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Additive Schwarz with Variable Weights

Chen Greif1, Tyrone Rees2, and Daniel B. Szyld3

1 Introduction and Motivation

We consider the numerical solution of nonsymmetric linear systems of equations of
the form

Au = f, (1)

which arise, e.g., from the discretization of elliptic partial differential equations
(PDEs). In practical problems, the number of mesh points is very large, and thus also
the number of unknowns in (1), and the resulting matrix is large and sparse. In these
circumstances, iterative methods are often used, due to their ability to deal more
effectively with a high degree of sparsity. A popular iterative method is theGener-
alized Minimum Residual iterative scheme, or GMRES [5], [6], [7]. This method is
based on minimizing at thekth iterate the residual within the shifted Krylov sub-
space

x0+K
k(A,r0),

wherex0 is an initial vector,r0 = b−Ax0 is the initial residual, and

K
k(A,r0) = span(r0,Ar0, . . . ,A

k−1r0).

The performance of GMRES is often (though not exclusively) determined by the
structure of the eigenvalues of the matrixA. Loosely speaking, if the eigenvalues
are strongly clustered, then GMRES is expected to converge fast. To accomplish
a clustering effect, apreconditioner M is typically used: instead of solving (1) we
solve, say,

AMũ = f,

whereM is constructed so thatAM has a more favorable eigenstructure thanA. Upon
incorporating a preconditioner, the Krylov subspace changes accordingly: the matrix
associated with the subspace will now beAM, and the notion of preconditioned
residual arises.

When numerically solving boundary value problems arising from elliptic PDEs,
a common way of dealing with the large number of degrees of freedom when the
mesh is fine, is to break the problem down into a number of more manageable sub-
problems; this amounts to the technique ofdomain decomposition; see, e.g., [8]. We
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can then incorporate preconditioners that work on the subdomains into the general
iterative framework.

The additive Schwarz preconditioner [8] and its restrictedvariant (RAS) [2], can
be written in the form

M =
t

∑
i=1

R̃iA
−1
i RT

i ,

wheret is usually the number of subdomains,R̃i is a restriction operator,RT
i is a

prolongation operator, andAi = RT
i ARi is the restriction ofA onto theith subdomain.

We propose in this paper to use a weighted additive or restricted additive Schwarz
preconditioner of the form

M(k) =
t

∑
i=1

α(k)
i R̃iA

−1
i RT

i , (2)

where the weightsα(k)
i are chosen at thekth iteration of GMRES so as to minimize

the preconditioned residual, cf. [1]. We point out that thisis completely different
than the approach in [3], where the weights are zeros and ones, and the emphasis is
on asynchronous iterations.

Incorporating weights which change from one iteration to the next is significant
and we can no longer talk about a standard iterative method with a single precondi-
tioner. Instead, the proposed preconditioner (2) fits into the class of preconditioners
we recently described in [4], where one can apply more than one preconditioner si-
multaneously. This is called multipreconditioned GMRES (MPGMRES). Our main
goal in this paper is to show that this methodology is particularly effective in the
domain decomposition paradigm, since we can associate eachsubdomain with a
specific, unique preconditioner. We have a rather large number of preconditioners,
and domain decomposition naturally lends itself to the approach of multiprecondi-
tioned iterations.

An outline of the remainder of this paper follows. In Section2 we briefly describe
Additive and Restricted Additive Schwarz Preconditioning. In Section 3 we describe
the MPGMRES algorithm. We address the question of computational cost of the
algorithm and characterize the generalized Krylov subspace and its unique features
in domain decomposition setting. In Section 4 we provide some details on numerical
experiments. Finally, in Section 5 we make some concluding remarks.

2 Additive and Restricted Additive Schwarz Preconditioning

Suppose we divide the domainΩ containingN nodes intot subdomainsΩ1, . . . ,Ωt ,
which overlap by bands of widthδ nodes. Suppose each subdomain consists of
mi ≪ N nodes, which we denote as the entries of the setIi. We can define an exten-
sion matrixRT

i,δ ∈ R
N×mi which extends vectorsx(i) ∈ R

mi to R
N by
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(RT
i,δ x(i))k =

{
(x(i))k if k ∈ Ii

0 otherwise.

The transpose of this matrix defines a restriction operatorRi which restricts vec-
tors inRN to the subdomainΩi. The restriction of the discretized PDE,A, to theith
subdomain is given byRi,δ ART

i,δ .
We can now define theadditive Schwarz preconditioner as

M :=
t

∑
i=1

RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ =

t

∑
i=1

Mi,

whereMi := RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ .

Comment: Note that, by the definition ofRT
i,δ , there exists some permutationΠi

such that, for allx,
ΠiMix = (×·· ·×0· · · · · ·0)T .

i.e., the vector resulting from multiplication by theMi (regardless of the permuta-
tion) will be sparse.

