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Abstract. In this paper we consider a PDE-constrained optimization problem where an H1

regularization control term is introduced. We address both time-independent and time-dependent
versions with both distributed and boundary control. We introduce bound constraints on the state,
and show how these can be handled by a Moreau-Yosida penalty function. We propose Krylov
solvers and Schur complement preconditioning strategies for the different problems and illustrate
their performance with numerical examples.

1. Introduction. In recent years the development of numerical methods for op-
timal control problems with constraints given by partial differential equations (PDEs)
has seen many contributions: see [59, 36, 34] and the references mentioned therein.
The canonical PDE-constrained optimization problem takes a given desired state ȳ
and finds a state y and a control u to minimize the functional

‖y − ȳ‖2Y +
β

2
R(u) (1.1)

subject to the constraints

Ay = u

ua ≤ u ≤ ub
ya ≤ y ≤ yb

where Y is some norm and R(u) is a regularization functional, both of which are
free to be chosen and often depend on the underlying application. Here A denotes a
PDE with appropriate boundary conditions and β denotes a regularization parameter,
which determines how much weight to give to the regularization term.

The simplest choice of R(u) is ‖u‖2L2(Ω), where Ω denotes the domain on which the
PDE is posed. This case has been well-studied in the literature, both from a theoretical
and algorithmic perspective. Of increasing interest, driven by the requirements of real-
world problems, has been the inclusion of alternative regularization terms. There has
been much interest recently in regularization using L1 norms. For the standard L1

case see, e.g., the recent articles [10, 63]. Total variation, R(u) = ‖∇u‖L1(Ω), has
also generated much interest recently – see e.g. [51, 12] and the references therein.
The L1 norms have the benefit that they allow discontinuous controls, which can be
important in certain applications. Another field where the standard L2 regularization
may not be the most appropriate is flow control – see, e.g., Gunzburger [23, Chapter
4].

For some applications we would like a very smooth control – for this reason the
H1 semi-norm, R(u) = ‖∇u‖2L2(Ω), has long been studied in the context of parameter-

estimation problems [8, 38, 64], image-deblurring [11, 14, 40], image reconstruction
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[41], and flow control [15, 28], for example. Recently van den Doel, Ascher and
Haber [16] argued that this norm can be a superior choice to its L1 based cousin,
total variation, for problems with very noisy data due to the smooth nature of con-
trols which arise. The test problems in PDE constrained optimization by Haber
and Hanson [26], which were designed to get academics solving problems more in-
line with the needs of the real-world, suggest a regularization functional of the form
R(u) = ‖u‖2L2(Ω) + α‖∇u‖2L2(Ω) for some parameter α. Indeed, this form of regular-
ization is again commonly used in the ill-posed and inverse problem communities.

At the heart of many techniques for solving the optimization problem, whether it
is a linear problem or the linearization of some non-linear problem, lies the solution of
a linear system. These systems are very often so-called saddle point matrices [2, 19],
which have the form

A =

[
A BT

B 0

]
. (1.2)

where A represents the misfit and regularization terms in (1.1) and B represents the
PDE constraint. The systems we consider in this paper have A which is symmetric
positive semi-definite. Such saddle point matrices are invertible if B has full rank and
ker(A) ∩ ker(B) = {0}: we will assume this condition holds for the remainder of this
paper. We are then left with the challenge of efficiently solving linear systems of the
form (1.2).

Direct solvers based on factorizations [18] can be effective in some cases, but for
many large and, in particular, three-dimensional problems these are no longer suffi-
cient. In such cases we turn to iterative Krylov subspace methods, which can deal
with these large and sparse systems efficiently provided that they are used with a pre-
conditioner that enhances the convergence behavior, ideally independent of problem-
dependent parameters, such as the mesh-size or the regularization parameter. For a
general overview of preconditioners we refer to [52, 24], and in the particular case of
saddle point problems see [2, 19, 65].

A number of preconditioners which are robust with respect to regularization pa-
rameters and mesh-parameters have recently been developed for PDE-constrained
optimization [55, 45, 44, 58, 39, 17, 29], although these methods are tailored for an
optimization problem with R(u) = ‖u‖L2(Ω) and heavily rely on the corresponding
presence of a mass matrix in the A block of (1.2). Benzi, Haber and Taralli [3] consider
a block preconditioner with of R(u) given by (a variant of) the H1−norm, but their
approach is general enough to work with most regularization and the form of the reg-
ularization is not exploited in the method. To the authors’ knowledge there has been
no other attempts to apply block preconditioners – which have proved so successful
with L2 regularization – in the case of other choices of R(u). We address this issue
here by considering a cost-functional where R(u) = ‖u‖L2

+ ‖∇u‖L2
, and we present

preconditioners that show robustness with respect to the regularization parameter for
this problem, which is more challenging from a linear algebra perspective.

The paper is structured as follows. We begin in Section 2 by stating the opti-
mal control problem in the time-dependent and time-independent cases with both
distributed and boundary control. We illustrate how the discretized first order condi-
tions can be obtained from a so-called discretize-then-optimize approach. In Section 3
we describe how the state constraints can be handled using a Moreau-Yosida penalty
approach and show how to incorporated this into possible preconditioning strategies.
In Section 4 we discuss the choice of possible Krylov solvers and introduce precondi-
tioning strategies for both the time-dependent and time-independent control problem,
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with an emphasis on how to handle the H1 regularization term. Our numerical results
shown in Section 5 illustrate the efficiency of our approach.

