here, the function û (the

‘desired state’) is known, and we want to find u which satisfies the PDE problem and
is as close to û as possible in the L2 norm sense. In order to achieve this, the right
hand side of the PDE, f , can be varied. The second term in the cost functional (1.1) is
added because, in general, the problem would be ill-posed, and so needs this Tikhonov
regularization term. The Tikhonov parameter β needs to be determined, although it is
often selected a priori—a value around β = 10−2 is commonly used (see [10],[15],[19]).
We include a graph of ‖u − û‖ vs log(β) in Section 5 to demonstrate what are good
values of β.

The above problem involves only the simple Poisson equation as the PDE. Our meth-
ods are not specific to only this PDE: all that is required is an effective preconditioner—
preferably an optimal preconditioner—for the PDE problem. We discuss possible gen-
eralization to other PDEs of our two preconditioning methods in Section 6. Here for the
Laplacian we employ standard multigrid cycles with both geometric ([9], [27], [16]) and
algebraic ([8], [27, Appendix A]) multigrid procedures. For other elliptic PDEs multigrid
cycles could also form an important part of algorithms for control problems based on
the ideas presented here. The above problem does not involve bound nor inequality con-
straints; it is also possible that these more general constraints could be included though
we have not considered this here.

We also consider one example with boundary control, namely on a domain Ω ⊂ R
2 ,

find:

min
u,f

1

2
||u− û||2L2(Ω) + β||g||2L2(∂Ω) (1.4)

s. t. −∇2u = 0 in Ω (1.5)

∂u

∂n
= g on ∂Ω. (1.6)

Here the control, g, is the unknown quantity, which is included in the boundary condi-
tion.

In PDE-constrained optimization there is the choice as to whether to discretize-then-
optimize or optimize-then-discretize, and there are differing opinions regarding which
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route to take (see Collis and Heinkenschloss [10] for a discussion). We have chosen to
discretize-then-optimize, as then we are guaranteed symmetry in the resulting linear
system. The underlying optimization problems are naturally self-adjoint and by this
choice we avoid non-symmetry due to discretization that can arise with the optimize-
then-discretize approach (as shown in, for example, Collis and Heinkenschloss [10]).
We are then able to use symmetric iterative methods—in particular we use minres

([25]) and a projected Conjugate Gradient (ppcg) method ([14]) —with the consequent
advantage of rigorous convergence bounds and constant work per iteration not enjoyed
by any of the wide variety of non-symmetric Krylov subspace iterative methods (see
e.g., [11]). This still leaves the crucial question of preconditioning and this is the main
contribution of this paper. We derive and analyse both theoretically and by computation
two preconditioning approaches which lead to optimal solution of the PDE-constrained
optimization problem. That is preconditioners which when employed with minres

or ppcg respectively give a solution algorithm which requires O(n) computational
operations to solve a discrete problem with n degrees of freedom.

We employ the Galerkin finite element method for discretization here, but see no
reason why other approximation methods could not be used with our approach.

We comment that for the specific problem as above for the Poisson equation, Schöberl
and Zulehner ([26]) have recently developed a preconditioner based on a non-standard
multigrid procedure which is both optimal with respect to the problem size and with
respect to the choice of regularization parameter, β. It is not so clear how this method
would generalize to other PDEs. Biros and Dogan ([5]) have also developed a multigrid-
based preconditioner which has both h and β independent convergence properties, but
again it is not clear how their method would generalize. We note that the approximate
reduced Hessian approximation used by Haber and Asher ([15]) and Biros and Ghattas
([4]) also leads to a preconditioner with h−independence.

Other solution methods employing multigrid for this and similar classes of problems
are described by Asher and Haber([1]), Engel and Griebel([12]), and Borzi([6]). Domain
Decomposition and Model Order Reduction ideas are also successfully applied in this
context: see for example Heinkenschloss and Nguyen ([17]) and Heinkenschloss, Sorensen
and Sun([18]).

In Section 2, we discuss the formulation and structure of our discretized problem.
We then use this structure in Sections 3 and 4 to derive optimal preconditions for
minres and ppcg, respectively. The effectiveness of our proposed preconditioners is
illustrated by applying them to five different problems, see Section 5. Finally, we draw
our conclusions in Section 6.

2 Formulation and Structure

In order to use finite elements, we require the weak formulation of (1.2) and (1.3). For
definiteness and clarity we describe this for the purely Dirichlet problem; the formulation
for the mixed and purely Neumann problem is also standard (see for example [11]). The
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Dirichlet problem is: find u ∈ H1
g (Ω) = {u : u ∈ H1(Ω), u = g on ∂Ω} such that

∫

Ω

∇u · ∇v =

∫

Ω

vf ∀v ∈ H1
0 (Ω). (2.1)

We assume that V h
0 ⊂ H1

0 is an n-dimensional vector space of test functions with
{φ1, ..., φn} as a basis. Then, for the boundary condition to be satisfied, we extend
the basis by defining functions φn+1, ..., φn+∂n and coefficients Uj so that

∑n+∂n
j=n+1 Ujφj

interpolates the boundary data. Then, if uh ∈ V h
g ⊂ H1

g (Ω), it is uniquely determined
by u = (U1 . . . Un)T in

uh =
n∑

j=1

Ujφj +
n+∂n∑

j=n+1

Ujφj.

Here the φi, i = 1, . . . , n, define a set of shape functions. We also assume that this
approximation is conforming, i.e. V h

g = span{φ1, . . . , φn+∂n} ⊂ H1
g (Ω). Then we get the

finite-dimensional analogue of (2.1): find uh ∈ V h
g such that

∫

Ω

∇uh · ∇vh =

∫

Ω

vhf ∀vh ∈ V h
0 .

We also need a discretization of f , as this appears in (1.1). We discretize this using the
same basis used for u, so

fh =
n∑

j=1

Fjφj

since it is well known that fh = 0 on ∂Ω. Thus we can write the discrete analogue of
the minimization problem as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 (2.2)

such that

∫

Ω

∇uh · ∇vh =

∫

Ω

vhf ∀vh ∈ V h
0 . (2.3)

We can write the discrete cost functional as

min
uh,fh

1

2
||uh − û||22 + β||fh||22 = min

u,f

1

2
uT Mu− uTb + α + βfT Mf , (2.4)

where u = (U1, . . . , Un)T , f = (F1, . . . , Fn)T , b = {
∫

ûφi}i=1...n, α = ‖û||22 and M =
{
∫

φiφj}i,j=1...n is a mass matrix.
We now turn our attention to the constraint: (2.3) is equivalent to finding u such

that

∫

Ω

∇
(

n∑

i=1

Uiφi

)

· ∇φj +

∫

Ω

∇
(

n+∂n∑

i=n+1

Uiφi

)

· ∇φj =

∫

Ω

(
n∑

i=1

Fiφi

)

φj, j = 1, . . . , n
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which is

n∑

i=1

Ui

∫

Ω

∇φi · ∇φj =
n∑

i=1

Fi

∫

Ω

φiφj −
n+∂n∑

i=n+1

Ui

∫

Ω

∇φi · ∇φj, j = 1, . . . , n

or
Ku = Mf + d, (2.5)

where the matrix K = {
∫
∇φi·∇φj}i,j=1...n is the discrete Laplacian (the stiffness matrix)

and d contains the terms coming from the boundary values of uh. Thus (2.4) and (2.5)
together are equivalent to (2.2) and (2.3).

One way to solve this minimization problem is by considering the Lagrangian

L :=
1

2
uT Mu− uTb + α + βfT Mf + λT (Ku−Mf − d),

where λ is a vector of Lagrange multipliers. Using the stationarity conditions of L, we
find that f , u and λ are defined by the linear system




2βM 0 −M

0 M KT

−M K 0





︸ ︷︷ ︸
A




f

u

λ



 =




0
b

d



 . (2.6)

Note that this system of equations has saddle-point system structure, i.e. it is of the
form [

A BT

B −C

] [
x

y

]
=

[
c

d

]
, (2.7)

where A =

[
2βM 0

0 M

]
, B = [−M K], C = 0.

This system is usually very large—each of the blocks K is itself a discretization of
the PDE—and sparse, since as well as the zero blocks, K and M are themselves sparse
because of the finite element discretization. Thus matrix-vector multiplications can be
easily achieved and the work in a symmetric Krylov subspace iteration method will be
linear at each iteration. In general the system is symmetric and indefinite, so the Minimal
Residual (minres) method of Paige and Saunders [25] is robustly applicable and is the
method of choice for such systems when a symmetric positive definite preconditioner is
employed: one of our optimal preconditioners is of this type. Our second preconditioner
is a constraint preconditioner [20] which we may use in conjunction with the projected
conjugate gradient (ppcg) method [14]. The crucial step to ensure that acceptably
rapid convergence is guaranteed is preconditioning: we consider in the next two sections
our two preconditioning approaches.

