
NSDE 1: LECTURE 3

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

Consider a grid of m + 1 equally spaced points, tn+1 = tn + h. Ap-
proximate the solution u(t0), u(t1), . . . , u(tm) by U0, U1, . . . , Um, which
are calculated by

U0 = u(t0)

Un+1 = Un + hf(tn, Un))

We can think of Euler’s method in terms of integrals:∫ tn+1

tn

u′ dt =

∫ tn+1

tn

f(x, u) dt

u(tn+1)− u(tn) =

∫ tn+1

tn

f(t, u) dt

u(tn+1) = u(tn) +

∫ tn+1

tn

f(t, u) dt

u(tn+1) ≈ u(tn) + h f(tn, u(tn))

However, we can also make a different approximation:

u(tn+1) = u(tn) +

∫ tn+1

tn

f(t, u) dt

u(tn+1) ≈ u(tn) + h f(tn+1, u(tn+1))

Which leads to the algorithm:
Euler’s implicit method

U0 = u(t0)

Un+1 = Un + h f(tn+1, Un+1)

This has an obvious problem: Un+1 appears on the right hand side
of the equation. Sometimes (e.g., on problem sheets) such problems can
be solved straightforwardly, but usually, in practice, we’ll need to use a
nonlinear equation solver (e.g., Newton’s method).

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

This is why this method is called implicit.
We could also do a more sensible (from the point of view of approxi-

mating the integral) approximation of∫ tn+1

tn

f(t, u) dt ≈ h

2
(f(tn, u(tn)) + f(tn+1, u(tn+1)))

This motivates what’s known as the Trapezium rule method:

U0 = u(t0)

Un+1 = Un +
h

2
(f(tn, Un) + f(tn+1, Un+1))

And these are all specific instances of a θ-method:

U0 = u(t0)

Un+1 = Un + h ((1− θ)f(tn, Un) + θf(tn+1, Un+1))

which takes a weighted average of the end points to approximate the
integral.

Example 0.1.

y′ = x− y2, y(0) = 0

Solve using a θ-method for θ = 0, 1/2, and 1.
Accuracy
How can we know beforehand how accurate the method is going to

be? Before we can answer this, we need a concept of error.
The global error of any method is defined as

en = u(tn)− Un.

We can also define the truncation error. Note that the methods
we’ve looked at so far can be written in the form

Un+1 = Un + hΦ(tn, tn+1, Un, Un+1;h)

We can re-write this in a form that explicitly models the derivatives:

Un+1 − Un

h
= Φ(tn, tn+1, Un, Un+1;h).

The trunction error is the difference between the left and right hand sides
if we plug in the exact solution:

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, tn+1, u(tn), u(tn+1);h)

2

If Tn = O(hp), where p is the largest such integer: the method is said
to be pth order accurate.

Example 0.2. Euler’s method: truncation error

Tn =
u(tn+1)− u(tn)

h
− f(tn, u(tn))

=
u(tn+1)− u(tn)

h
− u′(tn)

We can expand u(tn+1) via a Taylor series to give

u(tn+1) = u(tn + h) = u(tn) + hu′(tn) +
h2

2
u′′(ξn), ξn ∈ [tn, tn+1]

Subsituting this in we get

Tn =
u(tn) + hu′(tn) + h2

2
u′′(ξn)− u(tn)

h
− u′(tn) =

1

2
hu′′(ξn)

Euler’s method is first order accurate.
The truncation error is usually ‘easy’ to calculate, but it tells us little,

by itself, about the quality of the solution. What we really want to know
is the size of the global error. Now,

u(tn+1) = u(tn) + hf(tn, u(tn)) + hTn

Un+1 = Un + hf(tn, Un)
en+1 = en + h[f(tn, u(tn))− f(tn, Un)] + hTn

and, taking absolute values of both sides:

|en+1| ≤ |en|+ h|f(tn, u(tn))− f(tn, Un)|+ h|Tn|

If f(·, ·) satisfies a Lipschitz condition, then |f(tn, u(tn)) − f(tn, Un)| ≤
L|u(tn)− Un|, and so we have

|en+1| ≤ (1 + Lh)|en|+ h|Tn| for all n

Now if we let T = max |Tn|, we have

|en+1| ≤ (1 + Lh)|en|+ hT for all n

By induction, we get that

|en| ≤ (1 + Lh)n|e0|+
T

L
[(1 + Lh)n − 1] for all n

We know that e0 = 0, and also that

(1 + Lh)n ≤ [eLh]n = eLhn = eL(tn−t0),
3

where we have used the facts that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ≥ 1 + x for x > 0

and that

tn = t0 + nh.

Therefore we get

|en| ≤
T

L

[
eL(tn−t0) − 1

]
Finally, note that

T = max
n
|Tn| = max

n

h

2
|u′′(ξn)| ≤ 1

2
hM2

where we have set M2 = 1
2

maxt∈[tn,tn+1] |u′′(t)|. We therefore have that

|en| ≤
M2

2L
(eL(tn−t0) − 1)h ≤ Const.h

Hence, if you half the step size, you (at least) half the error.

4