2. Problem setup and discretization.

2.1. Time-independent control. First we consider the time-independent op-
timal control problem, where the following objective function should be minimized:

J1(y, u) =
1

2
‖y − ȳ‖2L2(Ω1) +

β

2
‖u‖2H1(Ω2) (2.1)

=
1

2
‖y − ȳ‖2L2(Ω1) +

β

2
‖u‖2L2(Ω2) +

β

2
‖∇u‖2L2(Ω2) , (2.2)

where both Ω1 and Ω2 are subdomains of Ω ∈ Rd with d = 2, 3. The constraint is
given by the following elliptic PDE

−4y =

{
u in Ω2

0 in Ω\Ω2

(2.3)

together with Dirichlet boundary conditions, y = g on ∂Ω. We refer to y as the state
and u as the corresponding control, which is used to drive the state variable as close as
possible to the desired state (or observations) ȳ. The above problem is the distributed
control problem, as u defines the forcing of the PDE over the interior subdomain Ω2.
Another important case is given by the boundary control problem, where Ω2 = ∂Ω
together with the PDE constraint

−4y = f in Ω (2.4)

∂y

∂n
= u on ∂Ω (2.5)

where f represents a fixed forcing term.
Problems of this type frequently appear in practical situations [34, 47, 13, 48].

Additionally, many practical applications require the introduction of so-called box
constraints on the control and/or the state, motivated by physical characteristics of
the application of interest. Typical bounds would be

ua ≤ u ≤ ub

for the control and

ya ≤ y ≤ yb

for the state. The numerical treatment of these constraints is by now well established
[31, 4, 5] but nevertheless represents a computational challenge, in particular for the
state constraints [9].

There are two approaches that can be taken to solve such PDE-constrained opti-
mization problems numerically: discretize-then-optimize, where the infinite-dimensional
problem is discretized and then a finite-dimensional optimization problem is solved;
and optimize-then-discretize, where we optimize the infinite dimensional problem first,
and then discretize the first order optimality conditions accordingly (see [34]). Cur-
rent research follows the paradigm that we should use discretization schemes for which
both approaches coincide [33].
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We will follow the discretize-then-optimize approach and discretize the PDE and
the objective function using Q1 finite elements [19, 57]; we employ the deal.II [1] finite
element package for our numerical experiments.

We derive the discrete optimality system for the cost functional (2.1) with the
PDE constraint (2.3), together with homogenous Dirichlet boundary conditions for
ease of exposition – the extension to other boundary conditions proceeds similarly.
Let φ1, . . . φn be a finite element basis for the interior of Ω, and suppose we ex-
tend this by φn+1, . . . , φn+∂n to include the boundary. Let Y h

0 = 〈φ1 . . . φn〉, Uh =

〈φ1 . . . φn, φn+1, φn+∂n〉. Furthermore, let YΩ1 := 〈φ̂1 . . . φ̂m̂〉 and UΩ2 := 〈φ̄1 . . . φ̄m̄〉
denote the subsets of Uh with support on Ω1 and Ω2 respectively.

The finite dimensional analogue to (2.1), (2.3) is to find yh ∈ Y h
0 ⊂ H1

0(Ω) and
uh ∈ Uh ⊂ H1(Ω) which satisfy

min
yh∈YΩ1

,uh∈UΩ2

1

2
||yh − Ihȳ||2L2(Ω1) +

β

2
||uh||2H1(Ω2),

s.t.

∫
Ω

∇yh · ∇vh =

∫
Ω

uhvh, ∀vh ∈ Y h
0 ,

where Ih : H1(Ω)→ Y h is the finite element projection. We can write the optimization
problem in terms of matrices as

min
y,u

1

2
(y − ȳ)T M̄y(y − ȳ)+

β

2
uT M̄uu +

β

2
uT K̄uu (2.6)

s.t. K̄y = M̄u, (2.7)

where

(M̄y)i,j =

∫
Ω

φ̂iφ̂j , i, j = 1, . . . , m̂, (K̄u)i,j =

∫
Ω

∇φ̄i · ∇φ̄j , i, j = 1, . . . , m̄,

(M̄u)i,j =

∫
Ω

φ̄iφ̄j , i, j = 1, . . . , m̄, (K̄)i,j =

∫
Ω

∇φi · ∇φj , i, j = 1, . . . , n,

(M̄)i,j =

∫
Ω

φiφ̄j , i = 1, . . . , n, j = 1, . . . , m̄

In our finite element implementation it is more convenient to write matrices on
the whole space, and we can write

My =

[
M̄y 0
0 0

]
, Mu =

[
M̄u 0
0 0

]
, Ku =

[
K̄ 0
0 0

]
M =

[
M̄ 0
0 0

]
, and K =

[
K̄ 0
0 I

]
. (2.8)

Note that here we have split the (n+∂n)× (n+∂n) matrices into 2×2 blocks, where
the (1,1) and (2,2) blocks describe the terms which are present or not, respectively.
Note that the size of the blocks are not uniform: in M and K they correspond to
interior and boundary nodes; if Ω1 = Ω, then the size of the zero block would also
correspond to the boundary nodes as y is fixed by the boundary condition of the PDE;
if Ω2 = Ω, then the zero blocks in Mu and Ku will vanish.
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In the distributed control case the first order optimality conditions lead to the
following saddle point system: My 0 −KT

0 βMu + βKu M
−K M 0

 y
u
p

 =

 Myȳ
0
d

 . (2.9)

Note that the addition of an H1 norm in the regularization leads to an optimality
system with substantially different properties compared to the L2 case; in particular,
if p = 0 on the boundary, we do not necessarily have that u = 0 on the boundary
here, which is known to be true if we have just L2 regularization (see [59, 50]).

For the incorporation of the boundary conditions into the saddle point system
we argued in [50] that it is not convenient to work with matrices on the interior as
most finite element packages will assemble the matrices on the whole of the domain
including the boundary. It can be seen, assuming all matrices are of the form (2.8),
that if the current approximations y and p contain zeros corresponding to the zero
blocks in (2.9), these zeros are maintained throughout any Krylov solver. This allows
the undisturbed maintenance of the boundary conditions for the state and adjoint
state. With adjustment of the right hand sides, which is a cheap operation compared
to the elimination of degrees of freedom from a matrix, this means that one can use
matrices that are readily available from most finite element packages to solve the
saddle point system with a Krylov subspace solver. We refer the interested reader to
[50] for more details. Note that for non-homogeneous boundary conditions all that
changes is that a constant vector appears on the right hand side of (2.7).