We now consider a boundary control problem, as in (1.4)-(1.6). In weak formulation
of (1.5)-(1.6) we find u ∈ H1(Ω) such that

∫

Ω

∇u∇φ dx −
∫

∂Ω

uγ(φ) ds =

∫

Ω

fφ dx ∀φ ∈ H1(Ω),
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where γ is the trace operator. We discretize the problem using the finite element method,
using a triangulation where the total number of vertices is mt and the number of vertices
on the boundary is mb. Then on optimizing as above we get the following system:




2βMg 0 −ET

0 Mu KT

−E K 0








g

u

λ



 =




0
b

d



 . (2.8)

Here K = {
∫
∇φi·∇φj}i,j=1...mt

∈ R
mt×mt is the usual stiffness matrix, Mu = {

∫
φi φj}i,j=1...mt

∈
R

mt×mt is the mass matrix, where {φi} is the finite element basis as defined above. If we

define {φ̂i} to be the analogous functions defined on the boundary, then we can write

E = {
∫

φ̂j φi}i=1...mt,j=1...mb
∈ R

mt×mb and Mg = {
∫

φ̂j φ̂i}i,j=1...mt
∈ R

mb×mb . The
constant vectors are given by d = {

∫
Ω

fφi}i=1...mt
∈ R

mt and b = {
∫
Ω

ûφi}i=1...mt
∈ R

mt .
Note that in this case the blocks in the system (2.8) are not all square, and we include

this example to demonstrate how at least one of our methods described in Section 3
can be applied in such cases. The methods described in Section 4 are not immediately
applicable for this class of problem and will form the subject of a follow-up paper in which
similar ideas are used by only replicating a subset of the constraints in the preconditioner
and using a different projected iterative method.

We comment that there are a number of generalizations of the problem above which
lead to systems with similar algebraic structure. The L2(Ω) norms in (1.1) could be
changed to any Hilbert space norms and the (1,1) and (2,2) blocks would correspondingly
be the Gram matrices associated with these norms: our technique with appropriate
modification should handle this.

Another common case would be when the (2,2) block in (2.6) is singular. This would
occur when, for example, one only wants to control u on part of Ω, or if one has few
measurements. In this case it is not clear at this stage how our methods in Section 3
could be applied but there is scope for the methods proposed in Section 4 because these
do not assume that A is non-singular.

3 Block Diagonally Preconditioned MINRES

In general, the system (2.6) will be symmetric but indefinite, so we solve it using the
minres algorithm: this is a Krylov subspace method for symmetric linear systems.
minres has to be coupled with a preconditioner to get satisfactory convergence - i.e.
we want to find a matrix (or a linear process) P for which P−1A has better spectral
properties (and such that P−1v is cheap to evaluate for any given vector v). We then
solve a symmetric preconditioned system equivalent to

P−1Ax = P−1b.

The aim of preconditioning is to choose a matrix P such that the eigenvalues of P−1A
are clustered. The following result by Murphy, Golub and Wathen [24] illustrates this
idea:
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Theorem 1 If

A =

[
A BT

B 0

]

is preconditioned by

P =

[
A 0
0 BA−1BT

]

Then the preconditioned matrix T = P−1A satisfies

T (T − I)(T 2 − T − I) = 0.

This shows us that T is diagonalizable and has at most four distinct eigenvalues (0, 1, 1±
√

5
2

)
or only the three non-zero eigenvalues if T is nonsingular. This means that the Krylov
subspace K(T ; r) = span(r, T r, T 2r, . . . ) will be of dimension at most three if T is
nonsingular or four if T is singular. Therefore, any Krylov subspace method with an
optimality property (such as MINRES) will terminate in at most three iterations (with
exact arithmetic).

If we apply this approach to the matrix in our saddle-point system (2.6) then we
obtain the preconditioner

PMGW =




2βM 0 0

0 M 0
0 0 1

2β
M + KM−1KT



 .

minres with this preconditioner will always terminate (in exact arithmetic) in at
most three steps and so satisfies one requirement of a preconditioner. However, it fails on
another count as it is, in general, not cheap to solve a system with PMGW. However, we
could still make use of the properties of this preconditioner by approximating it in such a
way that the eigenvalues remain clustered. Looking at the structure of PMGW, the mass
matrices in the (1,1) and the (2,2) blocks do not pose too much of a problem: they can
be cheaply solved by, for example, using PCG with the diagonal as the preconditioner,
as shown in [29]. Thus the difficulty comes from the (3,3) block, which is the only part
that contains the PDE.

One way to approximate this is to consider only the dominant term in the (3,3) block
which is, for all but the very smallest values of β, the KM−1KT term, thus forming the
preconditioner

PD1 =




2βM 0 0

0 M 0
0 0 KM−1KT



 . (3.1)

The following result, which is an application and extension of a result in [2], tells us
about the clustering of the eigenvalues using this preconditioner:

Proposition 2 Let λ be an eigenvalue of P−1
D1A, with PD1 defined by (3.1) and A defined

as in (2.6) . Then either λ = 1,
1
2
(1 +

√
1 + 4σ1) ≤ λ ≤ 1

2
(1 +

√
1 + 4σm) or 1

2
(1−

√
1 + 4σm) ≤ λ ≤ 1

2
(1−

√
1 + 4σ1),

where 0 ≤ σ1 ≤ · · · ≤ σm are the eigenvalues of 1
2β

(KM−1KT )−1M + I.
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Proof First note that the eigenvalues of P−1
D1A are identical to the eigenvalues of Ã :=

P− 1

2

D1 AP
− 1

2

D1 , as this is just a the result of a similarity transformation. It is readily seen that

Ã =




I 0 K̃1

T

0 I K̃2
T

K̃1 K̃2 0



 or equivalently

[
I BT

B 0

]

where K̃1 = − 1√
2β

(KM−1KT )−
1

2 M
1

2 , K̃2 = (KM−1KT )−
1

2 KM− 1

2 and B = [K̃1 K̃2].

Let
(
λ, [x y]T

)
be an eigenpair for Ã. Then

[
I BT

B 0

] [
x

y

]
= λ

[
x

y

]
. This can be

written as

x + BTy = λx

Bx = λy

By inspection, one solution of this problem is λ = 1, and this has multiplicity n with eigen-

vectors of the form
[

x 0
]T

, where Bx = 0.
Now we will consider the two cases (I) λ > 0 and (II) λ < 0 separately. λ cannot equal 0,

since Ã is non-singular.
CASE (I): λ > 0 and λ 6= 1 (the case λ = 1 has been treated above). Clearly

x = −(1− λ)−1BTy

and

−(1− λ)−1BBTy = λy,

−(1− λ)−1yTBBTy = λyTy,

−(1− λ)λ =
yTBBTy

yTy
.

Now yTBBT y

yTy
= ||By||2

||y||2 =: b, so

λ2 − λ− b = 0,

i.e.

λ =
1±
√

1 + 4b

2
.

But by assumption λ > 0, so

λ =
1 +
√

1 + 4b

2
.

We know that σ1 ≤ b ≤ σm, where σi are the eigenvalues of BBT , so we have

1 +
√

1 + 4σ1

2
≤ λ ≤ 1 +

√
1 + 4σm

2
.

CASE (II): λ < 0. Let µ = −λ. Then from above,

x = −(1 + µ)−1BTy,

b = µ(1 + µ),
µ2 + µ− b = 0.
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So

µ =
−1±

√
1 + 4b

2
.

Again, µ > 0 by assumption, so

µ =
−1 +

√
1 + 4b

2
or

λ =
1−
√

1 + 4b

2
,

i.e.
1−√1 + 4σm

2
≤ λ ≤ 1−√1 + 4σ1

2
.

Finally,

BBT =
[
− 1√

2β
(KM−1KT )−

1

2 M
1

2 (KM−1KT )−
1

2 KM− 1

2

] [ − 1√
2β

M
1

2 (KM−1KT )−
1

2

M− 1

2 KT (KM−1KT )−
1

2

]

=
1

2β
(KM−1KT )−

1

2 M(KM−1KT )−
1

2 + I

and so the eigenvalues of BBT are the same as those of 1
2β (KM−1KT )−1M + I, as required.

�

We can use this general result to obtain more concrete bounds that are dependent
both on the PDE in the problem being considered and on what finite element dis-
cretization is used. In our tests, we have discretized the problem (1.1) using bi-linear
quadrilateral Q1 finite elements, and for this choice one can prove the following.

