
NSDE 1: LECTURE 5

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

Runge-Kutta R-stage method

Un+1 = Un + hΦ(tn, Un;h)

Φ(t, u;h) =
R∑

r=1

crkr

k1 = f(tn, Un)

kr = f

(
tn + ar h, Un + h

r−1∑
s=1

brsks, r = 2, . . . , R

)

ar =
r−1∑
s=1

brs, r = 2, . . . , R

This is usually written in the form of a Butcher table:

a B
cT

Last time we saw that, for R = 2, we require that the coefficient
satisfy

1/2 = c2a2 = c2b21,

which tells us we should take b21 = a2, c2 = 1/2a2, and c1 = 1− 1/(2a2).
We still have a free parameter, a2, which can take any value and still
give a second order method. (Note that no choice of parameters will, in
general, give a third order method).

Popular choices are:
a2 = 1/2:

0 1
1/2 1/2

0 1

This gives:

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1



Un+1 = Un + hf(tn + 1/2h, Un + 1/2hf(tn, Un))

Which is a method called Modified Euler.
a2 = 1:

0 1
1 1

1/2 1/2

This gives:

Un+1 = Un +
h

2
(f(tn, Un) + f(tn + h, Un + hf(tn, Un)))

Which is, of course, the method we started with, improved Euler.
R=3 The same trick can be done (with messier algebra) to obtain

three stage Runge-Kutta method. Again, the consistency condition is
that

c1 + c2 + c3 = 1.

Now, we can obtain Tn = O(h3) if we choose the parameters to satisfy

c2b21 + c2(b31 + b32) =
1

2

c2b
2
21 + c3(b31 + b32)

2 =
1

3

c3b21b32 =
1

6

Including the consistency condtion, we therefore have four equations for
six unknowns, leaving two parameters free.

A few examples are important enough to have a name...
The classical RK method is:

0 1
1/2 1/2
1 −1 2

1/6 2/3 1/6

(which is related to Simpson’s rule). The Nystrom scheme is:

0 1
2/3 2/3
2/3 0 2/3

1/4 3/8 3/8
2



R=4
A widely used fourth order method has Butcher table:

0 1
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

,

which corresponds to the method

Un+1 = Un +
1

6
h {k1 + 2k2 + 2k3 + k4}

k1 = f(tn, Un)

k2 = f(tn +
1

2
h, Un +

1

2
hk1)

k3 = f(tn +
1

2
h, Un +

1

2
hk2)

k4 = f(tn + h, Un + hk3).

compare methods.m

Adaptive time steps. If the solution changes very slowly, then we
may be able to get a pretty good approximation with a large time step.
However, if the solution changes rapidly, we won’t be able to resolve the
details unles we use a sufficiently small time step.

We can use our knowledge of the error to inform us of where we should
next approxmimate the solution. Since the step size will change, we’ll
use the notation tn+1 = tn + ∆tn. If the error is too large, we can reduce
it by taking a smaller step.

We’ll see this by way of an example. For a fourth order Runge-Kutta
method, our approxiation satisfies

u(tn+1) = Ua
n+1 +K1(∆tn)5u(v)(tn) +O(∆t6n)

for some constant K1.
As well as a step size of ∆tn, we could also have taken two steps of

size ∆tn/2 to give us a different approximation at the same point. The
error here will satisfy:

u(tn+1) = U b
n+1 + 2K1(∆tn/2)5u(v)(tn) +O(∆t6n)

(convince yourself this is true – i.e., that the constants are the same in
both cases).

3



Subtracting these gives

|U b
n+1 − Ua

n+1| ≈
15

16
K1

Now, suppose we wanted this difference to take some value, ε. How
would we pick a time step ∆̄tn to ensure this?

Suppose that

ε = K1(∆̄tn)5u(v)(tn),

and so we can remove the unknowns by dividing these two expressions,
giving: (

∆̄tn
∆tn

)5

=
ε

|U b
n+1 − Ua

n+1|

Rearranging, we get that we should take

∆̄tn =

(
ε

|U b
n+1 − Ua

n+1|

)1/5

∆tn.

This gives us a method for adapting the step length.
• if ∆̄tn < ∆tn, (i.e. |U b

n+1 − Ua
n+1| > ε) repeat the step from tn

with the reduced step length
• if ∆̄tn > ∆tn, (i.e. |U b

n+1 − Ua
n+1| ≤ ε), take Un+1 = U b

n+1 and set
∆tn+1 = ∆̄tn.

This gives a method of adapting the step length depending on the
properties of the equation being solved. However, it is more expensive –
at each step we do an extra application of RK4.

4