We can also define arestricted additive Schwarz preconditioner [4] by

MRAS :=
t

∑
i=1

RT
i,0(Ri,δ ART

i,δ )
−1Ri,δ =

t

∑
i=1

MRAS
i ,

i.e., the preconditioning operation is as for additive Schwarz, but the final extension
operator is replaced by that which would be applied if we didn’t have any overlap
in the domains. This has been shown to be more efficient than the standard additive
Schwarz implementation.

3 The MPGMRES Algorithm for Domain Decomposition
Problems

MPGMRES [4] is a minimial residual algorithm for solving a linear system of
equations which allows the user to apply more than one preconditioner simulta-
neously. The multipreconditioned search directions are all combined into a gener-
alized Krylov subspace, and the minimization procedure requires solving a linear
least-squares problem in every iteration. As opposed to standard GMRES, here the
subspace grows quickly due to the presence of multiple search directions, and the
projection can be expressed in terms of a block upper Hessenberg matrix. It has
been shown in [4] that a so-calledselective MPGMRES algorithm which chooses a
subset oft search directions, performs quite well on a variety of test problems. See
Algorithms 1–3.
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Algorithm 1 MPGMRES
calls Algorithm 2 or Algorithm 3
Choosex0, r0 = b−A x0
β = ‖r0‖, v1 = r0/β
Z1 = completeMPD(r0)
for k = 1, . . ., until convergencedo

W = A Zk
for j = 1, . . . ,k do

H j,k = (Vj)
TW

W =W −VjH j,k
end for
W =Vk+1Hk+1,k (skinny QR factorization)
yk = argmin‖β e1− H̃ky‖2
xk = x0+[Z1 · · ·Zk]yk

Zk+1 =

{
completeMPD(Vk+1) for complete MPGMRES

selectiveMPD(Vk+1) for selective MPGMRES
end for

Algorithm 2 Subroutine: complete multipreconditioned directions
function Z = completeMPD(V )
Z = [P−1

1 V · · ·P−1
t V ]

end function

Algorithm 3 Subroutine: selective multipreconditioning directions
function Z = selectiveMPD(V )
v =V 1
Z = [P−1

1 v · · ·P−1
t v]

end function

3.1 Computational Work

In the selective algorithm we needt matrix-vector products andt preconditioner
solves per iteration, as opposed to one for both in the standard preconditioned GM-
RES algorithm. The main other source for work is the inner products. Note that ev-
ery entry in the Hessenberg matrixHk is the result of an inner product, and these are
the only inner products in the algorithm. MPGMRES thereforeneeds(2k−1) t2

2 + 3
2t

inner products at thekth step [4, Table 4.1].
Significantly, in the domain decomposition setting, due to the nature of the stan-

dard Additive Schwarz preconditioner, the preconditioning step isexactly the same
cost when using both selective MPGMRES and standard preconditioned GMRES.
Moreover, since the vectors we obtain by applying the preconditioners are sparse,
the cost of the matrix-vector products will also be of the same order as in the stan-
dard GMRES algorithm – the only extra expense coming from theoverlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vectorproduct would be
identical here too.
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The extra cost in the MPGMRES approach therefore lies completely with the
inner products. The vectors here are, in general, dense, as we lose sparsity ofw in
the modified Gram-Schmidt step.

3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multi-Krylov subspace

K
k

M1,...,Mt
(A,r0),

where

K
1

M1,...,Mt
(A,r0) =span{M1Ar0, . . . ,MtAr0},

K
2

M1,...,Mt
(A,r0) =span{M1Ar0, . . . ,MtAr0,

M1AM1r0, . . . ,M1AMtr0, . . .

. . . ,MtAM1r0, . . . ,Mt AMtr0},

etc. Usually the size of this space grows exponentially witheach iteration. However,
in a domain decomposition context the situation is not quiteso dire, as we see below.

First, note that each of the preconditioners are projectionmatrices, and so

MiAMi = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

i,δ (Ri,δ ART
i,δ )

−1Ri,δ

= Mi.

Hence applyingMi to AMi does nothing to enrich the space.
Next, note that

MiAM j = RT
i,δ (Ri,δ ART

i,δ )
−1Ri,δ ART

j,δ (R j,δ ART
j,δ )

−1R j,δ . (3)

In the middle of this expression is the cross-termRi,δ ART
j,δ . Now note thatRi,δ ART

j,δ =

0 ⇐⇒ Ii∩I j = /0. Provided the overlapδ isn’t big enough to touch two subdomains,
this implies that only the contributions from sub-domains that touch each other add
anything to the multi-Krylov subspace. This is the number ofedges + corners in
2D (a maximum of 8 for a tensor product-based grid), and theseplus the number of
faces in 3D (a max of 26 for a tensor product-based grid).