The boundary control problem can be treated similarly. Here we get

J1(y,u) =
1

2
(y − ȳ)

T
My (y − ȳ) +

β

2
uTMu,bu +

β

2
uTKu,bu (2.10)

together with

Ky = Nu + f . (2.11)

Here: Mu,b and Ku,b are the boundary mass matrix and Laplacian, respectively; the
vector f represents the discretized forcing term, which for simplicity we take to be
zero for the remainder of the paper; the matrix N connects interior and boundary
basis functions, in particular

(N)ij =

∫
∂Ω

φitr(φj) ds.

where tr is the trace operator. We obtain the following first order optimality system My 0 −KT

0 βMu,b + βKu,b NT

−K N 0

 y
u
p

 =

 Myȳ
0
d

 . (2.12)

2.2. Time-dependent problem. We now present a time-dependent version,
which is of wide practical interest. The objective function is now given by

J2(y, u) =
1

2

∫ T

0

∫
Ω1

(y − ȳ)2dxdt+
β

2

∫ T

0

∫
Ω2

u2dxdt+
β

2

∫ T

0

∫
Ω2

(∇u)
2
dxdt, (2.13)
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where all functions are simply time-dependent versions of their steady counterparts
presented above. The constraint is given by the following time-dependent parabolic
PDE

yt −4y = u

for the distributed control problem with Dirichlet boundary conditions, i.e. y(x, t) =
g(x, t) on ∂Ω for some prescribed function g. In case of a boundary control problem,
we consider the following PDE constraint

yt −4y = f (2.14)

∂y

∂n
= u on ∂Ω. (2.15)

For the discretization of the time-dependent objective function we use the trape-
zoidal rule for the time integral and finite elements in space to give

J2(y,u) =
1

2
(y − ȳ)

TMy (y − ȳ) +
β

2
uTMuu +

β

2
uTKuu (2.16)

where

My = blkdiag(1/2My,My, . . . ,My, 1/2My),

Mu = blkdiag(1/2Mu,Mu, . . . ,Mu, 1/2Mu)

and

Ku = blkdiag(1/2Ku,Ku, . . . ,Ku, 1/2Ku),

which are simply block-variants of the previously defined matrices over the domains
Ω1 and Ω2. Note that in the time-dependent case we abuse the notation y, u defined

earlier, i.e., y =
[
yT

1 ,y
T
2 , . . . ,y

T
NT

]T
, etc. We believe it will be clear from the context

which of the two we are currently considering. Using this notation and a backward
Euler scheme, we can write down a one-shot discretization of the time-dependent PDE
as follows 

L
−M L

. . .
. . .

−M L

y − τMu = d (2.17)

with L = M + τK and d representing the boundary conditions for the heat equation.
For more details see [56, 3, 17].

Again, we form the Lagrangian and write down the first order conditions in a
linear system, τMy 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0

 y
u
p

 =

 τMyȳ
0
d

 , (2.18)

in the case of the distributed control problem, and τMy 0 −KT

0 τβ(Mu,b +Ku,b) τN T

−K τN 0

 y
u
p

 =

 Myȳ
0
d

 (2.19)

for boundary control.
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3. Handling the state constraints. Box constraints both for the control u
and the state y can be dealt with efficiently using a penalty term. For the case
of constraints on both the control and the state of an optimal control problem the
Moreau-Yosida penalty function has proven to be a viable tool: see [35, 29, 44] and
the references mentioned therein. We describe this modification for time-independent
distributed control, but the other cases are similar. The modified objective function
becomes

JMY (y, u) = J1(y, u) +
1

2ε
‖max {0, y − yb}‖2 +

1

2ε
‖min {0, y − ya}‖2 (3.1)

for the state constrained case and similarly for control constraints. In accordance
with [29], we can employ a semi-smooth Newton scheme that leads to the following
linear system My + ε−1GAMyGA 0 −KT

0 βMu + βKu M
−K M 0

 δy
δu
δp

 =

 Myȳ + ε−1
(
GA+

MyGA+
yb +GA−MyGA−ya

)
0
d


(3.2)

where we define the active sets as A+ = {i : yi > (yb)i} , and A− {i : yi < (ya)i} ,
and A = A+ ∪ A−; the matrices G are diagonal matrix variants of the characteristic
function for the corresponding sets, i.e.,

(GA)ii =

{
1 for i ∈ A
0 otherwise.

Our focus is on the efficient solution of the linear systems (3.2), which are of saddle
point type. Note that the active sets defined above within an iterative process such
as the semi-smooth Newton scheme are computed based on the state at the previous
iteration, but for simplicity we neglect the iteration index. For more details of semi-
smooth Newton methods we refer to [36, 60, 34]; there is also recent theory introducing
path-following approaches for the penalty parameter ε [32].

4. Preconditioning.

4.1. Choice of Krylov solver and Schur complement preconditioning.
As mentioned in the introduction, the linear systems that arise from PDE-constrained
optimization are very often too large for direct solvers to be effective, and for scalable
and efficient solution of these linear systems the combination of a state-of-the-art
solver with an efficient preconditioning technique is crucial. In this section we derive
preconditioners for each of the problems presented earlier, but first mention the choice
of the iterative scheme. Krylov solvers are for many applications the method of choice
[54], as they are cheap to apply — at each step they only require a matrix vector
product, the evaluation of the preconditioners, and the evaluation of inner products.
These methods build up a low-dimensional subspace that can be used to approximate
the solution to the linear system.

