
NSDE 1: LECTURE 4

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

We defined the global error as

en = u(tn)− Un

and the truncation error as

Tn =
(tn+1 − u(tn))

h
− Φ(tn, tn+1, Un, Un+1;h).

For Euler’s method:

Tn −
h

2
u′′(ξn)

We saw last time that

|en| ≤
T

L

[
eL(tn−t0) − 1

]
Finally, note that

T = max
n
|Tn| = max

n

h

2
|u′′(ξn)| ≤ 1

2
hM2

and so

|en| ≤
M2

2L
(eL(tn−t0) − 1)h ≤ Const.h

euler half step.m

Hence, if you half the step size, you (at least) half the error.
θ-methods
A similar (but more messy) analysis can be done for θ−methods.

Here we get that

|en| ≤
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

3
hM3

}[
e
L(tn−t0)
1−θLh − 1

]
,

where M3 = maxt∈[t0,tm] |u′′′(t)|.
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As expected, the error of explicit Euler is recovered if we take θ = 0.
We also see that the special choice of θ = 1/2 – the trapezium rule method
– gives second order accurate method. This explains the behaviour in the
numerical example.

Question: where did M3 go for Euler’s method?

Recall that when we derived the truncation error, we cut off the Taylor
series at the u′′ term. We could equally have written

Tn =
h

2
u′′(tn) +

h2

6
u′′′(ξ̂n), ξ̂ ∈ [tn, tn+1.

Check that, if we’d included this term, we obtain the bound for the θ-
method.

One-step methods
Euler’s method is an example of what’s known as a one-step method.

The general form of a one-step method is:

U0 = u(t0)

Un+1 = Un + hΦ(tn, Un;h)

Note that all that appears in the right hand side is Un.
Examples
Euler’s method:

Φ(tn, Un;h) = f(tn, Un)

The trapezium rule is not a one-step method:

Φ =
1

2
(f(tn, Un) + f(tn+1, Un+1))

We can, however, get what should be a better method, which is
explicit, by replacing Un+1 itself by it’s Euler approximation, Un +
hf(tn, Un). This is called improved Euler’s method.

improved euler.m

For any one-step method, if Φ satisfies a Lipschitz condition:

|Φ(t, u;h)− Φ(t, v;h)| ≤ L|u− v|,

then the same analysis we did for Euler’s method will go through here
also. We therefore also have the concept of Truncation error here:

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, u(tn);h),

and, as before, if T = maxn |Tn|, then

|Un − u(tn)| ≤ (eL(tn−t0) − 1)
T

L
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In order for the error to vanish with a small enough step size, we
therefore require that Tn → 0 as h→ 0 and n→∞, with nh = tn − t0.

Consistency: Definition We say that a one-step method is con-
sistent if

lim
h→0,n→∞,nh=tn−t0

Tn = 0

Now, since Φ(·, ·; ·) and y′(·) are continuous, we know that

lim
h→0

Tn = u′(tn)− Φ(tn, u(tn); 0).

Therefore a one-step method is consistent if and only if

Φ(tn, u(tn); 0)) = f(t, u).

In general, we are not restricted to one extra point in the region
[tn, tn + h]; we can evaluate the function at as many intermediate points
as we like. We’re only interested in explicit methods, so we need to also
have a way of approximating the solution at those points (as u(tn + ah)
will not be avaliable). This leads to a general family of methods known
as Runge-Kutta methods.

Runge-Kutta R-stage method

Un+1 = Un + hΦ(tn, Un;h)

Φ(x, y;h) =
R∑

r=1

crkr

k1 = f(tn, Un)

kr = f

(
tn + ar h, Un + h

r−1∑
s=1

brsks, r = 2, . . . , R

)

ar =
r−1∑
s=1

brs, r = 2, . . . , R

This is usually written in the form of a Butcher table:

a = B1 B
cT

R=1
If R = 1, then we get back our old friend Euler’s method.
R = 2
For R = 2, we have more choice. Now we want to find a method such

that

Un+1 = Un + h(c1ki + c2k2),
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where

k1 = f(tn, Un)

k2 = f(tn + a2h, Un + b21hk1)

What values of c1, c2, a2, and b21 make sense?
To be consistent, we need that Φ(tn, Un;h) = f(tn, Un), i.e.

c1f(tn, Un) + c2f(tn, Un) = f(tn, Un) ⇐⇒ c1 + c2 = 1

So, given c2, we can obtain c1, but how should we choose c2, b21 and
a2. We try to make the order of the method as high as possible.

Recall

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, u(tn))

=
u(tn+1)− u(tn)

h
− c1f(tn, u(tn))− c2f(tn + a2h, u(tn) + b21f(tn, u(tn))h)

By expanding u(tn+h) about tn, and f(tn+a2h, u(tn)+b21f(tn, u(tn)h))
about tn then u(tn), and noting that

u′(tn) = f(tn, u(tn))

u′′(tn) =
d

dt
f(tn, u(tn))

=
∂

∂t
f(tn, u(tn)) +

∂

∂u
f(tn, u(tn))

d

dt
u(tn)

=
∂

∂t
f(tn, u(tn)) + f(tn, u(tn))

∂

∂u
f(tn, u(tn)),

we can show that

Tn = h2
(

1

6
u′′′(tn)− c2

2

[
b221f(tn, u(tn))

∂2

∂u2
f(tn, u(tn))+

a2b21
∂2

∂u∂t
f(tn, u(tn)) + a22

∂2

∂t2
f(tn, u(tn))

])
+O(h3)

as long as we choose

1/2 = c2a2 = c2b21.
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