Corollary 2A Let λ be an eigenvalue of P−1
D1A, with PD1 and A as defined in Proposi-

tion 2. Then λ satisfies one of

λ = 1,

1

2

(
1 +

√

5 +
2α1h4

β

)
≤ λ ≤ 1

2

(
1 +

√
5 +

2α2

β

)

or
1

2

(
1−

√
5 +

2α2

β

)
≤ λ ≤ 1

2

(
1−

√

5 +
2α1h4

β

)
,

where α1, α2 are positive constants independent of h and independent of β.

Proof Proposition 2 tells us that the clustering of eigenvalues of the preconditioned system
depends on finding the eigenvalues of the matrix T := I + 1

2β (KT M−1K)−1M . In this case, if
λ is an eigenvalue of T , then

Tx = λx,

i.e. (
1

2β
(KT M−1K)−1M + I)x = λx,

K−1MK−T Mx = 2β(λ− 1)x.
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Here K = KT and if we let µ = 2β(λ− 1), we have

(K−1M)2x = µx.

If ν is an eigenvalue of K−1M , then µ = ν2, and

K−1Mx = νx,

i.e. Mx = νKx,

so xT Mx = νxT Kx,

ν =
xT Mx

xT Kx
.

We now make use the following results, which are Proposition 1.29 and Theorem 1.32 respec-
tively in [11], applied to our case.

Theorem 3 For Q1 approximation on a quasi-uniform subdivision of R
2 for which a shape

regularity condition holds the mass matrix M approximates the scaled identity matrix in the

sense that

c1h
2 ≤ xT Mx

xT x
≤ c2h

2

∀x 6= 0 ∈ R
n. The constants c1 and c2 are independent of both h and β.

Theorem 4 For Q1 approximation on a quasi-uniform subdivision of R
2 for which a shape

regularity condition holds the Galerkin matrix K satisfies

d1h
2 ≤ xT Kx

xTx
≤ d2

∀x 6= 0 ∈ R
n. The constants d1 and d2 are positive and independent of both h and β.

From Theorem 4 we obtain
1

d2
≤ xTx

xT Kx
≤ 1

d1h2
.

Therefore,

c1h
2

d2
≤ ν ≤ c2

d1
,

(
c1

d2

)2

h4 ≤ ν2 ≤
(

c2

d1

)2

,

(
c1

d2

)2

h4 ≤ 2β(λ− 1) ≤
(

c2

d1

)2

,

1

2β

(
c1

d2

)2

h4 + 1 ≤ λ ≤ 1

2β

(
c2

d1

)2

+ 1.

Hence, for the 2D case, we have the bounds

1

2β
α1h

4 + 1 ≤ λ ≤ 1

2β
α2 + 1, (3.2)
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where α1 and α2 are constants independent of h and independent of β. For the 3D case, the
equivalent results to Theorems 3 and 4 are

c1h
3 ≤ xT Mx

xT x
≤ c2h

3 ∀x 6= 0

and d1h
3 ≤ xT Kx

xT x
≤ d2h ∀x 6= 0.

The extra h on each side will cancel, meaning (3.2) also holds in the 3D case (although the

constants will be different). �

The bounds in Corollary 2A include two constants, α1 and α2, which are independent
of both h and β but will change depending on the discretization used. In 2D for Q1

square elements, as used here, Fourier analysis gives that c1 = 1/9, c2 = 1, d1 = 2π2 and
d2 = 4, so α1 = 1/1296 and α2 = 1/4π2 for this discretization.

Note also that the bounds depend on h in a multiplicative way only, so they remain
bounded away from 0 as h → 0 with a bound independent of h. This suggests that
this is an optimal preconditioner in the sense that its performance is independent of the
mesh size. Figure 1 shows plots of the actual eigenvalues and the bounds of Corollary
2A for two choices of β. We see that the eigenvalues are much more clustered for the
larger value of β, and we see that for values around this our method is most successful.
Taking β around this value is common in the literature – see Collis and Heinkenschloss
[10], Haber and Ascher [15], Maurer and Mittelmann [22],[23] or Ito and Kunisch [19],
for example.
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(a) β = 10−2
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(b) β = 10−7

Figure 1: Eigenvalues of P−1
D1A and eigenvalue bounds predicted by Proposition 2 (lines

are the predicted bounds, *s are the eigenvalues)

Remark 5 We have proved bounds for one possible approximation of the ideal precon-
ditioner PMGW , giving us the preconditioner PD1, which was formed by approximating
the (3,3) block in the ideal case — 1

2β
M + KM−1KT — by KM−1KT . Other such ap-

proximations are possible, for example, one could approximate the (3,3) block by taking
the first term in the sum, 1

2β
M . However, in our experience this is only a good approx-

imation for extremely small values of β (around 10−12), which are not very useful in
practice due to the highly irregular control functions that result.
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For the values of β in between (around β = 10−8) we need both the additive terms
in the (3,3) block to have an effective preconditioner. We note that in the case we are
considering here, with Poisson’s equation as the constraint, the (3,3) block is itself an
elliptic operator for which effective multigrid methods exist. Therefore, approximating
1
2β

M + KM−1KT by, for example, a fixed number of V-cycles of this type should give a
method which is both β and h independent. However, it is not clear how a such a method
would generalize to other PDE constraints.

When using PD1 as a preconditioner, the main drawback is that at each iteration
we have to solve for K and KT once each, which is equivalent to solving the forward
problem twice per iteration. This is costly, especially for more complicated PDEs. As
these solves are only needed for the preconditioner, which is itself just an approximation,
all we need is to solve these approximately. Thus we want to consider

P =




2βM̃ 0 0

0 M̃ 0

0 0 K̃M−1K̃T



 , (3.3)

where K̃ and M̃ are some approximations to K and M , respectively. Note that we
do not need to approximate M in the Schur complement as a solve with M−1 is just
a matrix-vector multiplication with the mass matrix. If our approximations are good
enough, then the spectral bounds should be close to those shown above. Using (3.3) as a
preconditioner will take only slightly more Krylov subspace iterations, but with a solve
for K̃ being much faster than, say, a sparse direct solve for K, hence giving us a much
more effective preconditioner.

Note that if, for example, the L2(Ω) norm in (1.1) were replaced by a Hilbert space
norm with Gram matrix H , then we would require approximations 2βH̃ and H̃ in the
(1,1) and (2,2) blocks respectively.

For any choice of PDE in a problem of the type in (1.1), it is likely that there has been
work done on solving the forward problem (i.e. solving just for a solution to the PDE)
and we propose to draw from ideas here to help us develop effective preconditioners. If we
have an effective preconditioner for the forward problem, then we can incorporate it into
our methods to give us an effective preconditioner for the PDE constrained optimization
problem.

In the case of our PDE, the Poisson equation, a fixed number of multigrid iterations
is a good preconditioner [11]. We apply both algebraic and geometric multigrid routines.
We thus have two Preconditioners,

PD2 =




2βM̃ 0 0

0 M̃ 0

0 0 K̃M−1K̃T



 and PD3 =




2βM̃ 0 0

0 M̃ 0

0 0 K̂M−1K̂T



 ,

where K̃ denotes two geometric V-cycles and K̂ denotes two AMG V-cycles of HSL

package HSL MI20 [7] applied via a MATLAB interface. For both multigrid methods we
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use the relaxed Jacobi method for the smoother, i.e. if we have to solve an arbitrary
system Gu = f for some matrix G ∈ R

k×k and vectors u, f ∈ R
k for some k, take

D = diag(G) and iterate

u(m+1) = (I − ωD−1G)u(m) + ωD−1f (3.4)

where u(0) = 0 and for some relaxation parameter ω. For 2D problems we use 2 pre-
and 2 post-smoothing steps of relaxed Jacobi with the optimal relaxation parameter of
ω = 8

9
in the 2D case (see [11, Section 2.5]). In 3D, we use 3 pre- and 3 post-smoothing

steps of unrelaxed Jacobi, i.e. we take ω = 1 in the above, which is optimal here. We
have not experimented excessively, but found that this number of smoothing steps gives
a reasonable overall efficiency: using fewer steps, the required number of iterations of
minres is still mesh independent, though it is higher. We emphasize that this is the
most CPU-intensive part of our algorithm. We have used a multigrid procedure here
essentially as a ’black box’; we obtain similar results (not presented here) by using a
Gauss-Seidel smoother, and by varying the number of smoothing steps per level.

