NSDE 1: LECTURE 4

TYRONE REES*

Recap

$$
u^{\prime}=f(t, u), \quad u\left(t_{0}\right)=u_{0}
$$

We defined the global error as

$$
e_{n}=u\left(t_{n}\right)-U_{n}
$$

and the truncation error as

$$
T_{n}=\frac{\left(t_{n+1}-u\left(t_{n}\right)\right)}{h}-\Phi\left(t_{n}, t_{n+1}, U_{n}, U_{n+1} ; h\right)
$$

For Euler's method:

$$
T_{n}-\frac{h}{2} u^{\prime \prime}\left(\xi_{n}\right)
$$

We saw last time that

$$
\left|e_{n}\right| \leq \frac{T}{L}\left[e^{L\left(t_{n}-t_{0}\right)}-1\right]
$$

Finally, note that

$$
T=\max _{n}\left|T_{n}\right|=\max _{n} \frac{h}{2}\left|u^{\prime \prime}\left(\xi_{n}\right)\right| \leq \frac{1}{2} h M_{2}
$$

and so

$$
\left|e_{n}\right| \leq \frac{M_{2}}{2 L}\left(e^{L\left(t_{n}-t_{0}\right)}-1\right) h \leq \text { Const. } h
$$

euler_half_step.m
Hence, if you half the step size, you (at least) half the error.
θ-methods
A similar (but more messy) analysis can be done for θ-methods. Here we get that

$$
\left|e_{n}\right| \leq \frac{h}{L}\left\{\left|\frac{1}{2}-\theta\right| M_{2}+\frac{1}{3} h M_{3}\right\}\left[\mathrm{e}^{\frac{L\left(t_{n}-t_{0}\right)}{1-\theta L h}}-1\right]
$$

where $M_{3}=\max _{t \in\left[t_{0}, t_{m}\right]}\left|u^{\prime \prime \prime}(t)\right|$.

[^0]As expected, the error of explicit Euler is recovered if we take $\theta=0$. We also see that the special choice of $\theta=1 / 2$ - the trapezium rule method - gives second order accurate method. This explains the behaviour in the numerical example.

Question: where did M_{3} go for Euler's method?
Recall that when we derived the truncation error, we cut off the Taylor series at the $u^{\prime \prime}$ term. We could equally have written

$$
T_{n}=\frac{h}{2} u^{\prime \prime}\left(t_{n}\right)+\frac{h^{2}}{6} u^{\prime \prime \prime}\left(\hat{\xi}_{n}\right), \quad \hat{\xi} \in\left[t_{n}, t_{n+1} .\right.
$$

Check that, if we'd included this term, we obtain the bound for the θ method.

One-step methods

Euler's method is an example of what's known as a one-step method. The general form of a one-step method is:

$$
\begin{aligned}
U_{0} & =u\left(t_{0}\right) \\
U_{n+1} & =U_{n}+h \Phi\left(t_{n}, U_{n} ; h\right)
\end{aligned}
$$

Note that all that appears in the right hand side is U_{n}.

Examples

Euler's method:

$$
\Phi\left(t_{n}, U_{n} ; h\right)=f\left(t_{n}, U_{n}\right)
$$

The trapezium rule is not a one-step method:

$$
\Phi=\frac{1}{2}\left(f\left(t_{n}, U_{n}\right)+f\left(t_{n+1}, U_{n+1}\right)\right)
$$

We can, however, get what should be a better method, which is explicit, by replacing U_{n+1} itself by it's Euler approximation, $U_{n}+$ $h f\left(t_{n}, U_{n}\right)$. This is called improved Euler's method.
improved_euler.m
For any one-step method, if Φ satisfies a Lipschitz condition:

$$
|\Phi(t, u ; h)-\Phi(t, v ; h)| \leq L|u-v|,
$$

then the same analysis we did for Euler's method will go through here also. We therefore also have the concept of Truncation error here:

$$
T_{n}=\frac{u\left(t_{n+1}\right)-u\left(t_{n}\right)}{h}-\Phi\left(t_{n}, u\left(t_{n}\right) ; h\right),
$$

and, as before, if $T=\max _{n}\left|T_{n}\right|$, then

$$
\left|U_{n}-u\left(t_{n}\right)\right| \leq\left(e^{L\left(t_{n}-t_{0}\right)}-1\right) \frac{T}{L}
$$

In order for the error to vanish with a small enough step size, we therefore require that $T_{n} \rightarrow 0$ as $h \rightarrow 0$ and $n \rightarrow \infty$, with $n h=t_{n}-t_{0}$.

Consistency: Definition We say that a one-step method is consistent if

$$
\lim _{h \rightarrow 0, n \rightarrow \infty, n h=t_{n}-t_{0}} T_{n}=0
$$

Now, since $\Phi(\cdot, \cdot ; \cdot)$ and $y^{\prime}(\cdot)$ are continuous, we know that

$$
\lim _{h \rightarrow 0} T_{n}=u^{\prime}\left(t_{n}\right)-\Phi\left(t_{n}, u\left(t_{n}\right) ; 0\right)
$$

Therefore a one-step method is consistent if and only if

$$
\left.\Phi\left(t_{n}, u\left(t_{n}\right) ; 0\right)\right)=f(t, u)
$$

In general, we are not restricted to one extra point in the region $\left[t_{n}, t_{n}+h\right]$; we can evaluate the function at as many intermediate points as we like. We're only interested in explicit methods, so we need to also have a way of approximating the solution at those points (as $u\left(t_{n}+a h\right)$ will not be avaliable). This leads to a general family of methods known as Runge-Kutta methods.

