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Examples in presentation:
• Moon landing and code
• Finding Dory
• Driverless cars

In the examples we’ve seen, and most other ‘real world’ systems,
the differential equations cannot be solved analytically, and instead they
must be solved approximately using numerical algorithms.

Questions that this course will answer:
• How do I solve an initial value problem (IVP) for an ordinary

differential equation (ODE), or an IVP for a parabolic partial
differential equation?
• How do I analyse the accuracy of the solution I get?
• How can I know if the algorithm I’m using is stable?

1. Initial value problems for ODEs. Here is the basic form that we
will use throughout the course:

u′ = f(t,u), for t ∈ [t0, TM ]

u(t0) = u0

where u,u0, f(·) ∈ Rk for some k.
First we need to know: is this a sensible question to ask?
Example 1.1.

u′ = 3u2/3

u(0) = 0.

What are the solutions to this problem?
A-level maths tells us that

du/dt = 3u2/3∫
1

3
u−2/3 du =

∫
dt

u1/3 = t + K

u = (t + K)3

and, since u(0) = 0, we have that u = t3.
However, there is another solution – u = 0!
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In fact, it’s worse than that – as

u(t) =

{
0 0 ≤ t ≤ c

(t− c)3 c < t <∞

is a solution for all c – an infinite number of solutions!.
This spells trouble for an algorithm designed to find an approximation

to the solution – which one would it pick?!
One way to guarantee that we don’t have this problem is to ensure

that the problem is smooth enough. Let us, for simplicity, consider the
1D problem,

u′ = f(t, u), u(t0) = u0.

This is what we mean by ‘smooth enough’. Let (t0, u0) be the point
of the initial data. We need the problem to satisfy two conditions:

• We can draw ’butterfly wings’ from (t0, u0) the function f stays
within this region.
• We can draw a box around the solution in some region, and the

solution leaves the box from the edge (not the top).
If these conditions hold, then we can be sure that a solution exists, and
that it is unique.

We state these conditions more rigorously:
Theorem 1.2. Picard’s theorem
Let R = {z ∈ R2 : |t− t0| ≤ h, |u− u0| ≤ k}
• Suppose that f(·, ·) is a continuous function in U ⊃ R with

M = max
(t,u)∈R

|f(t, u)|

• Suppose that ∃L > 0 s.t. ∀(t, u1), (t, u2) ∈ R,

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|

Lipschitz condition
• Suppose that Mh ≤ k

Then there exists a unique continuously differentiable function t → u(t)
satisfying the IVP:

u′ = f(t, u), u(t0) = u0

for all t ∈ [t0 − h, t0 + h].
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