
NSDE 1: LECTURE 1

TYRONE REES∗

Examples in presentation:
• Moon landing and code
• Finding Dory
• Driverless cars

In the examples we’ve seen, and most other ‘real world’ systems,
the differential equations cannot be solved analytically, and instead they
must be solved approximately using numerical algorithms.

Questions that this course will answer:
• How do I solve an initial value problem (IVP) for an ordinary

differential equation (ODE), or an IVP for a parabolic partial
differential equation?
• How do I analyse the accuracy of the solution I get?
• How can I know if the algorithm I’m using is stable?

1. Initial value problems for ODEs. Here is the basic form that we
will use throughout the course:

u′ = f(t,u), for t ∈ [t0, TM]

u(t0) = u0

where u,u0, f(·) ∈ Rk for some k.
First we need to know: is this a sensible question to ask?
Example 1.1.

u′ = 3u2/3

u(0) = 0.

What are the solutions to this problem?
A-level maths tells us that

du/dt = 3u2/3∫
1

3
u−2/3 du =

∫
dt

u1/3 = t + K

u = (t + K)3

and, since u(0) = 0, we have that u = t3.
However, there is another solution – u = 0!

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

In fact, it’s worse than that – as

u(t) =

{
0 0 ≤ t ≤ c

(t− c)3 c < t <∞

is a solution for all c – an infinite number of solutions!.
This spells trouble for an algorithm designed to find an approximation

to the solution – which one would it pick?!
One way to guarantee that we don’t have this problem is to ensure

that the problem is smooth enough. Let us, for simplicity, consider the
1D problem,

u′ = f(t, u), u(t0) = u0.

This is what we mean by ‘smooth enough’. Let (t0, u0) be the point
of the initial data. We need the problem to satisfy two conditions:

• We can draw ’butterfly wings’ from (t0, u0) the function f stays
within this region.
• We can draw a box around the solution in some region, and the

solution leaves the box from the edge (not the top).
If these conditions hold, then we can be sure that a solution exists, and
that it is unique.

We state these conditions more rigorously:
Theorem 1.2. Picard’s theorem
Let R = {z ∈ R2 : |t− t0| ≤ h, |u− u0| ≤ k}
• Suppose that f(·, ·) is a continuous function in U ⊃ R with

M = max
(t,u)∈R

|f(t, u)|

• Suppose that ∃L > 0 s.t. ∀(t, u1), (t, u2) ∈ R,

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|

Lipschitz condition
• Suppose that Mh ≤ k

Then there exists a unique continuously differentiable function t → u(t)
satisfying the IVP:

u′ = f(t, u), u(t0) = u0

for all t ∈ [t0 − h, t0 + h].

2

NSDE 1: LECTURE 2

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

No guarantee of a unique solution. However, there is one if the con-
ditions for Picard’s theorem are satisfied:

Let R = {z ∈ R2 : |t− t0| ≤ h, |u− u0| ≤ k}
• Suppose that f(·, ·) is a continuous function in U ⊃ R with

M = max
(t,u)∈R

|f(t, u)|

• Suppose that ∃L > 0 s.t. ∀(t, u1), (t, u2) ∈ R,

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|

Lipschitz condition
• Suppose that Mh ≤ k

Then there exists a unique continuously differentiable function t → u(t)
satisfying the IVP:

u′ = f(t, u), u(t0) = u0

for all t ∈ [t0 − h, t0 + h].
Example 0.1.

u′ = 3u2/3, u(0) = 0

We know from last time that there is not a unique solution, so we should
expect that u violates a condition of Picard’s theorem.

Suppose there exist constants h > 0 and k > 0 so that, if |t| ≤ h, |u| ≤
k, there is a constant L > 0 such that

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|.

Then, if we set u1 = u ∈ [0, k], u2 = 0, then we have that

|3u2/3| = 3|u|2/3 < L|u| ⇐⇒ |u| > (L/3)3

This is clearly a contradiction, as u can be arbitrarily close to zero.
ezplot(’3*x^(3/2)’,[0,2]);

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

Before we dive into an example that is unique, we remind ourselves
of a useful result:

Theorem 0.2. The Mean Value Theorem Suppose that a func-
tion g is defined and continuous on a closed interval [a, b] on the real line,
and that g is differentiable on the open interval (a, b).

Then, for every y1, y2 ∈ [a, b], there exists ξ ∈ (y1, y2) such that

g(y1)− g(y2) = g′(ξ)(y1 − y2).

This is very useful for deriving Lipschitz constants!
Example 0.3.

u′ = u2 u(0) = u0

First, let us define the region

R = {(t, u) ∈ R2 : |t| ≤ h, |u− u0| ≤ k}

for some h > 0 and k > 0.
Note that

|f(t, u1)− f(t, u2)| = |u2
1 − u2

2|
≤ 2(u0 + k)|u1 − u2| (by MVT)

So f(·, ·) has a Lipschitz constant of 2(u0 + k) in any neighbourhood R,
for any h and k.

Also, max |f(t, u)| = (k+u0)
2, so given any k > 0, taking h ≤ k/(k+

u0)
2 will ensure that the conditions of Picard’s theorem are satisfied.
We must be careful about what Picard’s theorem says, though. The

analytic solution here is

u =
u0

1− u0t
,

which blows up at time t = 1/u0.
ezplot(’a/(1-a*x)’,x=[0,1/a])

1. Solving ODEs numerically. How do we approximate the solution of
ODEs?

Recall our standard problem:

u′ = f(t, u), for t ∈ [t0, TM], u(t0) = u0.

First, we seek approximate the solution at a discrete number of points
in time:

Since we have the inital value, this will be exact, but the other points
only approximate the true solution.

2

Notation
We approximate the solution of the ODE at points that we call

t0, t1, . . . , tm.

We will often (for simplicity) consider equally spaced points, so that

tn+1 = tn + h, where h = (tn − t0)/n.

The exact solution at these points would be

u(t0), u(t1), . . . , u(tm).

We call the approximate solution at these points

U0, U1, . . . , Um.

How can we approximate the solution?

u′ = f(t, u)

lim
t→0

u(t+ h)− u(t)

h
= f(t, u)

u(t+ h)− u(t)

h
≈ f(t, u)

u(tn + h) ≈ u(tn) + hf(tn, u(tn))

We can turn this approximation into an algorithm:
Euler’s (explicit) method

U0 = u(t0)

Un+1 = Un + h f(tn, Un)

Systems
We developed this for first-order IVPs, but the method works more

generally. For example, consider the system

u′′ = f(t, u, u′)

u(0) = u0

u′(0) = u′
0.

This can be re-written as a system of first order equations:

u′ = v v(0) = u′
0

v′ = f(t, u, v) u(0) = u(0),

3

or, in vector form:

du

dt
= f , u(0) =

[
u0

u′
0

]
where

u =

[
u
v

]
and f =

[
v

f(t, u, v)

]
We can then apply Euler’s method, say, in exactly the same way as for
the scalar case:

Un+1 = Un + hf(tn,Un).

This is just shorthand for writing Euler separately on each of the com-
ponents:

Un+1 = Un + hVn

Vn+1 = Vn + h f(tn, Un, Vn)

4

NSDE 1: LECTURE 3

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

Consider a grid of m + 1 equally spaced points, tn+1 = tn + h. Ap-
proximate the solution u(t0), u(t1), . . . , u(tm) by U0, U1, . . . , Um, which
are calculated by

U0 = u(t0)

Un+1 = Un + hf(tn, Un))

We can think of Euler’s method in terms of integrals:∫ tn+1

tn

u′ dt =

∫ tn+1

tn

f(x, u) dt

u(tn+1)− u(tn) =

∫ tn+1

tn

f(t, u) dt

u(tn+1) = u(tn) +

∫ tn+1

tn

f(t, u) dt

u(tn+1) ≈ u(tn) + h f(tn, u(tn))

However, we can also make a different approximation:

u(tn+1) = u(tn) +

∫ tn+1

tn

f(t, u) dt

u(tn+1) ≈ u(tn) + h f(tn+1, u(tn+1))

Which leads to the algorithm:
Euler’s implicit method

U0 = u(t0)

Un+1 = Un + h f(tn+1, Un+1)

This has an obvious problem: Un+1 appears on the right hand side
of the equation. Sometimes (e.g., on problem sheets) such problems can
be solved straightforwardly, but usually, in practice, we’ll need to use a
nonlinear equation solver (e.g., Newton’s method).

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

This is why this method is called implicit.
We could also do a more sensible (from the point of view of approxi-

mating the integral) approximation of∫ tn+1

tn

f(t, u) dt ≈ h

2
(f(tn, u(tn)) + f(tn+1, u(tn+1)))

This motivates what’s known as the Trapezium rule method:

U0 = u(t0)

Un+1 = Un +
h

2
(f(tn, Un) + f(tn+1, Un+1))

And these are all specific instances of a θ-method:

U0 = u(t0)

Un+1 = Un + h ((1− θ)f(tn, Un) + θf(tn+1, Un+1))

which takes a weighted average of the end points to approximate the
integral.

Example 0.1.

y′ = x− y2, y(0) = 0

Solve using a θ-method for θ = 0, 1/2, and 1.
Accuracy
How can we know beforehand how accurate the method is going to

be? Before we can answer this, we need a concept of error.
The global error of any method is defined as

en = u(tn)− Un.

We can also define the truncation error. Note that the methods
we’ve looked at so far can be written in the form

Un+1 = Un + hΦ(tn, tn+1, Un, Un+1;h)

We can re-write this in a form that explicitly models the derivatives:

Un+1 − Un

h
= Φ(tn, tn+1, Un, Un+1;h).

The trunction error is the difference between the left and right hand sides
if we plug in the exact solution:

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, tn+1, u(tn), u(tn+1);h)

2

If Tn = O(hp), where p is the largest such integer: the method is said
to be pth order accurate.