There are a variety of Krylov subspace methods, and the most effective to use
depends on the properties of the linear system. For symmetric and positive definite
matrices the conjugate gradient (cg) method of Hestenes and Stiefel [30] – with a
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symmetric and positive definite preconditioner – is the method of choice. For sym-
metric and indefinite problems, such as the ones we are dealing with here, the minimal
residual method (Minres) introduced by Paige and Saunders [43], as well as modified
variations of the cg method [7], are often effective. The only requirement for Min-
res to be applicable to a symmetric system is that a symmetric and positive definite
preconditioner is used.

If an indefinite or block-triangular preconditioner is used we must use a nonsym-
metric Krylov subspace solver, even when the underlying matrix is symmetric. There
is in general no ideal choice and we mention Gmres [53], Bicg [20], bicgstab [61]
or qmr [21] as suitable candidates. It is also not always clear what guides the con-
vergence of these methods but as in the symmetric case a small number of eigenvalue
clusters typically corresponds to a fast convergence of the iterative solver. Here we
focus on the development of effective preconditioners and we will focus less on the
choice of linear solver—for most systems Minres will be our method of choice but if
we choose a nonsymmetric preconditioner we will use Bicg.

We now want to describe preconditioners which have proven to be efficient for
solving systems of the form (1.2) in combination with Minres. As the system matrix
is indefinite it is not immediately obvious that a good preconditioner can be found
that is symmetric and positive definite. In the notation of the generic saddle point
problem (1.2), Murphy et al. [42] show that the preconditioned matrix P−1A with
P = blkdiag(A,S), where S := BA−1BT is the Schur-complement of A, has three
eigenvalues. This results in the termination of Minres after at most three steps.
Naturally, this P is too expensive for any realistic problem but it illustrates that if
we can find good approximations to both the (1, 1)-block and the Schur-complement
of A, then the method will converge in a small number of steps. In some cases in
what follows we will use a nonsymmetric approximation to S, and since then we have
already broken symmetry, we can consider the block-triangular preconditioner

P2 =

(
A 0
B S

)
.

This reduces the issue of approximating the solution of the linear system to finding
good approximations to the (1, 1)-block and the Schur-complement of A. Parts of the
(1, 1)-block in most of the cases presented here consists of lumped mass matrices and
can simply be inverted. If the mass matrices are consistent we can use the Chebyshev
semi-iteration [62] and if the (1, 1)-block is only semi-definite we can add a small
perturbation to make it positive definite so the above applies, i.e., we replace the
zero blocks in A by blocks of the form ηI with η a small parameter greater than
zero. Note that this technique can also be used for an approximation of the Schur-
complement in case the (1, 1)-block is semi-definite [3, 56]. For the rest of the paper our
preconditioners will rely on blocks Â and Ŝ where Â approximates the (1, 1)-block and
Ŝ the Schur-complement. We discuss appropriate approaches for the approximation
of the Schur-complement next.

4.2. Time-independent problem.

No state constraints. We are interested in finding a good preconditioner for
the matrix  My 0 −KT

0 βMu + βKu M
−K M 0


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from (2.9). It is fairly straightforward to deal with the blocks My and βMu + βKu

efficiently. In particular, the mass matrix My can be approximated as outlined in the
previous section, by the Chebyshev semi-iteration in the case of a consistent mass
matrix or simply inverted whenever it is lumped. The inverse of βMu + βKu can be
efficiently approximated using (algebraic) multigrid.

The performance of our preconditioner therefore depends on having a good ap-
proximation of the Schur-complement

S = KM−1
y KT +M(βMu + βKu)−1M.

One possible approximation would be

Ŝ1 = KM−1
y KT

(see [49]), which neglects the second term in the Schur-complement. This typically
results in good convergence properties for relatively large β, but performance deteri-
orates as β approaches zero. Another approach [46], that in some cases can overcome
or weaken this dependence on the regularization parameter, is given by

Ŝ2 = (K + M̂)M−1
y (KT + M̂T ), (4.1)

where the matrix M̂ is chosen to approximate the second term in the Schur-complement
well. In more detail, we would ideally construct M̂ such that

M̂M−1
y M̂T = M(βMu + βKu)−1M, (4.2)

which is the case for M̂ = M(βMu + βKu)−1/2M
1/2
y . Note that with this choice we

cannot easily form and invert (K + M̂). We instead choose the diagonal diag(Ku)
as an approximation for Ku. Note that the approximation of Ku by its diagonal is,
in the case of a forward Poisson problem, not ideal as no mesh-independence can be
expected. Nevertheless, the inverse of (K + M̂) needs to be approximated cheaply
and, as we are using lumped mass matrices, we now get

M̂ = M(βMu + βDK)−1/2M1/2
y ,

where DK = diag(Ku). This allows us to form K + M̂, whose inverse in turn can be
approximated using an algebraic or geometric multigrid preconditioner.

A nonsymmetric Schur complement approximation. From the previous

section it is clear that the ideal candidate M̂ = ML
−1/2
u M

1/2
y in (4.2) would yield

M̂M−1
y M̂T = ML−1/2

u M1/2
y M−1

y M1/2
y L−1/2

u M = ML−1
u M,

using Lu = βMu +βKu. Unfortunately, from a numerical viewpoint it is not possible

to work with the matrix K + ML
−1/2
u M1/2 in (4.1) as even if we can rewrite this

more efficiently we would have to compute the square root of large matrices. We
therefore consider a nonsymmetric approximation that would also require the use of
a nonsymmetric Krylov subspace solver. In detail, we use

Ŝ3 = (K + M̂1)M−1
y (K + M̂2)T , (4.3)

where we choose M̂1 = ML−1
u M and M̂2 = My. This leads to

M̂1M
−1
y M̂T

2 = ML−1
u M,
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that is, (4.2) is satisfied and we may expect Ŝ3 to work well for a wide range of β.
On the other hand, we now have a complicated structure within K + ML−1

u M and
we have to switch to a nonsymmetric outer solver. This complicated structure can be
dealt with by noting the equivalence between the following two systems(

K +ML−1
u M

)
x = b,

[
K M
M −Lu

] [
x
y

]
=

[
b
0

]
. (4.4)

We now use a preconditioned Uzawa-type method to approximately solve the second
system, which has the advantage of never needing the inverse of Lu, which every
iterative solver used for the first equation would require. In this case we have already
broken symmetry so we can take advantage of the block-triangular preconditioner P2.