For the mass matrix, M , there are a number of options for the approximation. One
could use a lumped mass matrix, or even the diagonal of M – from our experience both
of these methods lead to an optimal preconditioner. However, the approximate mass
matrix solve is the the cheapest part of the application of the preconditioner, and if
we can have a more accurate approximation here, this will bring down the number of
(outer) minres iterations needed – i.e. we will need fewer of the relatively expensive
multigrid solves – hence reducing the total solution time. What we would like to use is
a few steps of the preconditioned conjugate gradient method with, say, the diagonal as a
preconditioner applied to the matrix, as this will give us a good approximation. However,
PCG is not linear in the right hand side, so we cannot use it as a preconditioner without
applying a flexible outer Krylov iteration.

The Chebyshev semi-iteration [13] is a method of accelerating convergence of a simple
iterative method which is linear, so we can employ it here. In 2D, we use relaxed Jacobi
with a relaxation parameter of 4

5
, which, when applied to a Q1 mass matrix, gives an

iteration matrix with eigenvalues satisfying |λ| ≤ 4
5

=: ρ. In 3D, the optimal relaxation
parameter is 4

7
, which gives eigenvalues such that |λ| ≤ 13

14
=: ρ. In both cases, if we

want to solve Mu = f , say, then the kth iterate of the Chebyshev semi-iteration is given
by

w(k) =

k∑

i=0

νiu
(i),

where u(i) are the iterates of the underlying iterative method (so u(i) = Su(i−1)+g where
S is some iteration matrix, defined here by relaxed Jacobi) and νi are the coefficients

of the scaled Chebyshev polynomial T̂k(z) = Tk(z/ρ)
Tk(1/ρ)

. This can be implemented more
efficiently by performing the iteration

w(k+1) = wk+1(Sw(k) + g −w(k−1)) + w(k−1), (3.5)

where wk+1 = Tk(1/ρ)
ρTk+1(1/ρ)

(see Varga [28, Chapter 5]). It is very cheap to carry out an

iteration using this scheme. Moreover, we get the following convergence result, which
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shows this method has essentially the same convergence behaviour as classical conjugate
gradients:

||u−w(k)||2 ≤ max
r∈[−ρ,ρ]

|T̂k(r)| ||u− u(0)||2. (3.6)

Indeed this bound using Chebyshev polynomials is the one usually applied for Conjugate
Gradient convergence. This suggests that a fixed number of these iterations will give us
a good approximation to M . This is a linear operation which is cheap to implement, so
it is valid to use as a preconditioner with a standard Krylov subspace iteration such as
minres. We therefore let M̃ in PD2 and PD3 denote 20 iterations of the Chebyshev
semi-iteration, as defined above. In 2D, maxr∈[−ρ,ρ] |T̂20(r)| ≈ 10−6. This bound shows

that M̃ is almost exactly M but is still a very inexpensive way of inverting this operator.
To recap, we have introduced two block diagonal preconditioners – PD2, where a

solve with K is approximated by two geometric multigrid V-cycles, and PD3, which
uses two V-cycles of the HSL algebraic multigrid routine to approximate a solve with K.
In both preconditioners a solve with M is approximated by 20 steps of relaxed Jacobi
accelerated by the Chebyshev semi-iteration.

Recall for the boundary control case we had the system

AB =




2βMg 0 −ET

0 Mu KT

−E K 0



 ,

where, in this case, E is not square. Using the same reasoning as above an ’ideal’
preconditioner would be




2βMg 0 0

0 Mu 0
0 0 1

2β
EM−1

g ET + KM−1
u KT



 .

This can, in turn, be approximated in exactly the same way as described above,
giving practical preconditioners

PB
D2 =




2βM̃g 0 0

0 M̃u 0

0 0 K̃M−1
u K̃T



 and PB
D3 =




2βM̃g 0 0

0 M̃u 0

0 0 K̂M−1
u K̂T



 ,

where, as in the distributed control case, in PB
D2 we approximate a stiffness matrix solve

with two geometric multigrid V-cycles, and we use the same number of AMG V-cycles in
PB

D3. In both cases we approximate a mass matrix solve using 20 Chebyshev iterations.

4 Constraint Preconditioning

As noted in Section 3, the coefficient matrix in (2.6) is of a saddle-point form. In
recent years, the preconditioned projected conjugate gradient (ppcg) method [14] has
become an increasingly popular method for solving saddle-point systems, particularly in
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the optimization literature. The method requires the use of a preconditioner that has a
very specific structure. If, as in (2.7), we write the coefficient matrix A of (2.6) as

A =

[
A BT

B 0

]
,

where B ∈ R
k×l, then the preconditioner must take the form

P =

[
G BT

B 0

]
,

where G ∈ R
l×l is a symmetric matrix. Let Z ∈ R

l×(l−k) be such that its columns span
the nullspace of B. The ppcg method can be reliably used if both ZT AZ and ZT GZ
are positive definite. The basic principles behind the ppcg method are as follows. Let
W ∈ R

l×k be such that the columns of W together with the columns of Z span R
l and

any solution x∗ in (2.7) can be written as

x∗ = Wx∗
w + Zx∗

z. (4.1)

Substituting (4.1) into (2.7) and premultiplying the resulting system by




W T 0
ZT 0
0 I



 ,

we obtain the linear system



W T AW W TAZ W T BT

ZT AW ZT AZ 0
BW 0 0








x∗

w

x∗
z

y



 =




W Tc

ZTc

d



 .

Therefore, we may compute x∗
w by solving

BWx∗
w = d,

and, having found x∗
w, we can compute x∗

z by applying the pcg method to the system

Azzx
∗
z = cz,

where

Azz = ZT AZ,

cz = ZT (c− AWx∗
w) .

If a preconditioner of the form ZT GZ is used and we define rz = ZT AZxz − cz and

gz =
(
ZT GZ

)−1
rz, then Gould et al [14] suggest terminating the iteration when the

easily computable value rT
z gz has sufficiently decreased. Note that pcg minimizes

‖xz − x∗
z‖ZT AZ and, if ZT GZ is a good preconditioner, then

‖xz − x∗
z‖ZT AZ = rT

z

(
ZT AZ

)−1
rz ≈ rT

z

(
ZT GZ

)−1
rz = rT

z gz.

Gould et al also show that the pcg algorithm may be rewritten without the need for
Z at all: this results in the ppcg algorithm, Algorithm 6.
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Algorithm 6 Choose an initial point x satisfying Bx = d and compute r = Ax − c.

Solve

[
G BT

B 0

] [
g

v

]
=

[
r

0

]
and set p = −g, y = v, r ← r − BTy. Repeat the

following steps until a convergence test is satisfied:

α = rTg/pT Ap,

x ← x + αp,

r+ = r + αAp,

Solve

[
G BT

B 0

] [
g+

v+

]
=

[
r+

0

]
,

δ = (r+)Tg+/rTg,

p ← −g+ + δp,

g ← g+,

r ← r+ −BTv+.

If y∗ is required, then one extra step must be carried out to compute it. However, in
our case, y∗ corresponds to the Lagrange multipliers which we are not interested in
calculating.

In transforming the pcg algorithm applied to Azzx
∗
z = cz into Algorithm 6, Gould

et al introduced the vectors x, r and g which satisfy x = Wx∗
w + Zxz, ZT r = rz and

g = Zgz. Hence our measure for termination becomes rTg, where g = Z
(
ZT GZ

)−1
ZT r.

Note the presence of a constraint preconditioner in the equivalent definition of g that is
used in Algorithm 6: [

G BT

B 0

] [
g

v

]
=

[
r

0

]
.

The following theorem gives the main properties of the preconditioned matrix P−1A :
the proof can be found in [20].

Theorem 7 Let

A =

[
A BT

B 0

]
and P =

[
G BT

B 0

]
,

where B ∈ R
k×l has full rank, G ∈ R

l×l is symmetric and P is nonsingular. Let the
columns of Z ∈ R

l×(l−k) span the nullspace of B, then P−1A has

• 2k eigenvalues at 1; and

• the remaining eigenvalues satisfy the generalized eigenvalue problem

ZT AZxz = λZT GZxz. (4.2)

Additionally, if G is nonsingular, then the eigenvalues defined by (4.2) interlace the
eigenvalues of G−1A.
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Keller et al. also show that the Krylov subspace

K(P−1A; r) = span(r,P−1Ar, (P−1A)2r, . . . )

will be of dimension at most l − k + 2, see [20].
Clearly, for our problem (2.6), A is positive definite and, hence, ZT AZ is positive

definite. It remains for us to show that we can choose a symmetric matrix G that satisfies
the following properties:

• ZT GZ is positive definite;

• the eigenvalues of P−1A are clustered; and

• we can efficiently carry out solves with P.

