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Additive Schwar z with Variable Weights

Chen Greit, Tyrone Ree% and Daniel B. Szyl#

1 Introduction and Motivation

We consider the numerical solution of nonsymmetric lingatesms of equations of
the form
Au =T, 1)

which arise, e.g., from the discretization of elliptic palrdifferential equations
(PDEs). In practical problems, the number of mesh pointsiig large, and thus also
the number of unknowns in (1), and the resulting matrix igésand sparse. In these
circumstances, iterative methods are often used, due toahiity to deal more
effectively with a high degree of sparsity. A popular itératmethod is thesener-
alized Minimum Residual iterative scheme, or GMRES [5], [6], [7]. This method is
based on minimizing at thigh iterate the residual within the shifted Krylov sub-
space

xo+ 4 ¥(A 1),

wherexg is an initial vectory g = b — Axq is the initial residual, and
XA ro) = sparfro,Arg, ..., A rg).

The performance of GMRES is often (though not exclusivegtednined by the
structure of the eigenvalues of the matAxLoosely speaking, if the eigenvalues
are strongly clustered, then GMRES is expected to converste To accomplish
a clustering effect, greconditioner M is typically used: instead of solving (1) we
solve, say,

AMU = f

)

whereM is constructed so th&iM has a more favorable eigenstructure thablpon
incorporating a preconditioner, the Krylov subspace cleamgcordingly: the matrix
associated with the subspace will now BB, and the notion of preconditioned
residual arises.

When numerically solving boundary value problems arisiogr elliptic PDEs,
a common way of dealing with the large number of degrees efdiven when the
mesh is fine, is to break the problem down into a number of meneageable sub-
problems; this amounts to the techniqueloinain decomposition; see, e.g., [8]. We
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can then incorporate preconditioners that work on the suradtos into the general
iterative framework.

The additive Schwarz preconditioner [8] and its restriatedant (RAS) [2], can
be written in the form

M= ifmlaﬂ

wheret is usually the number of subdomairt,is a restriction operatoR] is a
prolongation operator, amkl = RT AR is the restriction oA onto theith subdomain.

We propose in this paper to use a weighted additive or réstiadditive Schwarz
preconditioner of the form

t

MK — Zai(k)ﬁiAiflRiT, (2)

where the weightsri(k) are chosen at thigh iteration of GMRES so as to minimize
the preconditioned residual, cf. [1]. We point out that tisicompletely different
than the approach in [3], where the weights are zeros and andshe emphasis is
on asynchronous iterations.

Incorporating weights which change from one iteration ®ilext is significant
and we can no longer talk about a standard iterative meththdangingle precondi-
tioner. Instead, the proposed preconditioner (2) fits ineodlass of preconditioners
we recently described in [4], where one can apply more thapoeconditioner si-
multaneously. This is called multipreconditioned GMRESRGMRES). Our main
goal in this paper is to show that this methodology is paldidty effective in the
domain decomposition paradigm, since we can associate seafomain with a
specific, unique preconditioner. We have a rather large murobpreconditioners,
and domain decomposition naturally lends itself to the appn of multiprecondi-
tioned iterations.

An outline of the remainder of this paper follows. In Sectbwe briefly describe
Additive and Restricted Additive Schwarz PreconditionimgSection 3 we describe
the MPGMRES algorithm. We address the question of commurtaticost of the
algorithm and characterize the generalized Krylov subspad its unique features
in domain decomposition setting. In Section 4 we provideesdetails on numerical
experiments. Finally, in Section 5 we make some concludingarks.

2 Additive and Restricted Additive Schwar z Preconditioning

Suppose we divide the domaih containingN nodes intd subdomaing2,,. .., Q,
which overlap by bands of widtd nodes. Suppose each subdomain consists of
m; < N nodes, which we denote as the entries of the;s&¥e can define an exten-
sion matrixR' 5 € RN*™ which extends vectors’) € R™ to RN by
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- <i)) if kel
Ty, = ) Xk i
(R"5 Jk 0 otherwise

The transpose of this matrix defines a restriction opeitarhich restricts vec-
tors inRN to the subdomai®;. The restriction of the discretized PDK, to theith
subdomain is given b sART ;.