State constraints. We are now interested in finding a good preconditioner for
the matrix coming from the state constrained problem treated with a Moreau-Yosida
penalty term,  L 0 −KT

0 βMu + βKu M
−K M 0

 ,
where L = My + ε−1GAMyGA. Due to the diagonal nature of the mass matrices the
matrix L is simply a diagonal matrix and can be treated trivially in the preconditioner.
For the block βMu + βKu we can again use a multigrid process to approximate the
inverse. Now we need an efficient way to approximate the Schur-complement

S = KL−1K +M(βMu + βKu)−1M. (4.5)

We want to employ the technique used for the case without state constraints. We
start by looking for an approximation of the form

Ŝ = (K + M̂)L−1(K + M̂)T , (4.6)

where we have to determine the matrix M̂ in such a way that the second term in S
is accounted for. For this we want

M̂L−1M̂T ≈M(βMu + βKu)−1M.

In order to simplify this process we make the following approximation

βMu + βKu ≈ βMu + βDK := Du,

where DK = diag(Ku) and hence Du is a diagonal matrix. We now proceed to

M̂L−1M̂T = MD−1
u M ⇒ M̂ = MD−1/2

u L1/2

as all matrices involved are diagonal matrices and hence commute, i.e., M̂ = MD
−1/2
u L1/2 =

L1/2D
−1/2
u M .

Boundary control. In the boundary control problem the saddle point matrix
is given by  My 0 −KT

0 βMu,b + βKu,b NT

−K N 0

 (4.7)
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where the two blocks in the upper-left can be handled by previous techniques. The
Schur-complement here is

S = KM−1
y KT +N(βMu,b + βKu,b)

−1NT .

We can again approximate the Laplacian by its diagonal to get

S ≈ KM−1
y KT +N(βMu,b + βDK,b)

−1NT = KM−1
y KT +ND−1

u NT .

Once again we proceed by assuming that an approximation of the form

Ŝ = (K + M̂)M−1
y (K + M̂)T

will give a good approximation to the Schur-complement, with

M̂M−1
y M̂T = ND−1

u NT . (4.8)

Since the mass matrices are lumped, we can assume that all the matrices are diagonal,
and we get an expression for the diagonal elements of (4.8) corresponding to boundary
degrees of freedom. Note that ND−1

u NT is a diagonal matrix with non-zero entries
only for boundary nodes. We also do not account for the difference in scalings with
respect to the mesh parameter h between a boundary mass matrix and a mass matrix
on the whole domain. The diagonal elements of M̂ can be obtained from

miim̂
2
ii =

m2
ii

du,ii

or equivalently

m̂2
ii =

m3
ii

du,ii
⇒ m̂ii =

m
3/2
ii√
du,ii

. (4.9)

We already mentioned that the boundary mass matrix scales differently compared to
the mass matrix on the whole domain by an order of h. We first consider the case
when we only have an L2−term for the control, i.e. Ku = 0, and want to compute M̂
such that

M̂M−1
y M̂ = β−1NM−1

u NT

and using the approximations My ≈ h2I and Mu ≈ hI we get

h−2M̂2 ≈ M̂M−1
y M̂ = β−1NM−1

u NT ≈ β−1h−1NNT .

Since all matrices in the last expression are diagonal (recall N is a rectangular matrix
with entries only when boundary degree of freedom is paired with boundary degree
of freedom) we get

m̂2
ii = hβ−1m2

ii ⇒ m̂ii =
√
hβ−1mii.

Based on this analysis we proceed by multiplying m̂ii in (4.9) with
√
h to account for

the different orders of the boundary matrices and the matrices over the whole domain
to finally get

m̂ii =

√
hm

3/2
ii√

du,ii
.

Note that it is also possible to use the nonsymmetric Schur-complement approach for
this case. In the numerical experiments section we only show nonsymmetric Schur-
complement results for the time-dependent setup.
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4.3. Time-dependent problem. We now extend the previous techniques to
the time-dependent case.

No state constraints. Recall that the first order conditions of the time-dependent
problem are represented by the following saddle point system τMy 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0

 y
u
p

 =

 τMyȳ
0
d

 (4.10)

and assume that My and τβ(Mu + Ku) are invertible so we can form the Schur-
complement

S = τ−1KM−1
y KT + τM(βMu + βKu)−1M.

For strategies to handle a semi-definite My we refer to [56]. Again we approximate
S via

Ŝ2 = τ−1(K + M̂)M−1
y (K + M̂)T ,

with a not yet specified but symmetric matrix M̂. As we want M̂M−1
y M̂ to resemble

the second block in the Schur-complement S we obtain

M̂M−1
y M̂T ≈M(βMu + βKu)−1M.

As all matrices are block-diagonal, we want that

τ−1M̂M−1
y M̂T ≈ τM(βMu + βKu)−1M.

Using again the approximation

βM + βKu ≈ βM + βDK := Du,

we get

τ−1M̂M−1M̂T = τMD−1
u M ⇒ M̂ = τMD−1/2

u M1/2
y .

In this case we can also use a nonsymmetric Schur complement analogous to the Ŝ3

we derived in the time-independent case.

State constraints. The system obtained from the state constrained case has a
change in the (1, 1)-block, i.e., τL 0 −KT

0 τβ(Mu +Ku) τM
−K τM 0

 y
u
p

 =

 τMyȳ
0
d

 (4.11)

where L = blkdiag(Li) with the Li = My + ε−1GA(i)MyGA(i) and A(i) the active
sets for a grid point in time. Assuming invertibility of L, the Schur-complement now
becomes

S = τ−1KL−1KT + τM(βMu + βKu)−1M.