Example 0.2. Euler’s method: truncation error

Tn =
u(tn+1)− u(tn)

h
− f(tn, u(tn))

=
u(tn+1)− u(tn)

h
− u′(tn)

We can expand u(tn+1) via a Taylor series to give

u(tn+1) = u(tn + h) = u(tn) + hu′(tn) +
h2

2
u′′(ξn), ξn ∈ [tn, tn+1]

Subsituting this in we get

Tn =
u(tn) + hu′(tn) + h2

2
u′′(ξn)− u(tn)

h
− u′(tn) =

1

2
hu′′(ξn)

Euler’s method is first order accurate.
The truncation error is usually ‘easy’ to calculate, but it tells us little,

by itself, about the quality of the solution. What we really want to know
is the size of the global error. Now,

u(tn+1) = u(tn) + hf(tn, u(tn)) + hTn

Un+1 = Un + hf(tn, Un)
en+1 = en + h[f(tn, u(tn))− f(tn, Un)] + hTn

and, taking absolute values of both sides:

|en+1| ≤ |en|+ h|f(tn, u(tn))− f(tn, Un)|+ h|Tn|

If f(·, ·) satisfies a Lipschitz condition, then |f(tn, u(tn)) − f(tn, Un)| ≤
L|u(tn)− Un|, and so we have

|en+1| ≤ (1 + Lh)|en|+ h|Tn| for all n

Now if we let T = max |Tn|, we have

|en+1| ≤ (1 + Lh)|en|+ hT for all n

By induction, we get that

|en| ≤ (1 + Lh)n|e0|+
T

L
[(1 + Lh)n − 1] for all n

We know that e0 = 0, and also that

(1 + Lh)n ≤ [eLh]n = eLhn = eL(tn−t0),
3

where we have used the facts that

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ≥ 1 + x for x > 0

and that

tn = t0 + nh.

Therefore we get

|en| ≤
T

L

[
eL(tn−t0) − 1

]
Finally, note that

T = max
n
|Tn| = max

n

h

2
|u′′(ξn)| ≤ 1

2
hM2

where we have set M2 = 1
2

maxt∈[tn,tn+1] |u′′(t)|. We therefore have that

|en| ≤
M2

2L
(eL(tn−t0) − 1)h ≤ Const.h

Hence, if you half the step size, you (at least) half the error.

4

NSDE 1: LECTURE 4

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

We defined the global error as

en = u(tn)− Un

and the truncation error as

Tn =
(tn+1 − u(tn))

h
− Φ(tn, tn+1, Un, Un+1;h).

For Euler’s method:

Tn −
h

2
u′′(ξn)

We saw last time that

|en| ≤
T

L

[
eL(tn−t0) − 1

]
Finally, note that

T = max
n
|Tn| = max

n

h

2
|u′′(ξn)| ≤ 1

2
hM2

and so

|en| ≤
M2

2L
(eL(tn−t0) − 1)h ≤ Const.h

euler half step.m

Hence, if you half the step size, you (at least) half the error.
θ-methods
A similar (but more messy) analysis can be done for θ−methods.

Here we get that

|en| ≤
h

L

{∣∣∣∣12 − θ
∣∣∣∣M2 +

1

3
hM3

}[
e
L(tn−t0)
1−θLh − 1

]
,

where M3 = maxt∈[t0,tm] |u′′′(t)|.

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

As expected, the error of explicit Euler is recovered if we take θ = 0.
We also see that the special choice of θ = 1/2 – the trapezium rule method
– gives second order accurate method. This explains the behaviour in the
numerical example.

Question: where did M3 go for Euler’s method?

Recall that when we derived the truncation error, we cut off the Taylor
series at the u′′ term. We could equally have written

Tn =
h

2
u′′(tn) +

h2

6
u′′′(ξ̂n), ξ̂ ∈ [tn, tn+1.

Check that, if we’d included this term, we obtain the bound for the θ-
method.

One-step methods
Euler’s method is an example of what’s known as a one-step method.

The general form of a one-step method is:

U0 = u(t0)

Un+1 = Un + hΦ(tn, Un;h)

Note that all that appears in the right hand side is Un.
Examples
Euler’s method:

Φ(tn, Un;h) = f(tn, Un)

The trapezium rule is not a one-step method:

Φ =
1

2
(f(tn, Un) + f(tn+1, Un+1))

We can, however, get what should be a better method, which is
explicit, by replacing Un+1 itself by it’s Euler approximation, Un +
hf(tn, Un). This is called improved Euler’s method.

improved euler.m

For any one-step method, if Φ satisfies a Lipschitz condition:

|Φ(t, u;h)− Φ(t, v;h)| ≤ L|u− v|,

then the same analysis we did for Euler’s method will go through here
also. We therefore also have the concept of Truncation error here:

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, u(tn);h),

and, as before, if T = maxn |Tn|, then

|Un − u(tn)| ≤ (eL(tn−t0) − 1)
T

L
2

In order for the error to vanish with a small enough step size, we
therefore require that Tn → 0 as h→ 0 and n→∞, with nh = tn − t0.

Consistency: Definition We say that a one-step method is con-
sistent if

lim
h→0,n→∞,nh=tn−t0

Tn = 0

Now, since Φ(·, ·; ·) and y′(·) are continuous, we know that

lim
h→0

Tn = u′(tn)− Φ(tn, u(tn); 0).

Therefore a one-step method is consistent if and only if

Φ(tn, u(tn); 0)) = f(t, u).

In general, we are not restricted to one extra point in the region
[tn, tn + h]; we can evaluate the function at as many intermediate points
as we like. We’re only interested in explicit methods, so we need to also
have a way of approximating the solution at those points (as u(tn + ah)
will not be avaliable). This leads to a general family of methods known
as Runge-Kutta methods.

Runge-Kutta R-stage method

Un+1 = Un + hΦ(tn, Un;h)

Φ(x, y;h) =
R∑

r=1

crkr

k1 = f(tn, Un)

kr = f

(
tn + ar h, Un + h

r−1∑
s=1

brsks, r = 2, . . . , R

)

ar =
r−1∑
s=1

brs, r = 2, . . . , R

This is usually written in the form of a Butcher table:

a = B1 B
cT

R=1
If R = 1, then we get back our old friend Euler’s method.
R = 2
For R = 2, we have more choice. Now we want to find a method such

that

Un+1 = Un + h(c1ki + c2k2),
3

where

k1 = f(tn, Un)

k2 = f(tn + a2h, Un + b21hk1)

What values of c1, c2, a2, and b21 make sense?
To be consistent, we need that Φ(tn, Un;h) = f(tn, Un), i.e.

c1f(tn, Un) + c2f(tn, Un) = f(tn, Un) ⇐⇒ c1 + c2 = 1

So, given c2, we can obtain c1, but how should we choose c2, b21 and
a2. We try to make the order of the method as high as possible.

Recall

Tn =
u(tn+1)− u(tn)

h
− Φ(tn, u(tn))

=
u(tn+1)− u(tn)

h
− c1f(tn, u(tn))− c2f(tn + a2h, u(tn) + b21f(tn, u(tn))h)

By expanding u(tn+h) about tn, and f(tn+a2h, u(tn)+b21f(tn, u(tn)h))
about tn then u(tn), and noting that

u′(tn) = f(tn, u(tn))

u′′(tn) =
d

dt
f(tn, u(tn))

=
∂

∂t
f(tn, u(tn)) +

∂

∂u
f(tn, u(tn))

d

dt
u(tn)

=
∂

∂t
f(tn, u(tn)) + f(tn, u(tn))

∂

∂u
f(tn, u(tn)),

we can show that

Tn = h2
(

1

6
u′′′(tn)− c2

2

[
b221f(tn, u(tn))

∂2

∂u2
f(tn, u(tn))+

a2b21
∂2

∂u∂t
f(tn, u(tn)) + a22

∂2

∂t2
f(tn, u(tn))

])
+O(h3)

as long as we choose

1/2 = c2a2 = c2b21.

4

NSDE 1: LECTURE 5

TYRONE REES∗

Recap

u′ = f(t, u), u(t0) = u0.

Runge-Kutta R-stage method

Un+1 = Un + hΦ(tn, Un;h)

Φ(t, u;h) =
R∑

r=1

crkr

k1 = f(tn, Un)

kr = f

(
tn + ar h, Un + h

r−1∑
s=1

brsks, r = 2, . . . , R

)

ar =
r−1∑
s=1

brs, r = 2, . . . , R

This is usually written in the form of a Butcher table:

a B
cT

Last time we saw that, for R = 2, we require that the coefficient
satisfy

1/2 = c2a2 = c2b21,

which tells us we should take b21 = a2, c2 = 1/2a2, and c1 = 1− 1/(2a2).
We still have a free parameter, a2, which can take any value and still
give a second order method. (Note that no choice of parameters will, in
general, give a third order method).

Popular choices are:
a2 = 1/2:

0 1
1/2 1/2

0 1

This gives:

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

Un+1 = Un + hf(tn + 1/2h, Un + 1/2hf(tn, Un))

Which is a method called Modified Euler.
a2 = 1:

0 1
1 1

1/2 1/2

This gives:

Un+1 = Un +
h

2
(f(tn, Un) + f(tn + h, Un + hf(tn, Un)))

Which is, of course, the method we started with, improved Euler.
R=3 The same trick can be done (with messier algebra) to obtain

three stage Runge-Kutta method. Again, the consistency condition is
that

c1 + c2 + c3 = 1.

Now, we can obtain Tn = O(h3) if we choose the parameters to satisfy

c2b21 + c2(b31 + b32) =
1

2

c2b
2
21 + c3(b31 + b32)

2 =
1

3

c3b21b32 =
1

6

Including the consistency condtion, we therefore have four equations for
six unknowns, leaving two parameters free.

A few examples are important enough to have a name...
The classical RK method is:

0 1
1/2 1/2
1 −1 2

1/6 2/3 1/6

(which is related to Simpson’s rule). The Nystrom scheme is:

0 1
2/3 2/3
2/3 0 2/3

1/4 3/8 3/8
2

R=4
A widely used fourth order method has Butcher table:

0 1
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

,

which corresponds to the method

Un+1 = Un +
1

6
h {k1 + 2k2 + 2k3 + k4}

k1 = f(tn, Un)

k2 = f(tn +
1

2
h, Un +

1

2
hk1)

k3 = f(tn +
1

2
h, Un +

1

2
hk2)

k4 = f(tn + h, Un + hk3).

compare methods.m

Adaptive time steps. If the solution changes very slowly, then we
may be able to get a pretty good approximation with a large time step.
However, if the solution changes rapidly, we won’t be able to resolve the
details unles we use a sufficiently small time step.