We can now define thadditive Schwarz preconditioner as

! t
M:= _Z\R&(Ri,éARIa)*lRi,a = ZMi,

whereM; ;= R5(R 5AR5) 'R 5.
Comment: Note that, by the definition d’RLS, there exists some permutatioh
such that, for alk,
,—IiMiX:(X"'XO ...... O)T

i.e., the vector resulting from multiplication by tihd (regardless of the permuta-
tion) will be sparse.
We can also definei@stricted additive Schwarz preconditioner [4] by

MRAS .= iRTo(F%,(sARTa)lRi,a - jMF’*S,

i.e., the preconditioning operation is as for additive Safmybut the final extension
operator is replaced by that which would be applied if we didave any overlap
in the domains. This has been shown to be more efficient treastémdard additive
Schwarz implementation.

3 The MPGMRES Algorithm for Domain Decomposition
Problems

MPGMRES [4] is a minimial residual algorithm for solving andiar system of
equations which allows the user to apply more than one pditoner simulta-
neously. The multipreconditioned search directions dreahbined into a gener-
alized Krylov subspace, and the minimization procedureireg solving a linear
least-squares problem in every iteration. As opposed tawstal GMRES, here the
subspace grows quickly due to the presence of multiple bedirections, and the
projection can be expressed in terms of a block upper Hessgmbatrix. It has
been shown in [4] that a so-calledective MPGMRES algorithm which chooses a
subset ot search directions, performs quite well on a variety of tesbfems. See
Algorithms 1-3.
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Algorithm 1 MPGMRES

calls Algorithm 2 or Algorithm 3
Choosexg, ro = b — #xg
B=roll.vi=ro/B
Z1 = completeMPD(rp)
for k=1,..., until convergencelo
W = /7
for j=1,...,kdo
Hik= (Vj)TW
W =W —VjHj
end for
W = Vi 1Hkr1k (skinny QR factorization)
Yk = argmin|Bey — Hyyl|2
Xk = Xo + [Z1- - Z]yx
) completeMPD(Vi;1) for complete MPGMRES
selectiveMPD (V1) for selective MPGMRES

Algorithm 2 Subroutine: complete multipreconditioned directions
function Z = completeMPD (V)
Z=[2; V. 27V
end function

Algorithm 3 Subroutine: selective multipreconditioning directions
function Z = selectiveMPD (V)
v=V1
Z= (2N 2N
end function

3.1 Computational Work

In the selective algorithm we neédmatrix-vector products andpreconditioner
solves per iteration, as opposed to one for both in the stdrptaconditioned GM-
RES algorithm. The main other source for work is the innedpmnts. Note that ev-
ery entry in the Hessenberg mathi is the result of an inner product, and these are
the only inner products in the algorithm. MPGMRES therefezedg 2k — 1)% + %t
inner products at thkth step [4, Table 4.1].

Significantly, in the domain decomposition setting, dueh®nature of the stan-
dard Additive Schwarz preconditioner, the preconditigrstep isexactly the same
cost when using both selective MPGMRES and standard préommed GMRES.
Moreover, since the vectors we obtain by applying the prditmmers are sparse,
the cost of the matrix-vector products will also be of the sarder as in the stan-
dard GMRES algorithm — the only extra expense coming fromawerlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vgmimiduct would be
identical here too.
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The extra cost in the MPGMRES approach therefore lies camplevith the
inner products. The vectors here are, in general, denseg dese sparsity ofv in
the modified Gram-Schmidt step.

3.2 The subspace in complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multiddw subspace
'%/lel,...,Mt (Aa ro)a
where

i, (ATo) =span{M1Aro, ..., MiAr},

Sy i (ATo) =span{MiAro, ... iAo,
M1AMiro, ..., M{AMro, . ..
..., Mi{AM1ro, ..., MtAMtro},

etc. Usually the size of this space grows exponentially eébh iteration. However,
in a domain decomposition context the situation is not cgotdire, as we see below.
First, note that each of the preconditioners are projectiatrices, and so

MiAM; = RT5(R sAR5) 'R AR 5(R 6AR5) 'R 5
— M.