We will firstly consider setting G = diag(A). Since A is a block diagonal matrix with
the blocks consisting of mass matrices, G is guaranteed to be positive definite. From
Theorem 7, the non-unitary eigenvalues of P−1A will interlace the eigenvalues of G−1A.
The eigenvalues of G−1A satisfy

Mx = λdiag(M)x

and, since M is a mass matrix, the eigenvalues of G−1A will be bounded above and
below by constant values, see [29]. Therefore, the non-unitary eigenvalues of P−1A
are bounded above and below by constant values. As we refine our mesh, the rate of
convergence of the ppcg method (in exact arithmetic) will not deteriorate and, hence,
this preconditioner may be described as “optimal”. Unfortunately, it is not clear that
we can efficiently apply this preconditioner; in Section 5, we will show that such a
preconditioner may be prohibitive to use for small values of h. In the remainder of this
section, we will consider a constraint preconditioner that is both efficient to apply and
optimal.

It is straightforward to show that the columns of

Z =

[
M−1K

I

]

span the nullspace of
[
−M K

]
and, therefore,

ZT AZ = M + 2βKT M−1K.

Suppose that we set

PC1 =




0 0 −M
0 2βKTM−1K KT

−M K 0



 ,

then, if z =
[

zT
1 zT

2 zT
3

]T
and r =

[
rT
1 rT

2 rT
3

]T
, we may solve systems of the

form PC1z = r by carrying out the following steps:
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• Solve

Mz3 = −r1, (4.3)

• Solve

2βKTM−1Kz2 = r2 −KTz3, (4.4)

• Solve

Mz1 = Kz2 − r3. (4.5)

As noted in Section 3, systems of the form (4.3) and (4.5) may be solved efficiently
because M is a mass matrix. We will discuss the efficient (approximate) solution of
(4.4) at the end of this section.

Proposition 8 Let

A =




2βM 0 −M

0 M KT

−M K 0





and

PC1 =




0 0 −M
0 2βKTM−1K KT

−M K 0



 ,

where K, M ∈ R
n×n. The preconditioned matrix P−1

C1A has

• 2n eigenvalues at 1; and

• the remaining eigenvalues satisfy the generalized eigenvalue problem

(
1

2β

(
KT M−1K

)−1
M + I

)
x = λx. (4.6)

Proof From Theorem 7, P−1
C1A has

• 2n eigenvalues at 1; and

• the remaining eigenvalues satisfy

(
M + 2βKT M−1K

)
x = 2λβKT M−1Kx.

This is equivalent to the generalized eigenvalue problem (4.6). �

We can now use this general result to give solid bounds that are dependent both
on the PDE problem being considered and on the finite element discretization. In our
tests, we have discretized problem (1.1) using quadrilateral Q1 finite elements and, for
this choice, one can prove the following.
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Corollary 8A Let λ be an eigenvalue of P−1
C1A. Then λ satisfies either

λ = 1

or
1

2β
α1h

4 + 1 ≤ λ ≤ 1

2β
α2 + 1,

where α1 and α2 are positive constants independent of both h and β.

Proof From Proposition 8, λ = 1 or it satisfies the generalized eigenvalue problem

(
1

2β

(
KT M−1K

)−1
M + I

)
x = λx.

From the proof of Corollary 2A we obtain the desired result. �

Therefore, as we refine the mesh, the bounds in Corollary 8A again depend on h in
a multiplicative way only, so they remain bounded away from 0 as h→ 0 with a bound
independent of h. This suggests that this will be an optimal preconditioner for (2.6).
However, as the regularization parameter β decreases, the bounds will worsen and we
will expect the ppcg method to take more iterations to reach the same tolerance.

It remains for us to consider how we might solve (4.4). As in Section 3, instead of

exactly carrying out solves with K, we may approximate K by a matrix K̂. If our approx-
imation is good enough, then the spectral bounds will be close to those in Corollary 8A.
In the case of our PDE, Poisson’s equation, we will employ the same approximation as
that used within the preconditioner PD2 : a fixed number of multigrid V-cycles. This
gives us the preconditioner

PC2 =




0 0 −M̃

0 2βK̂TM−1K̂ KT

−M̃ K 0



 .

Here, again, K̂ denotes the approximation of the solves with K by two AMG V-cycles
applied by using a MATLAB interface to the HSL package HSL MI20 [7], and M̃ denotes
20 iterations of the Chebyshev semi-iterative method. PC2 is not exactly of the form
of a constraint preconditioner since M̃ is not exactly M . However, the bound (3.6)
indicates that M̃ is close to M and we see no deterioration in using ppcg in any of
our numerical results. Note the exact use of K and KT in the constraint blocks: this is
possible because we only require matrix-vector multiplications with these matrices.

At this point we would like to highlight some of the work of Biros and Ghattas [4] and
show how it differs to the approaches proposed in this section. Two of the preconditioners
that they consider take the form

P1 =




2βM 0 −M

0 0 KT

−M K 0




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and

P2 =




2βM 0 −M

0 0 K̂T

−M K̂ 0



 .

We note that the eigenvalues of P−1
1 A are the same as the eigenvalues of PC1A. The

solution of systems with coefficient matrix P1 requires the exact solution of the forward
problem Kz = r (and KTz = r). In comparison, the solution of systems with coefficient
matrix PC1 requires the exact solution of problems of the Mz = r. We can solve systems
of the form M̃z = r, where M̃ is a very good approximation to M, much more efficiently
than systems of the form K̂z = r, where K̂ is a very good approximation to K. Hence,
if we were to form a matrix P2 which is as efficient as to use as PC2 when carrying out
the preconditioning step, then we would expect to have to resort to using a different
iterative method because we will not expect the approximation K̂ to be close enough to
K for ppcg to be a reliable method.

5 Results

We illustrate our methods with five different examples. The first four examples are of
distributed control, and we compare the time to solve the system using ‘backslash’ in
MATLAB, minres with preconditioners PD2 and PD3, ppcg with preconditioner
PC2, and ppcg with preconditioner with G = diag(A). In the latter method, we fac-
torize the preconditioner once using MATLAB’s ldl function and then use this factor-
ization when carrying out the solves with the preconditioner. Example 13 is a boundary
control problem, and for this we compare the time to solve the system using ‘backslash’
in MATLAB and minres with preconditioners PD2 and PD3. We terminate minres

when the relative residual (in the 2-norm) has reach the desired tolerance. ppcg is
terminated when rT g has reached the desired tolerance relative to its initial value.

To choose the value of β, it is helpful to look at a graph of ‖u − û‖2 vs log(β).
For the system (2.6) with Dirichlet boundary conditions this is shown in Figure 2. In
Example 9 we will demonstrate how our algorithm works for different β – namely we
take β = 10−2, 0.5× 10−4 and 10−5.

In the tables of results that follow, the number of iterations are given in brackets after
the CPU time. All tests were done using MATLAB version 7.5.0 on a machine with a
dual processor AMD Opteron 244 (1.8GHz). All times are CPU times in seconds. We
used the HSL package HSL MI20 [7] (via a Matlab interface) as our AMG method. For
2D problems we use two V-cycles, two pre- and two post-smoothing steps of relaxed Ja-
cobi with the optimal relaxation parameter of ω = 8

9
in the 2D case (see [11, Section 2.5]),

and the relaxed Jacobi method is also used for the coarse solver (i.e., default control

components of HSL MI20 are used apart from the following choices: coarse solver=2,
damping= 8

9
, pre smoothing=2, post smoothing=2 and v iterations=2). In 3D, we

use two V-cycles, three pre- and three post-smoothing steps of unrelaxed Jacobi (ω = 1
in the above), which is optimal here, and unrelaxed Jacobi is also used for the coarse
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Figure 2: Graph of ‖u− û‖2 vs log(β)

solver (i.e., default control components of HSL MI20 are used apart from the follow-
ing choices: coarse solver=2, damping= 1, pre smoothing=3, post smoothing=3 and
v iterations=2).

Example 9 Let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
u,f

1

2
||u− û||2L2(Ω) + β||f ||2L2(Ω)

s.t. −∇2u = f in Ω (5.1)

u = û|∂Ω on ∂Ω (5.2)

where, in 2D,

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2
]2

0 otherwise

and, in 3D,

û =

{
(2x− 1)2(2y − 1)2(2z − 1)2 if (x, y, z) ∈ [0, 1

2
]3

0 otherwise

i.e. û is bi- or tri-quadratic (depending on whether m = 2 or 3) with a peak of unit
height at the origin and is zero outside [0, 1

2
]m.