We can use our knowledge of the error to inform us of where we should
next approxmimate the solution. Since the step size will change, we’ll
use the notation tn+1 = tn + ∆tn. If the error is too large, we can reduce
it by taking a smaller step.

We’ll see this by way of an example. For a fourth order Runge-Kutta
method, our approxiation satisfies

u(tn+1) = Ua
n+1 +K1(∆tn)5u(v)(tn) +O(∆t6n)

for some constant K1.
As well as a step size of ∆tn, we could also have taken two steps of

size ∆tn/2 to give us a different approximation at the same point. The
error here will satisfy:

u(tn+1) = U b
n+1 + 2K1(∆tn/2)5u(v)(tn) +O(∆t6n)

(convince yourself this is true – i.e., that the constants are the same in
both cases).

3

Subtracting these gives

|U b
n+1 − Ua

n+1| ≈
15

16
K1

Now, suppose we wanted this difference to take some value, ε. How
would we pick a time step ∆̄tn to ensure this?

Suppose that

ε = K1(∆̄tn)5u(v)(tn),

and so we can remove the unknowns by dividing these two expressions,
giving: (

∆̄tn
∆tn

)5

=
ε

|U b
n+1 − Ua

n+1|

Rearranging, we get that we should take

∆̄tn =

(
ε

|U b
n+1 − Ua

n+1|

)1/5

∆tn.

This gives us a method for adapting the step length.
• if ∆̄tn < ∆tn, (i.e. |U b

n+1 − Ua
n+1| > ε) repeat the step from tn

with the reduced step length
• if ∆̄tn > ∆tn, (i.e. |U b

n+1 − Ua
n+1| ≤ ε), take Un+1 = U b

n+1 and set
∆tn+1 = ∆̄tn.

This gives a method of adapting the step length depending on the
properties of the equation being solved. However, it is more expensive –
at each step we do an extra application of RK4.

4

NSDE 1: LECTURE 6

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

Last time we looked at ways of controlling the step size using adaptive
algorithms. This is useful for when we want the error to remain within
some tolerance.

Another strategy is to use Runge-Kutta methods of different orders
on top of each other. Because of the flexibility allowed in RK methods,
it is possible to find sets of two families that evaluate the function at the
same points, yet have different orders. For example, consider the method
with Butcher table:

0 1
1/2 1/2
3/4 0 3/4
1 2/9 3/9 4/9

2/9 3/9 4/9
11/72 30/72 40/72 −9/72

,

which is short-hand for the two methods

Ua
n+1 = Un +

∆tn
9

(2k1 + 3k2 + 4k3)

(a second order method), and

U b
n+1 = Un +

∆tn
72

(11k1 + 30k2 + 40k3 − 9k4)

(a third order method).
Here we can say that u(tn+1) = Ua

n+1+K2(∆tn)
2+O(∆tn)

3, and also
that u(tn+1) = U b

n+1+O(∆tn)
3. Since, for small ∆tn, we can assume that

the O(∆tn)
3 term is negligible, we have that

|U b
n+1 − Ua

n+1| ≈ K2(∆tn)
2.

We can then follow the same procedure as before. This scheme (developed
by Dogacki and Shampine in 1989) is the basis of the ode23 solver in
Matlab.

The first such method to be found was an order five-six pair, discoverd
by Fehlberg (working for NASA) in the late sixties. A similar method,

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

based on fourth and fifth order methods, was developed by Dormand and
Price (1980), and this is the basis for the ode45 solver in matlab. It’s
Butcher table is:

0 1
1/5 1/5
3/10 3/40 9/40
4/5 44/45 −56/15 32/9
8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
1 35/384 0 500/1113 125/192 −2187/6784 11/84

cr 35/384 0 500/1113 125/192 −2187/6784 11/84 0
dr 5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

Symplectic methods
Sometimes, however, it’s not (only) the error that we’re interested in.
A very important field of study is dynamical systems, in particular

Hamiltonian systems. A Hamiltonian system consists of l = 2m differen-
tial equations:

x′
i =

∂H

∂ui

u′
i = −∂H

∂xi

for i = 1, . . . , l. The scalar function H(x,u) is called the Hamiltonian.
(see B7.1). A typical example is a system of particles; in this case x(t)
are the positions of particles at time t, and u(t) are their velocities. In
this case H is the total energy.

Example
Consider a simple harmonic oscillator. Let x be the postition at time

t, and u be it’s velocity. The (scaled) system can be written as

x′′ = −x ⇒ x′ = u, u′ = −x.

This can be set in Hamiltonian framework by writing the Hamiltonian

H =
1

2
(x2 + u2).

Note that the Hamiltonian corresponds to the total energy in the system,
and so conservation of energy tells us that solution of the dynamical sys-
tem correspond to the Hamiltonian being constant – in this case, circles
in the (x, u) plane.

Let the solution be given by u = (x, u). Then the Hamiltonian can be
written as H = 1

2
uTu. A reasonable question to ask is how this evolves

using the numerical scheme.
2

Explicit Euler for this system looks like[
Xn+1

Un+1

]
=

[
Xn

Un

]
+ h

[
Un

−Xn

]
=

[
1 h
−h 1

] [
Un

Xn

]
and so[
Xn+1 Un+1

] [Xn+1

Un+1

]
=

[
Un Xn

] [1 −h
h 1

] [
1 h
−h 1

] [
Un

Xn

]
= (1+h2)

[
Xn Un

] [Xn

Un

]
and so

Hn+1 = (1 + h2)Hn.

So the Hamiltonian (and hence the energy) grows in time for all time
steps.

Now, consider the hybrid Euler scheme[
Un+1

Xn+1

]
=

[
Un

Xn

]
+ h

[
−Xn

Un+1

]
or, in matrix terms:[

1 −h
0 1

] [
Xn+1

Un+1

]
=

[
1 0
−h 1

] [
Xn

Un

]
This also doesn’t leave the Hamiltonian H unaltered, but it does

preserve a modified Hamiltonian:

Ĥ(x, u) =
1

2
(x2 + u2)− 1

2
hxu = H(x, u)− 1

2
hxu.

This is called a symplectic scheme; while the original Hamiltonian is
not preserved, it is recovered in the limit as h → 0.

A common symplectic scheme is the Stömer-Verlet scheme. If the
system to be solved is

x′ = u

u′ = f(x),

then the Stömer-Verlet scheme takes the form:

Un+1/2 = Un +
1

2
hf(Xn)

Xn+1 = Xn + hUn+1/2

Un+1 = Un+1/2 +
1

2
hf(Xn+1),

3

which, if we eliminate the intermediate value, gives the scheme

Xn+1 = Xn + hUn +
1

2
h2f(Xn)

Un+1 = Un +
1

2
[f(Xn) + f(Xn+1)]

Consider an area in the (x, u) plane, corresponding to a set of initial
conditions. Another property of Hamiltonian mechanics is that, as the
state of the system progresses, the area remains constant.

Recall that the area of a parallelogram with corners (x1, y1), (x2, y2), (x3, y3)
is given by

A =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
Consider again the dynamical system

x′ = u u′ = −x.

Now, suppose again that we had three initial conditions (X1
0 , U

1
0), (X

2
0 , U

2
0), (X

3
0 , U

3
0),

and evolve these using Euler’s method

X i
n = X i

n + hU i
n, U i

n = U i
n − hX i

n,

with area

An =

∣∣∣∣∣∣
X1

n U1
n 1

X2
n U2

n 1
X3

n U3
n 1

∣∣∣∣∣∣
To make the algebra easier, let’s choose initial (X0, Y0), (X0 +A, Y0)

and (X0, Y0 +B).
Then after one step of Euler these move to

(X0 + hU0,U0 − hX0),

(X0 + A+ hU0,U0 − h(X0 + A)) and

(X0 + h(U0 +B),U0 +B − hX0)

The area is therefore given by

A =

∣∣∣∣∣∣
X0 + hU0 U0 − hX0 1

X0 + A+ hU0 U0 − h(X0 + A) 1
X0 + h(U0 +B) U0 +B − hX0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
X0 + hU0 U0 − hX0 1

A −hA 0
hB B 0

∣∣∣∣∣∣
= (1 + h2)AB.

4

Therefore the area increases exponentially as Euler progresses. Symplec-
tic methods preserve the area (see problem sheet 2).

5

NSDE 1: LECTURE 7

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

For the last two weeks we’ve been looking at one-step methods. These
use information (tn, Un) that is the most recent step to update the ap-
proximate solution Un+1 at tn+1 = tn + h. To do this, we (in the case of
Runge-Kutta methods) evaluate the function multiple times at points in
between tn and tn+1 to obtain a more accurate solution.

This can improve the accuracy, may not be the most efficient method,
especially in the case where the function is expensive to evaluate.

Recall that the inpiration for one-step methods was re-writing the
ODE over a time step as

u(tn+1)− u(tn) =

∫ tn+1

tn

u′(t)dt =

∫ tn+1

tn

f(t, u(t))dt.

Runge-Kutta methods evaluated the function at points in between tn and
tn+1 in order to better approximate the integral on the right hand side.

Instead, we could integrate over more than one time step, and get
a more accurate numerical method by re-using function evaluations we
already have. For example,∫ tn+2

tn

u′(t)dt =

∫ tn+2

tn

f(t, u(t))dt

Using, for example, Simpson’s rule, we get

u(tn+2)− u(tn) ≈
2h

6
[f(tn+2, u(tn+2)) + 4f(tn+1, u(tn+1)) + f(tn, u(tn))] ,

which suggests the numerical method

Un+2 = Un +
h

3
[f(tn+2, Un+2) + 4f(tn+1, Un+1) + f(tn, Un)] ,

We’re given U0, we can use a one-step method to find U1, and then we
can use this numerical scheme to approximate the solution at the other
time steps.