Hence applyindV; to AM; does nothing to enrich the space.
Next, note that

MiAM; = RI&(Ri,éARTa)ilRi,éARJT,a(RJ,5ARJ'T,6)71RJ'76' ®3)

In the middle of this expression is the cross-teFﬁr,BAij& Now note thaRi,(;ARj% =
0 < liNl; =0. Provided the overlap isn't big enough to touch two subdomains,
this implies that only the contributions from sub-domaimatttouch each other add
anything to the multi-Krylov subspace. This is the numbeedfes + corners in
2D (a maximum of 8 for a tensor product-based grid), and tpesethe number of
faces in 3D (a max of 26 for a tensor product-based grid).

Altogether, this means that

dim(As  w(ATo)) = (ke+Lt,

wherec is a constant indepdendentlot. Therefore, even in the complete MPGM-
RES case, we only havmear growth in the search space.
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4 Numerical Experiments

If we split the domain into a small number of subdomains, s have a high
proportion of subdomains lying on an edge, then there map@otuch difference
between the spaces minimized over by the selective algorithd the complete
algorithm.

For example, consider the special case where we split theithaf into two
subdomainsQ; and Q, such thatQ, U Q, = Q. Then it can be shown [4, Sec-
tion 5.2.1] that, provided the subdomain solves are exaetspace over which we
minimize in both selective and compelete MPGMRES are idahti

(@) 2D, h={2824252°627 28 (b) 3D, h={2"3242°5}

Fig. 1 Convergence curves for two subdomains in 2D and 3D.
For large numbers of subdomains, the work involved in theirproducts and

vector updates becomes significant, even though the worktirally applying the
preconditioners is essentially the same as for the usualhAFRAS methods.

o 2 EY 50 & 70

L L 0
C) % 100 0

(a) 2D,{4,16,32,64} subdomains

£

(b) 3D, {4,64} subdomains

Fig. 2 Convergence curves for multiple subdomains in 2D and 3D.
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Although the iteration counts are impressive for a large beinof subdomains
(with, e.g., 94 iterations for GMRES with an additive Schevareconditioner be-
ing reduced to 18 iterations with selective MPGMRES), thengs in this case are
not yet competitive. This is due to the fact that we are usimgaof-of-concept
MATLAB code. We are confident, however, that a state-ofdheimplementation
will yield great computational savings manifested in a i@tlicomputational run-
ning time, due to the highly parallelizable nature of thegmeed method. Recall
that the only extra work between the methods is in calcuattie inner products
and the subsequent vector update in the Gram-Schmidt groces

5 Conclusions

We have presented an algorithm that applies Additive Schwih Variable Weights.
The approach is incorporated as a set of multiple precamdgits into MPGMRES.
Domain decomposition has a few unique features that makeygunoach partic-
ularly attractive. First, the preconditioning step erstdile same cost when using
both selective MPGMRES and standard preconditioned GMRI&S,the cost of
the matrix-vector products is also of the same order as istdredard GMRES al-
gorithm. Secondly, because there is a very low degree ofagvbetween nodes in
the different subdomains, the growth in the search spacecimplete MPGMRES
is only linear, i.e., very modest. This is in contrast to thieation for other applica-
tions, where the search space for complete MPGMRES grovesexpiially and one
has to settle for a selective algorithm. Domain decompmsit thus unique in that
it allows for maintaining a richer subspace where the rediduto be minimized.
For this reason, we believe that the approach presentedipdber is promising.
Future work will focus on a parallel implementation with grsficant number
of subdomains, which are themselves large in size. In sueltiag the cost of the
inner products and vector-updates would take a small ptigpoof the total time
and this will allow us to further assess and test the methadamge-scale setting.
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