A plot of the target solution, û, is given in Figure 3, and plots of the control, f ,
and the state, u, for the three values of β are given in Figure 5. In Tables 1 and 2, we
consider the 2D version of Example 9 with β = 10−2, with convergence tolerances 10−4

and 10−8, respectively. In Tables 4 and 5 we take β = 5×10−5, and in Tables 7 and 8 we
use β = 10−5, and solve to the same convergence tolerances. Note that these tolerances
are quite small – especially for larger h – given that the finite element method we use is
only accurate to O(h2), but we want to demonstrate the mesh-independent property of
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Figure 3: Graph of û for Example 9

our preconditioners. In practice one would take the accuracy of the discretization into
account when deciding the accuracy with which one solves the system (2.6).

We observe that the number of iterations required by our iterative methods do not
grow as we refine our mesh size with the minres preconditioners or when using ppcg

with PC2. The smaller β we take we require more iterations to converge to the same
tolerance, as expected from the theory. For h = 2−9, MATLAB’s backslash method runs
out of memory, as does its ldl function when factorizing the constraint preconditioner
with G = diag(A). The iteration count for the last preconditioner is good for this
example and, indeed, in all the examples considered, but its reliance on a direct method
for its implementation makes it infeasible for smaller values of h. It is interesting to
note that with the minres preconditioner, for the two smaller values of β, the number
of iterations drops significantly at h = 2−9, although we have no explanation for this
behaviour.

Here the geometric multigrid preconditioner (PD3) converges in around the same
number of iterations as the corresponding AMG preconditioner (PD2), but that the
AMG preconditioner is significantly the faster of the two. This is because our geomet-
ric multigrid is interpreted matlab code, whereas the AMG solver is public domain
software which is optimized fortran and connected to matlab through a MEX in-
terface. Note also that the minres and ppcg methods, whether using a geometric
or algebraic multigrid, are both close to linear complexity – the time taken to solve the
system increases linearly with the problem size.

In Tables 3, 6 and 9, we consider the 3D version of Example 9 with convergence
tolerances 10−4 and 10−8, for β = 10−2, 5 × 10−5 and 10−5 respectively. Again we see
much the same behaviour – here MATLAB’s backslash and ldl methods run out of
memory at h = 2−5. For this problem the geometric multigrid version of the minres

preconditioner is the most efficient, both in terms of the number of iterations and the
time taken – especially for small β. Again, the timings are close to scaling linearly with
the problem size.

In Figure 4, we compare the number of iterations needed to solve the 2D problem by
both the minres method with preconditioner PD3 (Figure 4(a)) and the ppcg method
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with preconditioner PC2 (Figure 4(b)) for the tolerance 10−4 and different values of β.
For β = 10−2, 5 × 10−5 and 10−5, which are the values considered above, we see the
number of iterations does not grow as h decreases. For β = 5 × 10−8 we see a big
increase in the number of iterations needed to converge for both methods, however even
this seems to tend to a constant value – although one which is probably too high for the
algorithm to be practical. For fixed values of h, decreasing β results in an increasing
number of iterations.

10
−2

10
−1

0

50

100

150

200

250

h

Ite
ra

tio
ns

 

 
β = 10−2

β = 5x10−5

β = 10−5

β = 5x10−8

(a) minres

10
−2

10
−1

10

20

30

40

50

60

70

h

Ite
ra

tio
ns

 

 

β = 10−2

β = 5x10−5

β = 10−5

β = 5x10−8

(b) ppcg

Figure 4: Number of iterations for minres with PD3 and ppcg with PC2 to solve
Example 9 in 2D for β = 10−2, 5× 10−5, 10−5, and 5× 10−8

Example 10 Again, let Ω = [0, 1]m, where m = 2, 3, and consider the problem

min
u,f

1

2
||u− û||2L2(Ω) + β||f ||2L2(Ω)

s.t. −∇2u = f in Ω (5.3)

u = 0 on ∂Ω (5.4)

where, in 2D,
û = exp

(
−64((x− 0.5)2 + (y − 0.5)2)

)
,

and in 3D,
û = exp

(
−64((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

)
,

i.e. û is a Gaussian, with peak of unit height at [1
2
, 1

2
].

For this and the following two examples, we take β = 5 × 10−5. A plot of û is
given in Figure 6. Tables 10 and 11 show our findings for Example 10 which is another
Dirichlet control problem – this time with a different cost functional. Here we see similar
behaviour to that in Example 9, which demonstrates that our method appears not to
depend on û.
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Figure 5: Plots of the state, u, and the control, f for β = 10−2, 0.5× 10−4 and 10−5
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Figure 6: Graph of û for Example 10

Example 11 Let Ω = [0, 1]2 and consider the Neumann problem

min
u,f

1

2
||u− û||2L2(Ω) + β||f ||2L2(Ω)

s.t. −∇2u = f in Ω (5.5)

∂u

∂n
= 0 on ∂Ω (5.6)

where

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2
]2

0 otherwise
.

This is a distributed control problem with a Neumann boundary condition, therefore
the stiffness matrix K is singular. We comment that for simple forward solution of the
Neumann problem, a singular multigrid cycle is possible [16, Chapter 12], whereas in the
control problem we require a definite preconditioner, hence a singular multigrid cycle
is not usable. This is, however, not a difficulty, as we simply pin one of the nodes to
remove the singularity; this gives us, in effect, a mixed boundary condition problem with
a Dirichlet boundary condition at just one point. In this case we have made u vanish
at (1, 1) (which is consistent with the objective function). Tables 12 and 13 shows our
results in this case. In comparison with the Dirichlet results our methods are slightly
less effective here – the iteration count and, correspondingly, the time taken are both
larger. However, the overall behaviour is similar - we still get mesh size independent
convergence and nearly linear complexity.

Example 12 Let Ω = [0, 1]2 and consider the problem

min
u,f

1

2
||u− û||2L2(Ω) + β||f ||2L2(Ω)
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s.t. −∇2u = f in Ω (5.7)

u = û|∂Ω on ∂Ω1 and
∂u

∂n
= 0 on ∂Ω2 (5.8)

where

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2
]2

0 otherwise

and ∂Ω1 = (0× [0, 1)) ∪ ((0, 1]× 0) and ∂Ω2 = (1× (0, 1]) ∪ ([0, 1)× 1).

Example 12 is a distributed control problem with mixed boundary conditions: half
of the boundary satisfies a Dirichlet boundary condition while the other half satisfies a
Neumann boundary condition. As we might expect from the nature of the problem, the
results in Tables 14 and 15 lie somewhere in between those of Examples 9 and 10 and
those of Example 11. The solution timings remain optimal.

Example 13 Let Ω = [0, 1]2 and consider the boundary control problem

min
u,f

1

2
||u− û||2L2(Ω) + β||g||2L2(∂Ω)

s.t. −∇2u = 0 in Ω (5.9)

∂u

∂n
= g on ∂Ω (5.10)

where

û =

{
(2x− 1)2(2y − 1)2 if (x, y) ∈ [0, 1

2
]2

0 otherwise
.

This is example of boundary control with a Neumann boundary condition. In this
case the (1,3) block in 2.6 is not square, so the constraint preconditioners as presented
here cannot be applied without further modification. The block diagonal preconditioners
PB

D2 and PB
D3 can be applied, and we give the results for solving this problem (using a

value of β = 10−2) in Table 16. Here, again we see we have mesh size independent
convergence and optimal solution timings. We note that the iteration numbers for
the preconditioner using algebraic multigrid PD3 are not as uniform as when we use a
geometric multigrid routine PD2, although we still get mesh-independent convergence.
It is possible that a different choice of parameters would alleviate this effect, however
our philosophy here is to use AMG essentially as a ’black box’ method and we present
the results with a minimal adjustment of the default parameters.

6 Conclusion

We have presented optimal preconditioners for distributed and boundary control prob-
lems. These preconditioners are conceived of in block form and include a small fixed
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number of multigrid cycles for particular blocks. The preconditioners are employed with
appropriate Krylov subspace methods for symmetric linear systems, for which we have
reliable convergence bounds. We have demonstrated that our preconditioners work ef-
fectively with regularization parameter 5 × 10−5 (and also β = 10−2 and 10−5 for our
first example problem) although the approximations become less valid as β approaches
zero they still give mesh size independent convergence down to about β = 10−6, which is
comparable with the discretization error in our PDEs for the smallest grid size employed
here.

Only a handful of papers in the literature consider the saddle-point structure of
the matrices when solving problems of this type: we have used this structure to create
efficient algorithms. A large amount of work has been done on solving saddle point
systems – e.g. see the survey paper by Benzi, Golub and Liesen [3] – and on block
preconditioners [11]. The block preconditioning approach allows the incorporation of
powerful techniques such as multigrid.