We again want to derive an approximation of the form

Ŝ = τ−1(K + M̂)L−1(KT + M̂T )

12



that resembles the Schur-complement as closely as possible. As we again want τ−1M̂L−1M̂
to resemble the second block in the Schur-complement S we obtain

τ−1M̂L−1M̂T ≈ τM(βMu + βKu)−1M.

As all matrices are block-diagonal we want that for all blocks (i = 1, . . . , n)

τ−1M̂L−1
i M̂T ≈ τM(βMu + βKu)−1M.

and with the approximation

βM + βKu ≈ βM + βDK := Du,

we get

τ−1M̂L−1
i M̂T = τMD−1

u M ⇒ M̂ = τMD−1/2
u L

1/2
i .

Note that now the blocks of L are different for each point in time as the active sets will
be different for each i. In an efficient implementation this issue has to be addressed
as recomputing the preconditioner with each application is not feasible. We have not
done this for the results presented in Section 5.

5. Numerical Results. We now want to illustrate how the preconditioners pre-
sented above perform when applied to a variety of problems. As mentioned earlier
we employ a finite element discretization, here done with the finite element package
deal.II [1]. We discretize the state, control and adjoint state variables using Q1 el-
ements. We stop all computations when the relative pseudo-residual minimized in
Minres or Bicg falls below 10−4. For the algebraic multigrid preconditioner we use
the Trilinos ML package [22] that implements a smoothed aggregation AMG. Within
the algebraic multigrid we used 6 steps of a Chebyshev smoother in combination with
the application of two V-cycles. Note that, especially in the time-dependent case
with state constraints, our implementation at this point is only a proof-of-concept as
we are simply recomputing the preconditioner for every active set. Future research
should address the issue of efficiently updating the AMG preconditioner or employing
a geometric multigrid method that takes the changes of the active set into account.

For time-dependent problems we show the degrees of freedom only for one grid
point in time (i.e. for a single time-step) and we are implicitly solving a linear system
of dimension 3 times the number of time-steps (Nt) times the degrees of freedom of the
spatial discretization (n). For example, a spatial discretization with 274625 spatial
unknowns and 20 time-steps corresponds to an overall linear system of dimension
16 477 500.

5.1. The time-independent case.

No state constraints. In this section we show numerical results for the time-
independent control problem. The desired state is given by

ȳ =

{
sin(2πx0x1x2) if x0, x1 ∈ [0.2, 0.7]

0.5 otherwise.

with the Dirichlet condition that y = 0 on ∂Ω. The desired state, computed control
and computed state for β = 10−6 are shown in Figure 5.1. We show the results for a
variety of β parameters in Table 5.1 and the tolerance 10−4 for the pseudo-residual.

We see from the results in Table 5.1 that there is some benign growth in the
iteration numbers with respect to the regularization parameter and no dependence
with respect to the mesh-parameter h.
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(a) Control (b) Desired state (c) Computed state

Fig. 5.1: Control, desired state, and state for time-independent distributed control
with β = 10−6.

(a) Control (b) Computed state

Fig. 5.2: Control and computed state for time-independent distributed control with
β = 10−6 and no H1-term.

DoF Minres(T) Minres(T) Minres(T)

β = 10−2 β = 10−4 β = 10−6

729 5(0.23) 10(0.99) 17(0.82)
4913 6(2.07) 10(2.51) 22(5.37)
35937 8(9.16) 10(7.76) 24(18.14)
274625 8(60.89) 10(74.38) 24(161.36)
2146689 8(547.15) 10(660.26) 26(1853.41)

Table 5.1: Results obtained with Schur complement approximation Ŝ and varying β.

State constraints. In the next example we consider the introduction of state
constraints for the time-independent control problem. As was shown in [37] the quality
of the preconditioner can have a significant influence on the convergence of the Newton
scheme. In our experience for smaller values of β and ε the tolerance of 10−4 was not
always sufficient for the Newton method to reach convergence and the results shown
in Table 5.2 are computed for the tolerance 10−6. We also employed a nested-iteration
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technique [29], which starts by solving the optimal control problem on a coarse mesh
and then transferring the solution to the next finer mesh as an initial guess for the
Newton method. As can be seen from Table 5.2 this leads to a small number of
Newton steps on the fine meshes. We here consider

ȳ = − sin(2πx0x1x2) exp
(
−
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))
and the Dirichlet condition is defined as y = P[ya,yb](ȳ) on ∂Ω as the projection of the
desired state onto the feasible region. Here we only consider the lower bound given
by ya = −0.7. We show the results for two different values of ε using β = 10−6 in
Table 5.2 and it can be seen that the number of Newton iterations is very similar and
the Minres iterations grow but stay reasonable with the reduction of the parameter
ε.

DoF AS Minres (tl/av) T AS Minres (tl/av) T
ε = 10−2 ε = 10−4

729 5 145/29 11.38 5 156/31 12.23
4913 4 137/34 78.21 5 280/56 158.79
35937 4 154/39 285.59 5 351/70 689.61
274625 4 164/41 3589.12 6 448/74 10795.51

Table 5.2: Results obtained for state-constrained problem for different values of the
penalty parameter. Total and average number of Minres iterations for all Newton
steps are shown as well as the timings for β = 10−6.

Boundary control. The control of the PDE via the boundary of the domain
represents a relevant and interesting scenario. We now illustrate how our precondi-
tioner performs for this case. The desired state is given by

ȳ =

{
sin(x1) + x2x0 if x0 > 0.5 and x1 < 0.5

1 otherwise.

