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Recap

u′ = f(t, u), u(t0) = u0.

No guarantee of a unique solution. However, there is one if the con-
ditions for Picard’s theorem are satisfied:

Let R = {z ∈ R2 : |t− t0| ≤ h, |u− u0| ≤ k}
• Suppose that f(·, ·) is a continuous function in U ⊃ R with

M = max
(t,u)∈R

|f(t, u)|

• Suppose that ∃L > 0 s.t. ∀(t, u1), (t, u2) ∈ R,

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|

Lipschitz condition
• Suppose that Mh ≤ k

Then there exists a unique continuously differentiable function t → u(t)
satisfying the IVP:

u′ = f(t, u), u(t0) = u0

for all t ∈ [t0 − h, t0 + h].
Example 0.1.

u′ = 3u2/3, u(0) = 0

We know from last time that there is not a unique solution, so we should
expect that u violates a condition of Picard’s theorem.

Suppose there exist constants h > 0 and k > 0 so that, if |t| ≤ h, |u| ≤
k, there is a constant L > 0 such that

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|.

Then, if we set u1 = u ∈ [0, k], u2 = 0, then we have that

|3u2/3| = 3|u|2/3 < L|u| ⇐⇒ |u| > (L/3)3

This is clearly a contradiction, as u can be arbitrarily close to zero.
ezplot(’3*x^(3/2)’,[0,2]);
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Before we dive into an example that is unique, we remind ourselves
of a useful result:

Theorem 0.2. The Mean Value Theorem Suppose that a func-
tion g is defined and continuous on a closed interval [a, b] on the real line,
and that g is differentiable on the open interval (a, b).

Then, for every y1, y2 ∈ [a, b], there exists ξ ∈ (y1, y2) such that

g(y1)− g(y2) = g′(ξ)(y1 − y2).

This is very useful for deriving Lipschitz constants!
Example 0.3.

u′ = u2 u(0) = u0

First, let us define the region

R = {(t, u) ∈ R2 : |t| ≤ h, |u− u0| ≤ k}

for some h > 0 and k > 0.
Note that

|f(t, u1)− f(t, u2)| = |u2
1 − u2

2|
≤ 2(u0 + k)|u1 − u2| (by MVT)

So f(·, ·) has a Lipschitz constant of 2(u0 + k) in any neighbourhood R,
for any h and k.

Also, max |f(t, u)| = (k+u0)
2, so given any k > 0, taking h ≤ k/(k+

u0)
2 will ensure that the conditions of Picard’s theorem are satisfied.
We must be careful about what Picard’s theorem says, though. The

analytic solution here is

u =
u0

1− u0t
,

which blows up at time t = 1/u0.
ezplot(’a/(1-a*x)’,x=[0,1/a])

1. Solving ODEs numerically. How do we approximate the solution of
ODEs?

Recall our standard problem:

u′ = f(t, u), for t ∈ [t0, TM ], u(t0) = u0.

First, we seek approximate the solution at a discrete number of points
in time:

Since we have the inital value, this will be exact, but the other points
only approximate the true solution.
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Notation
We approximate the solution of the ODE at points that we call

t0, t1, . . . , tm.

We will often (for simplicity) consider equally spaced points, so that

tn+1 = tn + h, where h = (tn − t0)/n.

The exact solution at these points would be

u(t0), u(t1), . . . , u(tm).

We call the approximate solution at these points

U0, U1, . . . , Um.

How can we approximate the solution?

u′ = f(t, u)

lim
t→0

u(t+ h)− u(t)

h
= f(t, u)

u(t+ h)− u(t)

h
≈ f(t, u)

u(tn + h) ≈ u(tn) + hf(tn, u(tn))

We can turn this approximation into an algorithm:
Euler’s (explicit) method

U0 = u(t0)

Un+1 = Un + h f(tn, Un)

Systems
We developed this for first-order IVPs, but the method works more

generally. For example, consider the system

u′′ = f(t, u, u′)

u(0) = u0

u′(0) = u′
0.

This can be re-written as a system of first order equations:

u′ = v v(0) = u′
0

v′ = f(t, u, v) u(0) = u(0),
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or, in vector form:

du

dt
= f , u(0) =

[
u0

u′
0

]
where

u =

[
u
v

]
and f =

[
v

f(t, u, v)

]
We can then apply Euler’s method, say, in exactly the same way as for
the scalar case:

Un+1 = Un + hf(tn,Un).

This is just shorthand for writing Euler separately on each of the com-
ponents:

Un+1 = Un + hVn

Vn+1 = Vn + h f(tn, Un, Vn)
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