General form The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

As before, if βk = 0 then the method is explicit, and if βk ̸= 0 then the
method is implicit. (So Simpson’s rule is an implicit 2-step method).

As before, we define:
The truncation error:

Tn =

∑k
j=0[αju(tn+j)− hβju

′(tn+j)]

h
∑k

j=0 βj

consistency:

lim
h→0,n→∞,nh=tn−t0

Tn = 0

And a method is pth order accurate if:

|Tn| ≤ Khp.

Note that

u(tn+j) = u(tn) + (jh)u′(tn) +
(jh)2

2!
u′′(tn) + . . .

and also

u′(tn+j) = u′(tn) + (jh)u′′(tn) +
(jh)2

2!
u′′′(tn) + . . .

Subsituting this into Tn we get

Tn =
1

h
∑k

j=1 βj

[C0u(tn) + C1hu
′(tn) + C2h

2u′′(tn) + · · ·]

where

C0 =
k∑

j=0

αj,

C1 =
k∑

j=1

jαj −
k∑

j=0

βj

. . .

Cq =
k∑

j=1

jq

q!
αj −

k∑
j=1

jq−1

(q − 1)!
βj

The method is consistent if limTn = 0, which is equivalent to requir-
ing that C0 = 0 and C1 = 0.

Furthermore, the method is pth order accurate if and only if

C0 = C1 = · · · = Cp = 0 and Cp+1 ̸= 0
2

and, in this case,

Tn =
Cp+1∑k
j=1 βj

hpu(p+1)(tn) +O(hp)

Cp+1 is called the error constant.
Adams methods
A particular class of methods, known as Adams methods, have the

form

Un+k = Un+k−1 + h
k∑

j=0

βjf(tn+j, Un+j)

i.e., αk = 1, αk−1 = −1, αj = 0, j < k − 1.
If we require an explicit method (βk = 0), then we can pick the re-

maining k coefficients to eliminate as many terms as possible in the Taylor
expansion. These methods are called Adams-Bashforth methods:

Un+1 = Un + hf(tn, Un) 1st order

Un+2 = Un+1 +
h

2
(−f(tn, Un) + 3f(tn+1, Un+1)) 2nd order

Un+3 = Un+2 +
h

12
(5f(tn, Un)− 16f(tn+1, Un+1) + 23f(tn+2, Un+2)) 3rd order

Un+4 = Un+3 +
h

23
(−9f(tn, Un) + 37f(tn+1, Un+1)− 59f(tn+2, Un+2) + 55f(tn+3, Un+3) 4th order

If we allow βk ̸= 0, then we have one more free parameter, and so can
get a method of one order higher than the equivalent Adams-Bashforth
method. These methods are called Adams-Moulton methods:

Un+1 = Un +
h

2
(f(tn, Un) + f(tn+1, Un+1)) 2nd order

Un+2 = Un+1 +
h

12
(−f(tn, Un) + 8f(tn+1, Un+1) + 5f(tn+3, Un+3))

Un+3 = Un+2 +
h

24
(f(tn, Un)− 5f(tn+1, Un+1) + 19f(tn+2, Un+2) + 9f(tn+3, Un+3))

Zero-stability
Suppose we have a general k−step method

k∑
j=0

αjUn+j = h
k∑

j=0

βjf(tn+j, Un+j)

U0 is given, U1, . . . , Un−1 have to be computed. Question: how do the
errors in U1, . . . , Uk−1 affect the later values?

3

Definintion A linear k−step method for

u′ = f(t, u), u(t0) = u0, t ∈ [t0, Tm]

is said to be zero-stable if there exists a constant K such that, for any
two sequences U0, U1, . . . , Uk−1, and Û0, Û1, . . . , Ûk−1,

|Un − Ûn| ≤ Kmax{|U0 − Û0|, |U1 − Û1|, . . . , |Uk−1 − Ûk−1|}

for tn ≤ TM and as h → 0.
This isn’t actually useful for checking zero stability – in practice we

reformulate in terms of polynomials:
The first characteristic polynomial is given by

ρ(z) =
k∑

j=0

αjz
j

The second characteristic polynomial is given by

σ(z) =
k∑

j=0

βjz
j

Theorem (Root condition)
A linear multistep method is zero stable for any ODE

u′ = f(t, u)

where f obeys a Lipschitz condition if and only if all zeros of its first
characteristic polynomial lie inside the closed unit disk, with any that lie
on the unit circle being simple.

Example
Simpson rule method:

Un+2 − Un =
h

3
(fn+2 + 4fn+1 + fn)

ρ(z) = z2 − 1

z = ±1

(where fn = f(tn, Un)).
Simple roots on the unit circle, so the method is zero-stable.
Example
Adams-Bashforth method

Un+4 − Un+3 =
h

24
(−9fn + 37fn+1 − 59fn+2 + 55fn+3)

4

ρ(z) = z4 − z3 = z3(z − 1)

z1 = z2 = z3 = 0, z4 = 1

Example A 3-step 6-th order accurate method:

11Un+3 + 27Un+2 − 27Un+1 − 11Un = 3h(fn+3 + 9fn+2 + 9fn+1 + fn)

ρ(z) = 11z3 + 27z2 − 27z − 11

z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356

since |z3| > 1, the method is not zero stable.

5

NSDE 1: LECTURE 8

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)

A method is zero-stable if there exists a constant K such that, for
any two sequences U0, U1, . . . , Uk−1, and Û0, Û1, . . . , Ûk−1,

|Un − Ûn| ≤ Kmax{|U0 − Û0|, |U1 − Û1|, . . . , |Uk−1 − Ûk−1|}

for tn ≤ TM and as h → 0.
The first characteristic polynomial is given by

ρ(z) =
k∑

j=0

αjz
j

The second characteristic polynomial is given by

σ(z) =
k∑

j=0

βjz
j

Theorem (Root condition)
A linear multistep method is zero stable for any ODE

u′ = f(t, u)

where f obeys a Lipschitz condition if and only if all zeros of its first
characteristic polynomial lie inside the closed unit disk, with any that lie
on the unit circle being simple.

Lemma
Consider the kth order homogeneous linear recurrence relation

αkyn+k + · · ·+ α1yn+1 + α0yn = 0, n = 0, 1, 2, . . .

with αk ̸= 0, α0 ̸= 0, αj ∈ R, j = 1, . . . , k, and the corresponding
characteristic polynomial:

ρ(z) = αkz
k + · · ·+ α1z + α0.

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

Let zr, 1 ≤ r ≤ l, l ≤ k, be distinct roots of the polynomial ρ, and let
mr ≥ 1 denote the multiplicity of zr, with m1 + · · ·+ml = k.

If a sequence (yn) of complex numbers statisfies the recurrence rela-
tion above, then

yn =
l∑

r=1

pr(n)z
n
r ∀n ≥ 0,

where pr(·) is a polynomial in n of degree mr−1, 1 ≤ r ≤ l. In particular,
if all roots are simple, (i.e. mr = 1, 1 ≤ r ≤ k), then the pr are constants.

(See, e.g, Suli and Mayers (Lemma 12.1) for a sketch of the proof)
Proof of Root condition (necessity)
We want to prove that zero-stability implies the root condition. Sup-

pose that

k∑
j=0

αjUn+j = h
k∑

j=0

βjf(tn+j, Un+j)

is zero stable. Then applying the method to the ODE u′ = 0, u(0) = 0
gives

αkUn+k + αk−1Un+k−1 + · · ·+ α1Un+1 + αoUn = 0

This is a difference equation, and from the lemma, it’s general solution
is of the form

Un =
∑
s

ps(n)z
n
s ,

where zs is a zero of

ρ(z) =
k∑

j=0

αjz
j

of multiplicity ms ≥ 1 and ps is a polynomial of degree ms − 1.
If |zs| > 1 for some s then there are starting values such that the

solution grows like |zs|n.
If |zs| = 1 and zs has multiplicity ms > 1, then there are starting

values such that the solution grows like nms−1. In either case, there are
solutions which grow unbounded as n → ∞, h → 0, nh fixed.

Consider starting data U0, U1, . . . , Uk−1 that gives such an unbounded
solution, and the starting data

Û0, Û1 = · · · = Ûk−1 = 0,
2

which gives Ûn = 0 for all n ≥ 0.
Therefore, if a method violates the root condition, it cannot be zero

stable.
The proof of the converse is technical, and outside the scope of this

course.
Example
Simpson rule method:

Un+2 − Un =
h

3
(fn+2 + 4fn+1 + fn)

ρ(z) = z2 − 1

z = ±1

(where fn = f(tn, Un)).
Simple roots on the unit circle, so the method is zero-stable.
Example
Adams-Bashforth method

Un+4 − Un+3 =
h

24
(−9fn + 37fn+1 − 59fn+2 + 55fn+3)

ρ(z) = z4 − z3 = z3(z − 1)

z1 = z2 = z3 = 0, z4 = 1

Example A 3-step 6-th order accurate method:

11Un+3 + 27Un+2 − 27Un+1 − 11Un = 3h(fn+3 + 9fn+2 + 9fn+1 + fn)

ρ(z) = 11z3 + 27z2 − 27z − 11

z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356

since |z3| > 1, the method is not zero stable.
Convergence
The linear multistep method is said to be convergent if, for all initial

value problems u′ = f(t, u), u(t0) = u0 (which satisfies the assumptions
of Picard’s theorem),

lim
h→0, nh=t−t0

Un = u(t)

3

for all t ∈ [t0, TM] and for all solutions {Un}Nn=0 with consistent starting
condition, i.e., with starting values

Us = ηs(h)

for which limh→0 ηs(h) = U0, s = 0, 1, . . . , k − 1.
Convergence is a vital property of a numerical method. It tells us

that, if we take smaller and smaller time steps, we will get better and
better approximations to the true solution.