Table 5.3 shows the Minres iteration numbers and timings for different meshes and
values of β. Here we see that in the case of boundary control our diagonal approx-
imation of the Neumann Laplacian is no longer sufficient, as there is now a mesh
dependence on h ([6]) and a fairly strong dependence on the regularization parameter
β. It is possible to alleviate these problems by using the nonsymmetric Schur com-
plement Ŝ3 together with Bicg, but for reasons of space we will only show results for
this strategy in the more complicated time–dependent case later in this section.

5.2. The time-dependent case.

No state constraints. In this Section we show results for the time-dependent
case. First, we consider the case when no state constraints are present. Here, we work
with a fixed time-step τ = 0.05, which results in 20 time-steps. In all tables we only
show the degrees of freedom associated with the discretization of the spatial domain.
The desired state is now given by

ȳ = − exp(t) sin(2πx0x1x2) exp
(
−
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))
and y = ȳ on ∂Ω. The results for this setup are shown in Table 5.4 for various
mesh-parameters and values of the regularization parameter β. We can see that the
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(a) Control (b) Computed state (c) Desired state

Fig. 5.3: Desired state, computed state and control for a boundary control problem
with β = 10−6.

(a) Control (b) Computed state

Fig. 5.4: Same setup as in Figure 5.3 only with L2 instead of H1 term.

DoF Minres(T) Minres(T) Minres(T)

β = 10−2 β = 10−4 β = 10−6

729 22 (0.08) 22 (0.09) 44 (0.17)
4913 24 (0.58) 32 (0.77) 62 (1.51)
35937 28 (5.08) 42 (7.35) 90 (15.59)
274625 26 (43.1) 56 (79.9) 127 (180.0)
2146689 24 (318.6) 74 (827.9) 152 (1686.)

Table 5.3: Minres timings and iteration numbers for the time-independent boundary
control problem with no state constraints, with varying mesh sizes as well as different
values of the regularization parameter β.

results are no longer independent of β but the growth is moderate and the problem
is still feasible even for quite small β.

In Table 5.5 we show results for the same problem, except using the alternative
Schur complement approximation Ŝ3. In this distributed control case the diagonal
approximation to the Laplacian works reasonably well in the preconditioner and is
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DoF Minres(T) Minres(T) Minres(T)

β = 10−2 β = 10−4 β = 10−6

729 4 (0.51) 19 (1.80) 53 (4.89)
4913 6 (4.75) 21 (13.72) 69 (43.88)
35937 7 (43.07) 21 (109.3) 79 (385.2)

Table 5.4: Minres iteration numbers and timings for various meshes and varying
regularization parameter β using the Schur complement approximation Ŝ2 for the
time-dependent distributed control problem with no state constraints.

very cheap to apply, so Ŝ3 is not that attractive, but the results do show significantly
smaller iteration counts and better robustness with respect to h and β, and the expense
of dramatically increased computational time, mostly due to the Uzawa iteration.
Since we will be forced to use this nonsymmetric preconditioning strategy for our
time–dependent boundary control problems, using it here allows us to compare its
cost to the symmetric version.

DoF Bicg(T) Bicg(T) Bicg(T)

β = 10−2 β = 10−4 β = 10−6

729 6 (9.93) 8 (13.85) 15 (21.21)
4913 5 (60.7) 8 (93.30) 13 (130.6)
35937 5 (495.3) 8 (700.4) 13 (1051.)

Table 5.5: Bicg iteration numbers and timings for various meshes and varying reg-
ularization parameter β using the Schur complement approximation Ŝ3 for the time-
dependent distributed control problem with no state constraints. For approximating
the system (4.4) we use 10 damped Uzawa steps.

State constraints. We now present results for the time-dependent case in the
presence of state constraints. We again consider the unit square with the desired state
defined by

ȳ = − exp(t) sin(2.0πx1x2x3) exp
(
−
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))
.

The iteration numbers for the outer active set method and Minres are shown in Table
5.6. We only show results for two small mesh-sizes as our implementation is currently
only a proof-of-concept implementation that does not update the preconditioner for
each active set but rather recompute it during each iteration, which in practice will
be too expensive. Though this is a difficult problem and the iteration numbers are
large, especially for small ε, we see that it is possible to solve such a problem using
our approach.

Boundary control. We now show results for the boundary control case when
we are dealing with a time-dependent problem. The desired state is given by

ȳ = − exp(t) sin(2πx0x1x2) exp
(
−
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))
.

For this setup the diagonal approximation in Ŝ2 with Minres completely fails. The
results with the Schur complement approximation Ŝ3 with varying mesh-size and
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DoF AS Minres (tl/av) AS Minres (tl/av)
ε = 10−2 ε = 10−4

729 6 252/42.0 9 1136/126.2
4913 4 202/50.5 5 545/109.0

Table 5.6: Results obtained for state-constrained problem for different values of the
penalty parameter. Total and average number of Minres iterations for all Newton
steps are shown as well as the timings for β = 10−4.

regularization parameter β are shown in Table 5.7. The method performs with good
mesh-independence for moderate β, but for very small β this becomes quite a difficult
problem. If you are willing to pay the computational cost for a large number of Uzawa
steps within the Schur complement approximation, then this approach can be made
nearly mesh independent in terms of iteration counts. If on the other hand you use
fewer Uzawa steps the computational cost is lower but the mesh independence is lost.

DoF Bicg(T) Bicg(T) Bicg(T) Bicg(T) Bicg(T)

β = 10−2 β = 10−4 β = 10−6 β = 10−6 β = 10−6

NT = 20 NT = 20 NT = 20 NT = 20 NT = 20
ρ = 0.15 ρ = 0.15 ρ = 0.2 ρ = 0.2 ρ = 0.2
20 U steps 20 U steps 40 U steps 60 U steps 100 U steps

729 19 (21.78) 18 (22.13) 66 (134.8) 70 (211.6) 42 (229.7)
4913 19 (133.5) 20 (153.4) 71 (893.1) 72 (1333.) 45 (1543)
35937 19 (1005.) 23 (1205.) 92 (8713.) 79 (11050) 50 (11750)

Table 5.7: Bicg iteration numbers and timings for various meshes and varying reg-
ularization parameter β for the time-dependent boundary control problem with no
state constraints using the Schur complement Ŝ3.