Two classes of preconditioners for the simplest case of PDE, namely the Poisson
equation, have been proposed, but we believe our methods are more general than that.
The availability of a good preconditioner for a forward and adjoint PDE operator should
allow reasonably straightforward generalizations of the block diagonal preconditioning
idea; in further research on incompressible flow control this does appear to be the case.
It is less obvious that the constraint preconditioning ideas presented here are so easily
generalizable to other PDE problems, though we are having success with related ap-
proaches for incompressible flow control. This work is ongoing and the results will be
presented in a subsequent paper.

Our numerical results are for idealized examples – in practice there are a number of
modifications which lead to systems with similar algebraic structure. For example, one
could consider any Hilbert space norms in place of the L2(Ω) norms in (1.1) and the (1,1)
and (2,2) blocks in (2.6) would be the corresponding Gram matrices: our techniques with
appropriate modification should handle this.

In some cases the blocks in the system (2.8) are not all square. We have included
a boundary control example to demonstrate how the block diagonal preconditioning
method can be applied in such cases. The constraint preconditioning methods are not
immediately applicable for this class of problem but we may be able to apply related
approaches that are similar to those we are working on for incompressible flow control.

One may only want to control u on part of Ω, or have a few point measurements
to match – in this case the (2,2) block in (2.6) is singular. It is not clear at this stage
how our block diagonal preconditioning method could be applied but there is scope for
the constraint preconditioning method because these do not assume that A in (2.7) is
non-singular.

Another common generalization which is relevant in many practical problems would
be the inclusion of bound constraints. Many methods for handling these lead to systems
of a similar algebraic structure to those we consider here (for example, see [12]): we
foresee that our methods should also be applicable for such problems.
Acknowledgement We thank Eldad Haber and an anonymous referee for their careful
reading and insightful comments which have greatly improved the content of this paper.
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Table 1: Comparison of times and iterations to solve Example 9 in 2D with β = 10−2

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.13 (7) 0.023 (7) 0.008 (2) 0.003 (5)
2−3 147 0.002 0.15 (7) 0.028 (7) 0.009 (1) 0.013 (5)
2−4 675 0.009 0.19 (7) 0.044 (7) 0.015 (1) 0.087 (5)
2−5 2883 0.062 0.34 (7) 0.18 (7) 0.041 (1) 0.50 (4)
2−6 11907 0.37 1.1 (7) 0.51 (7) 0.18 (1) 3.56 (4)
2−7 48387 2.22 4.1 (7) 2.1 (7) 1.11 (2) 24.2 (4)
2−8 195075 15.7 18.9 (7) 10.3 (7) 5.25 (2) 136 (4)
2−9 783363 — 92.1 (7) 64.2 (9) 26.3 (2) —

Table 2: Comparison of times and iterations to solve Example 9 in 2D with β = 10−2

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.15 (10) 0.032 (10) 0.016 (3) 0.004 (6)
2−3 147 0.002 0.17 (10) 0.038 (10) 0.018 (3) 0.022 (11)
2−4 675 0.009 0.26 (12) 0.071 (12) 0.029 (3) 0.16 (11)
2−5 2883 0.062 0.50 (12) 0.18 (12) 0.075 (3) 1.08 (11)
2−6 11907 0.37 1.67 (12) 0.80 (12) 0.34 (3) 6.99 (10)
2−7 48387 2.22 6.60 (12) 3.95 (14) 1.44 (3) 46.1 (10)
2−8 195075 15.7 30.9 (12) 19.0 (14) 6.77 (3) 247 (10)
2−9 783363 — 134 (11) 88.9 (13) 41.6 (4) —
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Table 3: Comparison of times and iterations to solve Example 9 in 3D with β = 10−2

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 and 10−8 for
MATLAB’s backslash method, minres with preconditioners PD2, PD3, ppcg with
preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

Convergence tolerance = 10−4

2−2 81 0.001 0.13 (5) 0.034 (5) 0.01 (1) 0.01 (6)
2−3 1029 0.013 0.20 (5) 0.085 (5) 0.04 (1) 0.39 (6)
2−4 10125 25.5 1.16 (5) 1.34 (5) 0.68 (1) 17.4 (5)
2−5 89373 — 13.9 (7) 15.7 (5) 8.11 (1) —

Convergence tolerance = 10−8

2−2 81 0.001 0.14 (8) 0.031 (8) 0.02 (3) 0.01 (6)
2−3 1029 0.13 0.28 (10) 0.14 (10) 0.07 (3) 0.75 (6)
2−4 10125 25.5 2.04 (10) 2.30 (10) 1.12 (3) 34.4 (5)
2−5 89373 — 19.2 (10) 26.7 (10) 13.1 (3) —

Table 4: Comparison of times and iterations to solve Example 9 in 2D with β = 5×10−5

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.16 (13) 0.041 (13) 0.019 (5) 0.003 (5)
2−3 147 0.002 0.23 (18) 0.065 (18) 0.023 (5) 0.008 (5)
2−4 675 0.009 0.34 (19) 0.11 (19) 0.038 (5) 0.083 (5)
2−5 2883 0.063 0.73 (19) 0.28 (19) 0.11 (5) 0.52 (5)
2−6 11907 0.43 2.70 (20) 1.28 (20) 0.41 (4) 3.55 (4)
2−7 48387 2.45 11.1 (21) 5.69 (21) 1.74 (4) 22.4 (4)
2−8 195075 14.4 52.2 (21) 27.9 (21) 8.19 (4) 117 (4)
2−9 783363 — 155 (13) 90.4 (13) 48.4 (5) —
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Table 5: Comparison of times and iterations to solve Example 9 in 2D with β = 5×10−5

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.17 (16) 0.044 (14) 0.028 (7) 0.003 (6)
2−3 147 0.002 0.33 (30) 0.10 (30) 0.039 (9) 0.013 (11)
2−4 675 0.009 0.51 (32) 0.17 (32) 0.063 (9) 0.15 (11)
2−5 2883 0.063 1.21 (34) 0.48 (34) 0.15 (8) 1.08 (11)
2−6 11907 0.43 4.40 (34) 2.12 (34) 0.71 (8) 6.93 (10)
2−7 48387 2.45 17.6 (34) 9.03 (34) 3.03 (8) 43.4 (10)
2−8 195075 14.4 88.0 (36) 45.3 (34) 14.2 (8) 224 (10)
2−9 783363 — 282 (24) 156 (24) 79.6 (9) —

Table 6: Comparison of times and iterations to solve Example 9 in 3D with β = 5×10−5

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 and 10−8 for
MATLAB’s backslash method, minres with preconditioners PD2, PD3, ppcg with
preconditioner PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

Convergence tolerance = 10−4

2−2 81 0.001 0.15 (10) 0.15 (11) 0.02 (5) 0.01 (6)
2−3 1029 0.13 0.34 (14) 0.48 (23) 0.10 (5) 0.18 (6)
2−4 10125 18.9 2.74 (14) 4.36 (23) 1.58 (5) 18.8 (5)
2−5 89373 — 26.5 (14) 44.1 (24) 15.7 (4) —

Convergence tolerance = 10−8

2−2 81 0.001 0.053 (12) 0.060 (17) 0.03 (7) 0.01 (10)
2−3 1029 0.13 0.25 (18) 0.45 (31) 0.15 (8) 0.34 (14)
2−4 10125 18.9 3.76 (18) 7.29 (37) 2.21 (8) 36.4 (13)
2−5 89373 — 44.0 (18) 85.3 (37) 25.6 (8) —
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Table 7: Comparison of times and iterations to solve Example 9 in 2D with β = 10−5

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.16 (13) 0.041 (13) 0.027 (7) 0.003 (5)
2−3 147 0.002 0.26 (23) 0.082 (23) 0.033 (8) 0.008 (5)
2−4 675 0.009 0.42 (25) 0.14 (25) 0.061 (9) 0.040 (5)
2−5 2883 0.072 0.91 (25) 0.36 (25) 0.17 (9) 0.46 (4)
2−6 11907 0.42 3.29 (25) 1.59 (25) 0.70 (8) 3.56 (4)
2−7 48387 2.53 13.1 (25) 6.74 (25) 2.40 (6) 22.4 (4)
2−8 195075 14.1 61.7 (25) 33.1 (25) 11.1 (6) 117 (4)
2−9 783363 — 201 (17) 114 (17) 70.8 (8) —