4

NSDE 1: LECTURE 9

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)

The linear multistep method is said to be convergent if, for all initial
value problems u′ = f(t, u), u(t0) = u0 (which satisfies the assumptions
of Picard’s theorem),

lim
h→0, nh=t−t0

Un = u(t)

for all t ∈ [t0, TM] and for all solutions {Un}Nn=0 with consistent starting
condition, i.e., with starting values

Us = ηs(h)

for which limh→0 ηs(h) = U0, s = 0, 1, . . . , k − 1.
Convergence is a vital property of a numerical method. It tells us

that, if we take smaller and smaller time steps, we will get better and
better approximations to the true solution.

Theorem Zero stability is a necessary condition for convergence.
Proof Since the scheme converges for all f , choose f = 0. In partic-

ular, let u(0) = 0 with solution u = 0.
Then

k∑
j=0

αjUn+j = 0 (0.1)

As the method is convergent, Un → 0 as h → 0, nh → t for consistent
starting values U0, . . . , Uk−1.

Now, let z = reiθ be a root of ρ(z) = 0.
Choose the starting data Um = hrmcos(mθ), which is consistent with

the initial condition. Note that Um satisfies (0.1), since by writing

Um = Re(hrmeimθ) = hRe(zm),

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

then

k∑
j=0

αjUn+j = h
k∑

j=0

Re(zm+k) = h
∑
j=0

Re(znρ(z)) = 0,

since z was a root of ρ(z) = 0.
Therefore, the values Un = hrn cos(nθ) are solutions of the discrete

method starting from a consistent set of initial values.
• Suppose θ ̸= 0, π. then

U2
n − Un+1Un−1 = h2r2n

[
cos2(nθ)− cos((n+ 1)θ) cos((n− 1)θ)

]
so

U2
n − Un+1Un−1 = h2r2n sin2 θ

The LHS tends to zero as n → ∞, nh → t, as all values converge
to zero. The right hand side must therefore also tend to zero.
However, this is only possibly if r ≤ 1.

• if θ = 0 or π, then since

Un = hrn (θ = 0)

or

Un = hrn(−1)n (θ = π)

we again have that since Un → 0, r ≤ 1.
Now, if z is a double root of ρ(z), Un = hnrn cos(nθ) also satisfies

(0.1), and so r < 1. Therefore all roots on the unit circle must be simple.
Hence, if the scheme is convergent, the roots of the first characteristic

polynomial satisfy root condition, and hence the scheme is zero-stable.
Theorem
Consistency is a necessary condition for convergence.
Proof
Recall that a linear multistep method is consistent if and only if

k∑
j=0

αj = 0, and
k∑

j=0

jαj =
k∑

j=0

βj.

Assume that a linear multi-step method is convergent for all functions
f .

• Consider the function f = 0 with initial value u(0) = 1, so the
solution is u = 1. Now U0 = U1 = · · ·Uk−1 is a consistent set of

2

initial data, and convergence gives Un → 1 as nh → t, h → 0.
The method is

k∑
j=0

Un+j = 0,

and since, in the limit, Un+s → 1 for s = 1, . . . k, we have
∑k

j=0 αk =
0, as required.

• Next consider f = 1 with initial value u(0) = 0, so that u′ = 1.
Here the solution is u(t) = t, and so Un → t as nh → t, h → 0.
The method is

k∑
j=0

αjUn+j = h

k∑
j=0

βj.

Convergence tells us that Un+r = (n+ r)h, so

k∑
j=0

αj(n+ j)h = h

k∑
j=0

βj

i.e.

k∑
j=0

αjn+
k∑

j=1

jαj = h

k∑
j=0

βj

since the first term is zero by part (i), we must have

k∑
j=1

jαj = h

k∑
j=0

βj

Putting these two results together, convergence implies the scheme will
be consistent.

Dahlquist Theorem
For a linear multi-step method that is consistent with the ODE u′ =

f(t, u), where f obeys a Lipschitz condition, and starting with consistent
initial data, zero-stability is necessary and sufficient for convergence.

—
Dahlquist’s theorem tells us that if a linear multistep method is not

zero-stable, then it’s global error cannot be made arbirarily small by
taking h sufficiently small. In fact, if the root condition is violated, then
no matter how good the initial data is, there exists a solution that will
grow by an arbitrarily large number.

3

NSDE 1: LECTURE 10

TYRONE REES∗

Absolute stability
Zero-stability tells us that a method will converge if we take h small

enough, but tells us nothing about what the solution will look like for a
fixed h.

To motivate us, consider the model problem

u′ = λu,

which has exact solution u = eλt. If Re(λ) < 0, then the solutions decay
as t increases.

euler stability(0.01), euler stability(0.05), euler stability(0.1),

euler stability(0.11), euler stability(0.15)

Suppose we apply Euler’s method:

Un+1 = Un + hλUn = (1 + hλ)Un.

if |1 + hλ| > 1, the solution will grow at each time step. Note that only
the combination h̄ = hλ matters. The method is stable when |1+ h̄| < 1.
In the complex plane this is equivalent to the unit circle, centered on −1.

To make this more general, consider again the model problem above.
Then a linear multistep method for this problem looks like:

k∑
j=0

(αj − λhβj)Un+j = 0.

The difference equation

k∑
j=0

(αj − h̄βj)Un+j = 0

has general solution

Un =
∑
s

ps(n)z
n
s ,

where zs is a zero of the stability polynomial

π(z, h̄) = ρ(h)− h̄σ(z) =
k∑

j=0

(αj − h̄βj)z
j

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

Since limt→∞ u(t) = 0, we want limt→∞ Un = 0, and so we need |zs| < 1
for all s = 1, 2, . . . , k.

A linear multistep method is called absolutely stable in an open setRA

of the complex plane if, for all h̄ ∈ RA, all roots zs = zs(h̄), s = 1, . . . k
of π(z, h̄) satisfy |za| < h.

The set RA is called the region of absolute stability.
Example: implicit Euler

Un+1 − Un = hf(tn+1, Un+1

ρ(z) = z − 1, σ(z) = z

π(z, h̄) = z − 1− h̄z = 0

⇐⇒ z =
1

1− h̄

|z| < 1 when |1 − h̄| > 1. Therefore RA = {h̄ ∈ C : |1 − h̄| > 1}
This is the outside of the unit circle, centered at 1, in the complex plane.
Note that since this contains the whole of the left half plane, the method
is stable for all λ where Re(λ) < 0.

Definition A linear multistep method is said to be A-stable it its
region of absolute stability, RA, contains the whole of the open left-hand
complex half plane, Re(h̄) < 0.

The implicit Euler method is A-stable.
Dahlquist Barrier Theorem
• No explicit linear multistep method is A-stable
• The order of an A-stable implicit linear multistep method is ≤ 2.
• The second-order A-stable linear multistep method with the small-
est error constant is the trapezium rule method.

Stiffness
When deal with systems of differential equations, it is common that

the methods we have studied may not work well with some systems where
different parts of the solution evolve on different time scales.

Consider

u′′ + (1 + a)u′ + au = 0

which we can write as

u′ = v

v′ = −(1 + a)v − au

2

or, in matrix form

d

dt

[
u
v

]
=

[
0 1
−a −(1 + a)

]
︸ ︷︷ ︸

A

[
u
v

]

which has solutions u = c1e
−t + c2e

−at.
If a ≫ 1, then u and v will have different scales, O(1) and O(a−1).
Note that the eigenpairs of A such that Avi = λivi are given by

λi = −1,v1 =

[
1/
√
2

−1/
√
2

]
) and λ2 = −a,v2 =

[
−1/

√
1 + a2

1/
√
1 + a2

]
.

Therefore, letting V = [v1,v2] and Λ = diag(λ1, λ2), we can write A =
V ΛV −1

u′ = Au

⇒ u′ = V ΛV −1u

⇒ V −1u′ = ΛV −1u

Making the change of variables[
p
q

]
= V −1

[
u
v

]
therefore gives the decoupled system of equations

dp

dt
= −p

dq

dt
= −aq.

Treating these separately would lead to very different requirements for
stability: the equation for p could take much shorter time steps and still
be stable. However, when we solve the systems together, for stability we
need to take the time step required for stability of the bottom equation.

Such a system is called Stiff.
Another example of a stiff system is Van-der-pol’s oscillator:

u′′ + µ(u2 − 1)u′ + u = 0

vdp stiff(0.16), vdp stiff(0.165), vdp stiff(0.17)

3

NSDE 1: LECTURE 11

TYRONE REES∗

The numerical solution of parabolic problems

For the rest of the course we’re going to look at problems of the form:

∂u

∂t
=

∂

∂x

(
a(x, t)

∂u

∂x

)
+ f(x, t),

with u(x, 0) = u0(x) and appropriate boundary condititions.

In practice, we’re going to concentrate on the model problem:

∂u

∂t
=

∂2u

∂t2
.

Before we look at how to solve this numerically, let’s explore what the
analytic solution looks like. To do this, we’re going to use the Fourier
transform:

û(ξ) = F [u](ξ) =

∫ ∞

−∞
u(x)e−ixξdx

Applying this to the PDE, we get:∫ ∞

−∞

∂u

∂t
(x, t)e−ixξdx =

∫ ∞

−∞

∂2u

∂t2
(x, t)e−ixξdx

d

dt

∫ ∞

−∞
u(x, t)e−ixξdx︸ ︷︷ ︸

û(ξ,t)

= (iξ)2
∫ ∞

−∞
u(x, t)e−ixξdx︸ ︷︷ ︸

û(ξ,t)

where we’ve integrated by parts twice on the RHS and ignored boundary
terms at ±∞. So

dû

dt
= −ξ2û.

This has solutions

û(ξ, t) = A(ξ)e−ξ2t = û(ξ, 0)e−ξ2t.

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

Now we just need to apply the inverse Fourier transform:

u(x, t) = F−1
(
e−ξ2tû0

)
=

1

2π

∫ ∞

−∞
û0(ξ)e

−ξ2teiξxdξ

= ... messy calculation ...