Runge-Kutta R-stage method

$$
\begin{aligned}
U_{n+1} & =U_{n}+h \Phi\left(t_{n}, U_{n} ; h\right) \\
\Phi(x, y ; h) & =\sum_{r=1}^{R} c_{r} k_{r} \\
k_{1} & =f\left(t_{n}, U_{n}\right) \\
k_{r} & =f\left(t_{n}+a_{r} h, U_{n}+h \sum_{s=1}^{r-1} b_{r s} k_{s}, \quad r=2, \ldots, R\right) \\
a_{r} & =\sum_{s=1}^{r-1} b_{r s}, \quad r=2, \ldots, R
\end{aligned}
$$

This is usually written in the form of a Butcher table:

$$
\begin{array}{c|c}
a=B \mathbf{1} & B \\
\hline & c^{T}
\end{array}
$$

$\mathrm{R}=1$
If $R=1$, then we get back our old friend Euler's method.
$\mathbf{R}=\mathbf{2}$
For $R=2$, we have more choice. Now we want to find a method such that

$$
U_{n+1}=U_{n}+h\left(c_{1} k_{i}+c_{2} k_{2}\right)
$$

where

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, U_{n}\right) \\
& k_{2}=f\left(t_{n}+a_{2} h, U_{n}+b_{21} h k_{1}\right)
\end{aligned}
$$

What values of c_{1}, c_{2}, a_{2}, and b_{21} make sense?
To be consistent, we need that $\Phi\left(t_{n}, U_{n} ; h\right)=f\left(t_{n}, U_{n}\right)$, i.e.

$$
c_{1} f\left(t_{n}, U_{n}\right)+c_{2} f\left(t_{n}, U_{n}\right)=f\left(t_{n}, U_{n}\right) \Longleftrightarrow c_{1}+c_{2}=1
$$

So, given c_{2}, we can obtain c_{1}, but how should we choose c_{2}, b_{21} and a_{2}. We try to make the order of the method as high as possible.

Recall

$$
\begin{aligned}
T_{n} & =\frac{u\left(t_{n+1}\right)-u\left(t_{n}\right)}{h}-\Phi\left(t_{n}, u\left(t_{n}\right)\right) \\
& =\frac{u\left(t_{n+1}\right)-u\left(t_{n}\right)}{h}-c_{1} f\left(t_{n}, u\left(t_{n}\right)\right)-c_{2} f\left(t_{n}+a_{2} h, u\left(t_{n}\right)+b_{21} f\left(t_{n}, u\left(t_{n}\right)\right) h\right)
\end{aligned}
$$

By expanding $u\left(t_{n}+h\right)$ about t_{n}, and $f\left(t_{n}+a_{2} h, u\left(t_{n}\right)+b_{21} f\left(t_{n}, u\left(t_{n}\right) h\right)\right)$ about t_{n} then $u\left(t_{n}\right)$, and noting that

$$
\begin{aligned}
u^{\prime}\left(t_{n}\right) & =f\left(t_{n}, u\left(t_{n}\right)\right) \\
u^{\prime \prime}\left(t_{n}\right) & =\frac{d}{d t} f\left(t_{n}, u\left(t_{n}\right)\right) \\
& =\frac{\partial}{\partial t} f\left(t_{n}, u\left(t_{n}\right)\right)+\frac{\partial}{\partial u} f\left(t_{n}, u\left(t_{n}\right)\right) \frac{d}{d t} u\left(t_{n}\right) \\
& =\frac{\partial}{\partial t} f\left(t_{n}, u\left(t_{n}\right)\right)+f\left(t_{n}, u\left(t_{n}\right)\right) \frac{\partial}{\partial u} f\left(t_{n}, u\left(t_{n}\right)\right),
\end{aligned}
$$

we can show that

$$
\begin{aligned}
T_{n}=h^{2}\left(\frac{1}{6} u^{\prime \prime \prime}\left(t_{n}\right)-\right. & \frac{c_{2}}{2}\left[b_{21}^{2} f\left(t_{n}, u\left(t_{n}\right)\right) \frac{\partial^{2}}{\partial u^{2}} f\left(t_{n}, u\left(t_{n}\right)\right)+\right. \\
& \left.\left.a_{2} b_{21} \frac{\partial^{2}}{\partial u \partial t} f\left(t_{n}, u\left(t_{n}\right)\right)+a_{2}^{2} \frac{\partial^{2}}{\partial t^{2}} f\left(t_{n}, u\left(t_{n}\right)\right)\right]\right)+O\left(h^{3}\right)
\end{aligned}
$$

as long as we choose

$$
1 / 2=c_{2} a_{2}=c_{2} b_{21}
$$

[^0]: *Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