Altogether, this means that

dim(K k
M1,...,Mt

(A,r0)) = (kc+1)t,

wherec is a constant indepdendent ofk, t. Therefore, even in the complete MPGM-
RES case, we only havelinear growth in the search space.
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4 Numerical Experiments

If we split the domain into a small number of subdomains, i.e., we have a high
proportion of subdomains lying on an edge, then there may notbe much difference
between the spaces minimized over by the selective algorithm and the complete
algorithm.

For example, consider the special case where we split the domain Ω into two
subdomains,Ω1 andΩ2 such thatΩ1 ∪Ω2 = Ω . Then it can be shown [4, Sec-
tion 5.2.1] that, provided the subdomain solves are exact, the space over which we
minimize in both selective and compelete MPGMRES are identical.
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(a) 2D, h = {2−3,2−4,2−5,2−6,2−7,2−8}
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(b) 3D, h = {2−3,2−42−5}

Fig. 1 Convergence curves for two subdomains in 2D and 3D.

For large numbers of subdomains, the work involved in the inner products and
vector updates becomes significant, even though the work in actually applying the
preconditioners is essentially the same as for the usual AS and RAS methods.
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(a) 2D,{4,16,32,64} subdomains
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(b) 3D,{4,64} subdomains

Fig. 2 Convergence curves for multiple subdomains in 2D and 3D.



Additive Schwarz with Variable Weights 7

Although the iteration counts are impressive for a large number of subdomains
(with, e.g., 94 iterations for GMRES with an additive Schwarz preconditioner be-
ing reduced to 18 iterations with selective MPGMRES), the timings in this case are
not yet competitive. This is due to the fact that we are using aproof-of-concept
MATLAB code. We are confident, however, that a state-of-the-art implementation
will yield great computational savings manifested in a reduced computational run-
ning time, due to the highly parallelizable nature of the proposed method. Recall
that the only extra work between the methods is in calculating the inner products
and the subsequent vector update in the Gram-Schmidt process.

5 Conclusions

We have presented an algorithm that applies Additive Schwarz with Variable Weights.
The approach is incorporated as a set of multiple preconditioners into MPGMRES.
Domain decomposition has a few unique features that make ourapproach partic-
ularly attractive. First, the preconditioning step entails the same cost when using
both selective MPGMRES and standard preconditioned GMRES,and the cost of
the matrix-vector products is also of the same order as in thestandard GMRES al-
gorithm. Secondly, because there is a very low degree of overlap between nodes in
the different subdomains, the growth in the search space forcomplete MPGMRES
is only linear, i.e., very modest. This is in contrast to the situation for other applica-
tions, where the search space for complete MPGMRES grows exponentially and one
has to settle for a selective algorithm. Domain decomposition is thus unique in that
it allows for maintaining a richer subspace where the residual is to be minimized.
For this reason, we believe that the approach presented in this paper is promising.

Future work will focus on a parallel implementation with a significant number
of subdomains, which are themselves large in size. In such a setting the cost of the
inner products and vector-updates would take a small proportion of the total time
and this will allow us to further assess and test the method ina large-scale setting.

Acknowledgments. The work of the first author was supported in part by the Nat-
ural Sciences and Engineering Research Council (NSERC), and that of the third
author in part by the U.S. National Science Foundation undergrant DMS-1115520.

References

1. Ayuso de Dios, B., Baker, A.T., Vassilevsky, P.S.: A combined preconditioning strategy for
nonsymmetric systems (2012). Arxiv:1208.4544v1

2. Cai, X.C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM Journal on Scientific Computing21, 792 (1999)

3. Frommer, A., Schwandt, H., Szyld, D.B.: Asynchronous weighted additive Schwarz methods.
Electronic Transactions on Numerical Analysis5, 48–61 (1997)



8 Chen Greif, Tyrone Rees, and Daniel B. Szyld

4. Greif, C., Rees, T., Szyld, D.B.: MPGMRES: a generalized minimum residual method with
multiple preconditioners. Tech. Rep. 11-12-23, Department of Mathematics, Temple University
(2011). Revised September 2012. Also available as Technical Report TR-2011-12, Department
of Computer Science, University of British Columbia

5. Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia (2003)
6. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems. SIAM Journal on Scientific and Statistical Computing7, 856–869
(1986)

7. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods
for linear systems. Numerical Linear Algebra with Applications14, 1–59 (2007)

8. Toselli, A., Widlund, O.B.: Domain Decomposition Methods - Algorithms and Theory,
Springer Series in Computational Mathematics, vol. 34. Springer, Berlin and Heidelberg (2005)


	RAL-TR-2012-020-cover.pdf
	RAL-TR-2012-020-report