=
1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t)u0(y)dy

AnalyticSolution.m

This behaviour can be explained by Parseval’s identity:

∥u∥2L2(−∞,∞) =
1

2π
∥û∥2L2(−∞,∞),

where

∥u∥L2(∞,∞) =

(∫ ∞

−∞
|u(x)|2dx

)1/2

If we apply this to our function:

∥u(·, t)∥2L2(−∞,∞) =
1

2π
∥û(·, t)∥2L2(−∞,∞)

=
1

2π
∥e−ξ2tû0(·)∥2L2(−∞,∞)

≤ 1

2π
max

ξ
|e−ξ2t|∥û0∥22

≤ 1

2π
∥û0∥22

= ∥u0∥22 [by Parseval’s identity]

This is an important property of the solution, that we must make
sure is satisfied by any numerical approximation.

Proof of Parseval’s identity
Let v(x) and w(x) be two functions.∫ ∞

−∞
ŵ(x)v(x)dx =

∫ ∞

−∞

∫ ∞

−∞
w(ξ)e−iξxdξv(x)dx

=

∫ ∞

−∞
w(ξ)

∫ ∞

−∞
e−iξxv(x)dxdξ

=

∫ ∞

−∞
w(ξ)v̂(ξ)dξ

2

Now, if we let w(ξ) = v̂(ξ), then

ŵ(ξ) =

∫ ∞

−∞
v̂(x)e−iξxdx =

∫ ∞

−∞
v̂(x)eiξxdx = 2πv̄

Where we’ve used the fact that v = 1
2π

∫∞
−∞ v̂eiξxdx (by definition of the

inverse Fourier transform). Therefore

2π

∫ ∞

−∞
v̄(x)v(x)dx =

∫ ∞

−∞
v̂(ξ)v̂(ξ)ds

⇒ ∥v∥22 =
1

2π
∥v̂∥22

Discretization Suppose x ∈ [0, X] and t ∈ [0, T], where T > 0 is a
given final time, and 0, X are the left and right boundaries.

Construct a finite-difference grid:

∆x = xend/N in the x-direction

∆t = T/M in the t-direction

so that

xj = j∆x, and tm = m∆t.

Since

∂u

∂t
(xj, tm) = lim

∆t→0

u(xj, tm +∆t)− u(xj, tm)

∆t

and

∂2u

∂x2
(xj, tm) = lim

∆x→0

u(xj +∆x, tm)− 2u(xj, tm) + u(xj −∆x, tm)

(∆x)2

We can approximate u(xj, tm) ≈ Um
j , so that

∂u

∂t
(xj, tm) =

Um+1
j − Um

j

∆t

and

∂2u

∂x2
(xj, tm) =

Um
j−1 − 2Um

j + Um
j+1

(∆x)2
.

This scheme can be illustrated by the stencil:

3

Putting it together, suppose we want to approximate the PDE

∂u

∂t
=

∂2u

∂x2

for x ∈ [0, X] and t ∈ [0, T], where u(x, 0) = u0(x), and u(0, t) = ua(t),
u(X, t) = ub(t). Then we get that

U0
j = u0(xj), j = 0,±1,±2, · · ·

and then we can update U at the next time step by

Um+1
0 = ua(tm+1), Um+1

N+1 = ub(tm+1)

Um+1
j − Um

j

∆t
=

Um
j−1 − 2Um

j + Um
j−1

(∆t)2
.

The final relation can also be written as

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1),

where µ = ∆t
∆x2 .

4

NSDE 1: LECTURE 12

TYRONE REES∗

Recap To solve

∂u

∂t
=

∂2u

∂x2

for x ∈ [0, X] and t ∈ [0, T], where u(x, 0) = u0(x), and u(0, t) = ua(t),
u(X, t) = ub(t), set up a grid

xj = j∆x, and tm = m∆t

where

∆x = X/N in the x-direction

∆t = T/M in the t-direction.

We approximate the derivatives by u(xj, tm) ≈ Um
j , so that the deriva-

tives are approximately

∂u

∂t
(xj, tm) ≈

Um+1
j − Um

j

∆t

and

∂2u

∂x2
(xj, tm) ≈

Um
j−1 − 2Um

j + Um
j+1

(∆x)2
.

This gives

Um+1
0 = ua(tm+1), Um+1

N+1 = ub(tm+1)

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

where µ = ∆t
∆x2 .

Stability
If U is a function defined on the infinite grid xj = j∆x, j = 0,±1,±2, . . . ,

the semidiscrete Fourier transform of U is defined as

Û(k) = ∆x

∞∑
j=−∞

Uj e
−ikxj , k ∈ [−π/∆x, π/∆x]

Now, since Û(k) is a continuous function, we can take the regular inverse
Fourier transform to obtain

Uj =
1

2π

∫ π/∆x

−π/∆x

Û(k) eikj∆x dk.

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

It can be shown that there’s an associated Parseval’s Identity:

∥U∥2ℓ2 =
1

2π
∥Û∥2L2

,

where

∥Û∥L2 =

(∫ π/∆x

−π/∆x

|Û(k)|2dk

)1/2

and

∥U∥ℓ2 =

(
∆x

∞∑
j=−∞

|Uj|2
)1/2

[see problem sheet]
Definition: We say that a finite difference scheme for the unsteady

heat equation is (practically) stable in the ℓ2 norm if

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, . . .M,

where Um = {Um
j }.

Now, recall the Euler scheme:

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

and inserting the inverse Fourier transform we get

1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm+1(k)dk =
1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm(k)dk+

µ

(
1

2π

∫ π/∆x

−π/∆x

eikj−1∆xÛm(k)dk

+ 2
1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm(k)dk

+
1

2π

∫ π/∆x

−π/∆x

eikj+1∆xÛm(k)dk

)
Rearranging, we get

1

2π

∫ π/∆x

−π/∆x

eikj∆x
(
Ûm+1(k)− Ûm(k)− µ

(
eik∆x − 2 + e−ik∆x

)
Ûm(k)

)
dk = 0,

which, in turn means that

Ûm+1(k) = Ûm(k) + µ(eik∆x − 2 + eik∆x)Ûm(k)
2

for all wave numbers k ∈ [−π/∆x, π/∆x]. Therefore

Ûm+1(k) = λ(k)Ûm(k)

where λ(k) = 1 + µ(eik∆x − 2 + eik∆x)Ûm(k) Now,

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2 Parseval

=
1√
2π

∥λÛm∥L2

≤ 1√
2π

max
k

|λ(k)|∥Ûm∥L2

= max
k

|λ(k)|∥Um∥ℓ2 Parseval

Since we want that

∥Um+1∥ℓ2 ≤ ∥Um∥ℓ2 , m = 0, 1, 2, . . . ,M − 1

we need that

max
k

|λ(k)| ≤ 1

max
k

|1 + µ(eik∆x − 2 + eik∆x)| ≤ 1

Now, since eik∆x = cos k∆x+i sin k∆x, and e−ik∆x = cos k∆x−i sin k∆x,
we can write this as

max
k

|1 + 2µ(cos k∆x− 1)| ≤ 1

max
k

|1− 4µ sin2

(
k∆x

2

)
| ≤ 1

Now, the condition that

−1 ≤ 1− 4µ sin2

(
k∆x

2

)
≤ 1 ∀k ∈ [−π/∆x, π/∆x]

holds if and only if

µ =
∆t

(∆x)2
≤ 1

2
.

We’ve proved the following theorem:
Theorem Suppose that Um

j is the solution of

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 1, 2, . . .

3

where U0
j = u0(xj) and µ = ∆t

(∆x)2
≤ 1

2
. Then

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, 2, . . .M.

We say that the explicit Euler scheme is conditionally stable.
The implicit Euler scheme Consider instead the scheme

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 1, 2, . . .

where U0
j = u0(xj)

Now we have that

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1) = Um
j ,

U0
j = u0(xj), where again µ = ∆t/(∆x)2).
Using an identical argument to that used for Explicit Euler, we find

the amplification factor is here

λ(k) =
1

1 + 4µ sin2
(
k∆x
2

) .
In contrast to earlier, this satisfies |λ(k)| ≤ 1 for all values of µ.

Theorem Suppose that Um
j is the solution of

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 1, 2, . . .

where U0
j = u0(xj) and µ = ∆t

(∆x)2
≤ 1

2
. Then

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, 2, . . .M.

We say that the explicit Euler scheme is unconditionally stable.
Fourier modes The same results can be reached using a simplier

argument, by inserting the Fourier mode into the scheme, i.e. setting
4

Um
j = [λ(k)]meikj∆x. For example, substituting this into the explicit Euler

scheme:

Um+1
j = Um

j + µ
(
Um
j+1 − 2Um

j + Um
j−1

)
gives

λ(k) = 1 + µ(eik∆x − 2 + e−ik∆x),

and hence the result follows as before.

5

NSDE 1: LECTURE 13

TYRONE REES∗

Recap To solve

∂u

∂t
=

∂2u

∂x2

for x ∈ (−∞,∞) and t ∈ [0, T], where u(x, 0) = u0(x), and u → 0 as
→ ±∞ Set up a grid:

xj = j∆x, and tm = m∆t.

We’ve considered two schemes: Explicit Euler in time with central
differences in space:

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

and Implicit Euler in time with central differences in space:

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1) = Um
j ,

where µ = ∆t/(∆x)2.
We analyzed stability using the semidiscrete Fourier transform:

Û(k) = ∆x

∞∑
j=−∞

Uj e
−ikxj , k ∈ [−π/∆x, π/∆x],

with inverse:

Uj =
1

2π

∫ π/∆x

−π/∆x

Û(k) eikj∆x dk

aliasing.m

Fourier modes The same stability results can be reached using a
simplier argument, by inserting the Fourier mode into the scheme, i.e.
setting Um

j = [λ(k)]meikj∆x. You should be able to do either method.
Consider another scheme: the θ−scheme:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2

where θ ∈ [0, 1] is a parameter:
• θ = 0: Explicit Euler scheme
• θ = 1: Implicit Euler scheme

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

• θ = 1/2: Crank-Nicolson scheme
To analyse stability, note

Um+1
j −Um

j = (1− θ)µ(Um
j−1− 2Um

j +Um
j+1)+µθ(Um+1

j−1 − 2Um+1
j +Um+1

j+1)

inserting the Fourier mode:

[λ(k)]m+1eikj∆x−[λ(k)]meikj∆x = (1− θ)µ([λ(k)]meik(j−1)∆x − 2[λ(k)]meikj∆x + [λ(k)]meik(j+1)∆x)

+ (1− θ)µ([λ(k)]m+1eik(j−1)∆x − 2[λ(k)]m+1eikj∆x + [λ(k)]m+1eik(j+1)∆x)

Dividing through by [λ(k)]meikxj gives:

λ(k)− 1 = (1− θ)µ(e−ik∆x − 2 + eik∆x) + θµλ(k)(e−ik∆x − 2 + eik∆x).