Table 8: Comparison of times and iterations to solve Example 9 in 2D β = 10−5 for
different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0002 0.17 (16) 0.050 (16) 0.027 (7) 0.003 (6)
2−3 147 0.002 0.35 (35) 0.12 (36) 0.052 (13) 0.008 (11)
2−4 675 0.009 0.61 (40) 0.22 (40) 0.092 (14) 0.083 (11)
2−5 2883 0.072 1.39 (40) 0.57 (40) 0.24 (14) 0.52 (11)
2−6 11907 0.42 5.11 (40) 2.4 (40) 1.08 (13) 3.55 (10)
2−7 48387 2.53 21.06 (41) 10.8 (41) 4.56 (13) 22.4 (10)
2−8 195075 14.1 102 (42) 53.8 (42) 21.6 (13) 117 (10)
2−9 783363 — 303 (26) 167 (26) 108 (13) —
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Table 9: Comparison of times and iterations to solve Example 9 in 3D β = 10−5 for differ-
ent mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 and 10−8 for MATLAB’s
backslash method, minres with preconditioners PD2, PD3, ppcg with preconditioner
PC2, and ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

Convergence tolerance = 10−4

2−2 81 0.001 0.16 (10) 0.053 (12) 0.03 (7) 0.01 (6)
2−3 1029 0.13 0.38 (16) 0.35 (25) 0.14 (8) 0.18 (6)
2−4 10125 18.5 3.12 (16) 4.86 (24) 2.67 (10) 13.0 (5)
2−5 89373 — 29.6 (16) 61.3 (26) 25.5 (8) —

Convergence tolerance = 10−8

2−2 81 0.001 0.16 (11) 0.071 (20) 0.05 (12) 0.01 (6)
2−3 1029 0.13 0.55 (27) 0.51 (39) 0.25 (16) 0.34 (6)
2−4 10125 18.5 5.17 (28) 9.07 (46) 4.14 (17) 26.7 (5)
2−5 89373 — 52.4 (29) 106 (47) 45.6 (16) —

Table 10: Comparison of times and iterations to solve Example 10 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.13 (7) 0.024 (7) 0.01 (2) 0.003 (3)
2−3 147 0.002 0.19 (13) 0.047 (13) 0.02 (3) 0.006 (3)
2−4 675 0.009 0.27 (13) 0.076 (13) 0.03 (3) 0.048 (2)
2−5 2883 0.07 0.54 (13) 0.19 (13) 0.07 (3) 0.34 (2)
2−6 11907 0.43 1.80 (13) 0.86 (13) 0.35 (3) 1.83 (1)
2−7 48387 2.36 7.15 (13) 3.68 (13) 1.47 (3) 11.9 (1)
2−8 195075 14.3 33.3 (13) 17.8 (13) 8.26 (4) 117 (4)
2−9 783363 — 153 (13) 92.8 (13) 33.8 (3) —
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Table 11: Comparison of times and iterations to solve Example 10 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 27 0.0003 0.13 (8) 0.027 (8) 0.02 (3) 0.003 (3)
2−3 147 0.002 0.24 (20) 0.071 (20) 0.02 (4) 0.01 (7)
2−4 675 0.009 0.35 (20) 0.11 (20) 0.04 (4) 0.07 (4)
2−5 2883 0.07 0.83 (22) 0.31 (22) 0.12 (6) 0.42 (3)
2−6 11907 0.43 2.88 (22) 1.51 (24) 0.57 (6) 2.40 (2)
2−7 48387 2.36 12.5 (24) 6.54 (24) 2.38 (6) 15.3 (2)
2−8 195075 14.3 59.5 (24) 31.5 (24) 14.1 (8) 224 (10)
2−9 783363 — 280 (24) 158 (24) 55.6 (6) —

Table 12: Comparison of times and iterations to solve Example 11 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 72 0.0008 0.28 (29) 0.093 (29) 0.02 (4) 0.005 (4)
2−3 240 0.003 0.39 (35) 0.13 (35) 0.02 (4) 0.008 (2)
2−4 864 0.01 0.62 (35) 0.22 (35) 0.04 (4) 0.07 (2)
2−5 3264 0.08 1.50 (37) 0.58 (37) 0.10 (4) 0.33 (1)
2−6 12672 0.58 5.08 (37) 0.31 (47) 0.36 (3) 2.03 (1)
2−7 49920 3.77 22.7 (39) 12.8 (43) 1.61 (3) 11.5 (1)
2−8 198144 27.5 100 (41) 57.7 (45) 6.82 (3) 65.4 (1)
2−9 789504 — 421 (43) 230 (45) 27.3 (3) —

Table 13: Comparison of times and iterations to solve Example 11 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 72 0.0008 0.36 (42) 0.13 (42) 0.04 (11) 0.007 (9)
2−3 240 0.003 0.61 (60) 0.22 (58) 0.05 (10) 0.02 (7)
2−4 864 0.01 1.05 (64) 0.39 (64) 0.08 (11) 0.10 (4)
2−5 3264 0.08 2.48 (64) 1.07 (68) 0.25 (12) 0.54 (3)
2−6 12672 0.58 8.67 (64) 5.22 (78) 0.92 (10) 2.68 (2)
2−7 49920 3.77 37.4 (65) 22.2 (76) 4.43 (11) 14.9 (2)
2−8 198144 27.5 201 (83) 103 (82) 18.7 (11) 65.4 (1)
2−9 789504 — 813 (84) 433 (86) 74.7 (11) —
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Table 14: Comparison of times and iterations to solve Example 12 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 48 0.0005 0.19 (19) 0.06 (19) 0.03 (7) 0.005 (6)
2−3 192 0.002 0.27 (23) 0.087 (23) 0.04 (8) 0.01 (5)
2−4 768 0.01 0.44 (25) 0.15 (25) 0.06 (8) 0.10 (5)
2−5 3072 0.07 0.98 (25) 0.38 (25) 0.15 (7) 0.57 (4)
2−6 12288 0.40 3.64 (27) 1.65 (25) 0.51 (5) 3.73 (4)
2−7 49152 2.43 15.7 (27) 8.19 (27) 2.39 (5) 22.2 (4)
2−8 196608 14.8 66.5 (27) 37.5 (29) 9.68 (5) 120 (4)
2−9 786432 — 278 (28) 151 (29) 51.4 (7) —

Table 15: Comparison of times and iterations to solve Example 12 in 2D for different
mesh sizes (h) (with 3n unknowns) to a tolerance of 10−8 for MATLAB’s backslash
method, minres with preconditioners PD2, PD3, ppcg with preconditioner PC2, and
ppcg with constraint preconditioner containing G = diag(A).

h
3n backslash minres minres ppcg ppcg

(PD2) (PD3) (PC2) (G = diag(A))

2−2 48 0.0005 0.24 (28) 0.088 (28) 0.027 (7) 0.003 (6)
2−3 192 0.002 0.39 (38) 0.14 (40) 0.052 (13) 0.01 (11)
2−4 768 0.01 0.70 (44) 0.27 (46) 0.092 (14) 0.07 (11)
2−5 3072 0.07 1.65 (44) 0.68 (46) 0.24 (14) 0.99 (11)
2−6 12288 0.40 5.75 (44) 2.95 (46) 1.08 (13) 7.01 (10)
2−7 49152 2.43 25.2 (44) 13.6 (46) 4.56 (13) 43.9 (10)
2−8 196608 14.8 106 (44) 58.6 (46) 21.6 (13) 224 (10)
2−9 786432 — 432 (44) 246 (48) 108 (13) —

Table 16: Comparison of times and iterations to solve Example 13 in 2D β = 10−2

for different mesh sizes (h) (with 3n unknowns) to a tolerance of 10−4 and 10−8 for
MATLAB’s backslash method and minres with preconditioners PB

D2, PB
D3.

h
size(A) backslash minres minres minres minres

(PB
D2) (PB

D3) (PB
D2) (PB

D3)
Conv. tolerance = 10−4 Conv. tolerance = 10−8

2−2 66 0.0006 0.13 (15) 0.044 (7) 0.20 (28) 0.032 (8)
2−3 194 0.005 0.15 (15) 0.034 (7) 0.26 (26) 0.038 (8)
2−4 642 0.011 0.24 (13) 0.085 (13) 0.42 (26) 0.09 (14)
2−5 2306 0.078 0.48 (13) 0.18 (13) 0.96 (26) 0.20 (14)
2−6 8706 0.70 1.62 (13) 1.12 (21) 2.99 (24) 1.26 (23)
2−7 33794 6.73 6.54 (13) 6.99 (31) 11.0 (22) 7.32 (32)
2−8 133122 69.1 27.2 (13) 13.7 (13) 45.8 (22) 14.9 (14)
2−9 528386 — 109 (13) 103 (27) 183 (22) 109 (28)