6. Conclusions and Outlook. In this paper we presented optimal control prob-
lems subject to the Poisson equation or the heat equation in a distributed or boundary
control setting. The control was added to the objective function as a regularization
term in the H1 norm. We introduced the corresponding discrete optimality system
and introduced preconditioners for both the steady as well as the transient problem.
Due to the Laplacian term coming from the H1 norm we were not able to introduce
preconditioners that are fully independent of the regularization parameter but for the
simple preconditioners we introduced the dependence on the regularization parameter
seemed rather weak. We also showed that our approach works for state-constrained
problems, which were treated using a Moreau-Yosida penalty approach. Numerical
results showed that our preconditioners provided satisfactory results when applied to
three-dimensional test problems.

The method presented here has not focused on the storage efficiency of our all-
at-once approach. One might employ checkpointing [25] techniques when alternately
solving forward and adjoint PDEs. Multiple shooting approaches are one way of
splitting up the time-interval [27] and can lead to the same type of system. A possible
way forward is to compute suboptimal solutions on a sequential splitting of the time-
interval [27] or to use a parallel implementation of our approach. It is also possible
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(a) Desired state ȳ12 (b) Computed state y12

(c) Control y12 with H1-term. (d) Control y12 with L2-term.

Fig. 5.5: Control with and without H1 term as well as desired state and state for
time-dependent boundary control with β = 10−6.

to reduce the storage requirements by performing block-eliminations of some form,
usually via a Schur-complement approach.
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[33] Hinze, M., Köster, M., Turek, S.: A Hierarchical Space-Time Solver for Distributed Control of

20



the Stokes Equation. Tech. rep., SPP1253-16-01 (2008)
[34] Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathe-

matical Modelling: Theory and Applications. Springer-Verlag, New York (2009)
[35] Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control prob-

lems. Systems Control Lett. 50(3), 221–228 (2003). DOI 10.1016/S0167-6911(03)00156-7
[36] Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications,

Advances in Design and Control, vol. 15. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA (2008)

[37] Kanzow, C.: Inexact semismooth Newton methods for large-scale complementarity prob-
lems. Optimization Methods and Software 19(3-4), 309–325 (2004). DOI
10.1080/10556780310001636369. URL http://www.tandfonline.com/doi/abs/10.1080/

10556780310001636369

[38] Keung, Y.L. and Zou, J.: Numerical identifications of parameters in parabolic systems Inverse
Problems 14(1), 83–100 (1999)

[39] Kollmann, M., Kolmbauer, M.: A Preconditioned MinRes Solver for Time-Periodic Parabolic
Optimal Control Problems. Sumitted,Numa-Report 2011-06 (August 2011)

[40] Li, F. and Shen, C. and Li, C.: Multiphase Soft Segmentation with Total Variation and H1

Regularization Journal of Mathematical Imaging and Vision 37(2), 98–111 (2010)
[41] Ng, M.K. and Chan, R.H. and Chan, T.F. and Yip, A.M.: Cosine transform preconditioners for

high resolution image reconstruction Linear Algebra and its Applications 316(1) 89–104
(2000)

[42] Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear
systems. SIAM J. Sci. Comput 21(6), 1969–1972 (2000)

[43] Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM
J. Numer. Anal 12(4), 617–629 (1975)

[44] Pearson, J.W., Stoll, M., Wathen, A.: Preconditioners for state constrained optimal control
problems with Moreau-Yosida penalty function. Submitted (2011)

[45] Pearson, J.W., Stoll, M., Wathen, A.J.: Regularization-robust preconditioners for time-
dependent PDE-constrained optimization problems. To appear SIAM J. Matrix Anal.Appl
(2012)

[46] Pearson, J.W., Wathen, A.J.: A new approximation of the schur complement in preconditioners
for pde-constrained optimization. Numerical Linear Algebra with Applications 19, 816–829
(2012). DOI 10.1002/nla.814. URL http://dx.doi.org/10.1002/nla.814

[47] Peirce, A., Dahleh, M., Rabitz, H.: Optimal control of quantum-mechanical systems: Existence,
numerical approximation, and applications. Physical Review A 37(12), 4950 (1988)

[48] Pironneau, O.: Optimal shape design for elliptic systems. System Modeling and Optimization
pp. 42–66 (1982)

[49] Rees, T., Dollar, H.S., Wathen, A.J.: Optimal solvers for PDE-constrained optimization. SIAM
Journal on Scientific Computing 32(1), 271–298 (2010). DOI http://dx.doi.org/10.1137/
080727154

[50] Rees, T., Stoll, M., Wathen, A.: All-at-once preconditioners for PDE-constrained optimization.
Kybernetika 46, 341–360 (2010)

[51] Juan-Carlos De los Reyes and Schönlieb, Carola-Bibiane: Image denoising: learning noise
distribution via PDE-constrained optimization, http://arxiv.org/abs/1207.3425 (2012)

[52] Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA (2003)

[53] Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3), 856–869 (1986).

[54] Simoncini, V., Szyld, D.: Recent computational developments in Krylov subspace methods for
linear systems. Numer. Linear Algebra Appl 14(1), 1–61 (2007).

[55] Stoll, M.: All-at-once solution of a time-dependent time-periodic PDE-constrained optimization
problems. Submitted (July 2011)

[56] Stoll, M., Wathen, A.: All-at-once solution of time-dependent PDE-constrained optimization
problems. Submitted (2010)

[57] Strang, G., Fix, G.: An Analysis of the Finite Element Method 2nd Edition, 2nd edn. Wellesley-
Cambridge (2008)

[58] Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point
smoothers for optimal control problems. Computing and Visualization in Science 14, 131–
141 (2011)
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