Therefore, by the same arguments as last time:

λ(k)− 1 = −4(1− θ)µ sin2

(
k∆x

2

)
− 4θµλ(k) sin2

(
k∆x

2

)
and so

λ(k) =
1− 4(1− θ)µ sin2

(
k∆x
2

)
1 + 4θµ sin2

(
k∆x
2

)
For practical stability, we require that

|λ(k)| ≤ 1 ∀ k ∈
[
−π

∆x
,
π

∆x

]
i.e.

−1 ≤ 1− 4(1− θ)µp

1 + 4θµp
≤ 1,

where we’ve written p = sin2
(
k∆x
2

)
, which takes values between 0 and 1.

We can write this as

−1 ≤ 1− 4µp

1 + 4θµp
≤ 1

This is clearly less than one, and monotonic decreasing, so we just have
to check what happens at p = 1. We get that the inequality is always
satisfied of θ ≤ 1/2, and otherwise is satisfied if

µ ≤ 1

2(1− 2θ)
.

Therefore:
• For θ ∈ [1/2, 1]: unconditionally stable

2

• For θ ∈ [0, 1/2[: stable if µ ≤ 1
2(1−2θ)

Boundary conditions
In practice, we’ll be solving on a bounded domain, and so we’ll need

boundary conditions: As well as an initial condition u(x, 0) = u0(x), we
need, e.g.,

• Dirichlet boundary conditions: u(x0, t) = ua(t), u(xN+1, t) = ub(t)
• Neumann boundary conditions: ∂u

∂t
(x0, t) = ua(t),

∂u
∂t
(xN+1, t) =

ub(t)
• Mixed boundary conditions: ∂u

∂t
(x0, t) = ua(t), u(xN+1, t) = ub(t)

How do we solve the system?
We can write the θ-scheme as

Um+1
j − θµ(Um+1

j+1 − 2Um+1
j +Um+1

j−1) = Um
j +(1− θ)µ(Um

j+1− 2Um
j +Um

j−1)

for j = 1, . . . N . In the Dirichlet case, we know U0
j = u0(xj) for all j, and

also Um
0 = ua(tm), U

m
N+1 = ub(tm), so we can simply plug these in where

needed. This can be be written in matrix form:

Um+1−θµ

−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

.
0 1 −2

Um+1 = Um+

(1− θ)µ

−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

.
0 1 −2

Um + (1− θ)µ

ua(tm)

0
...
0

ub(tm)

+ θµ

ua(tm+1)

0
...
0

ub(tm+1)

 ,

or, if we write

K =

−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

.
0 1 −2

 , f =

(1− θ)µua(tm) + θµua(tm+1)

0
...
0

(1− θ)µub(tm) + θµub(tm+1)

then

(I − θµK)Um+1 = (I + (1− θ)µK)Um + f

At each step, a tridiagonal matrix must be solved (by, e.g., the Thomas
algorithm – see problem sheet 5).

3

NSDE 1: LECTURE 14

TYRONE REES∗

Recap

∂u

∂t
=

∂2u

∂x2

for x ∈ [0, X] and t ∈ [0, T] where u(x, 0) = u0(x), and with mixed
boundary conditions ∂u

∂x
(0, t) = ua(t), u(X, t) = ub(t) Set up a grid:

xj = j∆x, j = 0, . . . , N + 1 and tm = m∆t,m = 1, . . . ,M.

Um+1
j − θµ(Um+1

j+1 − 2Um+1
j +Um+1

j−1) = Um
j +(1− θ)µ(Um

j+1− 2Um
j +Um

j−1)

for j = 1, . . . N .
Neumann boundary conditions Suppose that we have a Neumann

boundary condition at x0, so
∂u
∂x
(x0, t) = ua(t), with a Dirichlet b.c. at

xN+1. Now Um
0 is also unknown, so what do we do?

The solution is to introduce a ficticious point, Um
−1, and set

Um
1 − Um

−1

2∆x
= ua(tm)

(We must use central differences, otherwise the order of accuracy of the
boundary condition would be less than that of the PDE). Then Um

−1 =
Um
1 −2∆xua(tm). We can therefore substitute this into our scheme, giving

(I − θµKN)Um+1 = (I + (1− θ)µKN)Um + fN

where

KN =

−2 2 0 · · · 0
1 −2 1 0 0
0 1 −2 1

.
0 1 −2

 , f =

−2(1− θ)µ∆xua(tm)− 2θµ∆xua(tm+1)

0
...
0

(1− θ)µub(tm) + θµub(tm+1)

Truncation error
Suppose we solve the heat equation with Dirichlet boundary condi-

tions:

∂u

∂t
=

∂2u

∂x2
, x ∈ [a, b], t ∈ [0, T]

u(x, 0) = u0(x)

u(a, t) = ua(t),u(b, t) = ub(t)

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

using Explicit Euler in time and central differences in space

Um+1
j − Um

j

∆t
=

Um
j−1 − 2Um

j + Um
j−1

∆x2

U0
j = u0(xj), j = 1, . . . , N

Um+1
0 = ua(tm+1), U

m+1
N+1 = ub(tm+1),m = 1, . . . ,M

We define the truncation error of the scheme as

Tm
j =

um+1
j − um

j

∆t
−

um
j−1 − 2um

j + um
j−1

∆x2

where um
j = u(xj, tm).

Then, expanding using Taylor series, we get

um+1
j =

[
u+∆tut +

∆t2

2
utt +

∆t3

6
uttt + · · ·

]m
j

and so the time derivative gives

um+1
j − um

j

∆t
=

[
u+∆tut +

∆t2

2
utt +

∆t3

6
uttt + · · · − u

]m
j

∆t

= ut +
∆t

2
utt + · · ·

Now, for the central differences approximation:

um
j+1 =

[
u+∆xux +

∆x2

2
uxx +

∆x3

6
uxxx +

∆x4

24
uxxxx + · · ·

]m
j

−2um
j = −2um

j

um
j−1 =

[
u−∆xux +

∆x2

2
uxx −

∆x3

6
uxxx +

∆x4

24
uxxxx + · · ·

]m
j

and so we get

um
j+1 − 2um

j + um
j−1

∆x2
=

∆x2uxx +
∆x4

12
uxxxx + · · ·

∆x2

= uxx +
∆x2

12
uxxxx + · · ·

2

Therefore, putting it together:

Tm
j = ut − uxx +

∆t

2
utt −

∆x2

12
uxxxx + · · · = O(∆t+ (∆x)2)

For other schemes, choose the point that you expand about accord-
ingly to minimize the algebra!

• Explicit Euler: um
j – O(∆t+∆x2)

• Implicit Euler: um+1
j – O(∆t+∆x2)

• Crank-Nicolson: u
m+1/2
j – O(∆t2 +∆x2)

Error analysis of the Explicit Euler scheme Let us define the
global error as

emj = u(xj, tm)− Um
j .

Note that, for a Dirichlet problem,

em+1
0 = 0, em+1

N+1 = 0, e0j = 0, j = 1, . . . , N

Then, we have

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

um+1
j = um

j + µ(um
j−1 − 2um

j + um
j+1) + ∆tTm

j

and so

em+1
j = emj + µ(emj−1 − 2emj + emj+1) + ∆tTm

j

= (1− 2µ)emj + µemj−1 + µemj+1 +∆tTm
j

Let Em = max0≤j≤N+1 |emj | and Tm = max1≤j≤N |Tm
j |. As long as (1 −

2µ) ≥ 0 (recall that this scheme is absolutely stable if µ ≤ 1/2) we can
write

Em+1 ≤ (1− 2µ)Em + µEm + µEm +∆tTm

= Em +∆tTm

Therefore, since E0 = 0,

Em ≤ ∆t

m−1∑
i=0

T i

≤ m∆t max
0≤i≤m−1

T i

≤ T max
0≤m≤M

max
1≤j≤N

|Tm
j |

Therefore, since the Euler scheme has truncation error

Tm
j = O(∆x2 +∆t)

3

we have that

max
0≤m≤M

max
1≤j≤N

|u(xj, tm)− Um
j | ≤ Const.(∆x2 +∆t)

4

NSDE 1: LECTURE 15

TYRONE REES∗

Another concept of Stability

∂u

∂t
=

∂2u

∂x2

for x ∈ (−∞,∞) and t ∈ [0, T], where u(x, 0) = u0(x), and u(x, t) → 0
as x → ±∞.

We shall say that a finite difference scheme for this problem is von
Neumann-stable in the ℓ2 norm if there exists a positive constant C =
C(T) such that

∥Um∥ℓ2 ≤ C∥U0∥ℓ2 , m = 1, . . . ,M = T/∆t,

where, as usual

∥Um∥ℓ2 =

(
∆x

∞∑
j=−∞

|Um
j |2
)1/2

.

Note that practical stability ⇒ von Neumann stability.
Lemma
If

Ûm+1(k) = λ(k)Ûm(k)

and

|λ(k)| ≤ 1 + C∆t ∀k ∈ [−π/∆x, π/∆x],

then the scheme is von Neumann-stable.
Proof
By Parseval’s identity for the semidiscrete Fourier Transform:

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2

=
1√
2π

∥λ(k)Ûm∥L2

≤ 1√
2π

max
k

|λ(k)|∥Ûm∥L2

= max
k

|λ(k)|∥Um∥ℓ2

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

and hence

∥Um+1∥ℓ2 ≤ (1 + C∆t)∥Um∥ℓ2 , m = 0, 1, . . . ,M − 1.

Applying this result repeatedly, we get that

∥Um∥ℓ2 ≤ (1 + C∆t)m∥U0∥ℓ2 , m = 0, 1, . . . ,M − 1.

≤ (1 + C∆t)M∥U0∥ℓ2 [as 1 + C∆t > 1,M > m]

≤ eC∆tM∥U0∥ℓ2 [as 1 + x ≤ ex, x > 0]

= eCT∥U0∥ℓ2 [as M = T/∆t]

□
Note that, as is apparent from the proof, von-Neumann stability isn’t

helpful over long time periods. However, using it we can state an impor-
tant theorem:

Theorem: The Lax-equivalence theorem For a consistent differ-
ence approximation to a well posed linear evolutionary problem, stability
as ∆t → 0 is necessary and sufficient for convergence.

(proof omitted)
This is the PDE equivalent of Dahlquist’s theorem for multistep meth-

ods for ODEs.
The discrete Maximum principle
Consider the Dirchlet problem. Mathematically, the maximum of

the solution must lie on the boundary (either initially, or at a space
boundary). It is important that our numerical scheme also satisfies this
property.

Proposition: the discrete Maximum principle The θ-method
with 0 ≤ θ ≤ 1 and µ(1− θ) ≤ 1/2 gives approximations Um

j satisfying:

Umin ≤ Um
j ≤ Umax,

where

Umin = min

{
min

0≤m≤M
{Um

0 }, min
0≤j≤N+1

{U0
j }, min

0≤m≤T
{Um

N+1}
}

and

Umax = max

{
max

0≤m≤M
{Um

0 }, max
0≤j≤N+1

{U0
j }, max

0≤m≤T
{Um

N+1}.
}

Proof We can rewrite the θ−scheme as

(1 + 2θµ)Um+1
j =θµ(Um+1

j+1 + Um+1
j−1)

+ (1− θ)µ(Um
j+1 + Um

j−1)

+ [1− 2(1− θ)µ]Um
j .

2

By hypothesis:

θµ ≥ 0 (1− θ)µ ≥ 0 1− 2(1− θ)µ ≥ 0,

with the last of these being from the assumption that µ(1− θ) ≤ 1/2.
Now, suppose that U attains it’s maximum at an internal grid point

Um+1
j , so 1 ≤ j ≤ N , 0 ≤ m ≤ M − 1 (if not, the proof is complete).

Define

U⋆ = max{Um+1
j+1 , Um+1

j−1 , Um
j+1, U

m
j−1, U

m
j }.

Then

(1 + 2θµ)Um+1
j ≤ θµU⋆ + 2(1− θ)µU⋆ + [1− 2(1− θ)µ]U⋆

= (1 + 2θµ)U⋆

and, so

Um+1
j ≤ U⋆

However, since Um+1
j is assumed to be the maximum value overall

U⋆ ≤ Um+1
j ,

and, therefore,

Um+1
j = U⋆.

The maximum is therefore also attained at the points neighbouring (xj, tm+1).
The same argument applies to these neighbouring points, and can be con-
tinued until the boundary is reached.

Therefore, the maximum is attained at a boundary point.
□
Note that the θ-scheme obeys the discrete maximum principle for

µ(1− θ) ≤ 1/2.

This is more demanding than the stability condition:

µ(1− 2θ) ≤ 1/2 for 0 ≤ θ ≤ 1/2.

So, e.g., Crank-Nicolson is unconditionally stable, yet it only obeys the
maximum principle for

µ =
∆t

∆x2
≤ 1.

3

NSDE 1: LECTURE 16

TYRONE REES∗

Let Ω = (a, b)× (c, d). Consider the 2D heat equation:

∂u

∂t
= ∇2u (x, y) ∈ Ω, t ∈ (0, T]

subject to the initial condition:

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄

and the Dirichlet boundary condition:

u|∂Ω = B(x, y, t), t ∈ [0, T], (x, y) ∈ ∂Ω,

where ∂Ω is the boundary of Ω.
Define a grid:

∆x = (b− a)/(Nx + 1), ∆y = (d− c)/(Ny + 1), ∆t = T/M,

and set

xi = a+ i∆x, i = 0, . . . , Nx + 1

yj = c+ j∆y, j = 0, . . . , Ny + 1

tm = m∆t, m = 0, . . . ,M.

Let us define

δ2xUi,j = Ui+1,j − 2Ui,j + Ui−1,j

δ2yUi,j = Ui,j+1 − 2Ui,j + Ui,j−1

Then the 2D θ−scheme is given by

Um+1
i,j − Um

i,j

∆t
= (1− θ)

(
δ2xU

m
i,j

∆x2
+

δ2yU
m
i,j

∆y2

)
+ θ

(
δ2xU

m+1
i,j

∆x2
+

δ2yU
m+1
i,j

∆y2

)

U0
i,j = u0, i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1

Um+1
i,j = B(xi, yj, tm+1), (xi, yj) ∈ ∂Ω, m = 0, . . . ,M − 1.

We usually order the vector of unknowns in what’s called a Lexico-
graphic ordering:

Um = [Um
1,1, . . . , UNx,1, U1,2, . . . , UNx,2, . . . , UNx,Ny]

T

∗Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

1

If we do this, then the matrix to be solved in an implicit method has 5
diagonals (yet not all next to each other).

Stability
As before, we analyze stability by doing a Fourier analysis, or by

inserting the Fourier mode, in this case

Um
i,j = [λ(kx, ky)]

m ei(kxxi+kyyj)

This gives

λ− 1 =− 4(1− θ)

[
µx sin

2

(
kx∆x

2

)
+ µy sin

2

(
ky∆y

2

)]
− 4θλ

[
µx sin

2

(
kx∆x

2

)
+ µy sin

2

(
ky∆y

2

)]
where

µx =
∆t

∆x2
, µy =

∆t

∆y2

and so

λ =
1− 4(1− θ)

[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(

ky∆y

2

)]
1 + 4θ

[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(

ky∆y

2

)]
For practical stability in ℓ2, we require that

|λ(kx, ky)| ≤ 1 ∀ (kx, ky) ∈
[
− π

∆x
,
π

∆x
,
]
×
[
− π

∆y
,
π

∆y

]
which demands

−1 ≤ 1− 4(1− θ) [µx + µy]

1 + 4θ [µx + µy]
≤ 1,

and so

2(1− 2θ)(µx + µy) ≤ 1

Implicit Euler(θ = 1) unconditionally stable

Crank-Nicolson(θ = 1/2) unconditionally stable

Explicit Euler(θ = 0) conditionally stable :

µx + µy = ∆t

(
1

∆x2
+

1

∆y2

)
≤ 1

2
2

Discrete maximum principle
We can write the θ−scheme as

(1 + 2θ(µx + µy))U
m+1
i,j =(1− 2(1− θ)(µx + µy))U

m
i,j

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j)

+ (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j)

+ θµy(U
m+1
i,j+1 + Um+1

i,j−1) (∗)

If (µx+µy)(1− θ) ≤ 1/2, then the θ−scheme obeys a Discrete maximum
principle, so that

Umin ≤ Um
i,j ≤ Umax,

where

Umin = min
{
min

{
U0
i,j

}
,min

{
Um
i,j

}
(xi,yj)∈∂Ω

}
and

Umax = max
{
max

{
U0
i,j

}
,max

{
Um
i,j

}
(xi,yj)∈∂Ω

}
Proof: exactly similarly to the 1D proof.
Summary For

(µx + µy)(1− θ) ≤ 1/2

The θ−scheme obeys the discrete maximum principle. This is more de-
manding than the ℓ2-stability condition:

(µx + µy)(1− 2θ) ≤ 1/2, 0 ≤ θ ≤ 1/2

Error analysis
We define the truncation error

Tm
i,j =

um+1
i,j − um

i,j

∆t
− (1− θ)

(
δ2xu

m
i,j

∆x2
+

δ2yu
m
i,j

∆y2

)
+ θ

(
δ2xu

m+1
i,j

∆x2
+

δ2yu
m+1
i,j

∆y2

)
,

where um
i,j = u(xi, yj, tm). After applying some Taylor expansions we get

Tm
i,j =

{
O(∆x2 +∆y2 +∆t2), θ = 1/2

O(∆x2 +∆y2 +∆t), θ ̸= 1/2

3

We now look at the global error. First, note that we can rearrange
the truncation error formula to give

(1 + 2θ(µx + µy))u
m+1
i,j =(1− 2(1− θ)(µx + µy))u

m
i,j

+ (1− θ)µx(u
m
i+1,j + um

i−1,j)

+ (1− θ)µy(u
m
i,j+1 + um

i,j−1)

+ θµx(u
m+1
i+1,j + um+1

i−1,j)

+ θµy(u
m+1
i,j+1 + um+1

i,j−1)

+ ∆tTm
i,j. (∗∗)

Defining the global error

emi,j = Um
i,j − u(xi, yj, tm)

then e0i,j = 0 and emi,j = 0 for (xi, yj) ∈ ∂Ω, and, subtracting (*) from
(**), we get

(1 + 2θ(µx + µy))e
m+1
i,j =(1− 2(1− θ)(µx + µy))e

m
i,j

+ (1− θ)µx(e
m
i+1,j + emi−1,j)

+ (1− θ)µy(e
m
i,j+1 + emi,j−1)

+ θµx(e
m+1
i+1,j + em+1

i−1,j)

+ θµy(e
m+1
i,j+1 + em+1

i,j−1)

+ ∆tTm
i,j

Then if Em = maxi,j |emi,j| and Tm = maxi,j |Tm
i,j|, and we assume that

1− 2(1− θ)(µx + µy) ≥ 0,

(Discrete Maximum Principle) then we have

(1 + 2θ(µx + µy))E
m+1 ≤ 2θ(µx + µy)E

m+1 + Em +∆tTm

and hence

Em+1 ≤ Em +∆tTm.

As in the 1D case, as E0 = 0,

Em ≤ T max
m

max
i,j

|Tm
i,j|

(where T is the maximum time), and so

max
m

max
i,j

|u(xi, yj, tm)− Um
i,j| ≤ T max

m
max
i,j

|Tm
i,j|

4

