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u′ = f(t, u), u(t0) = u0.

The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)

The linear multistep method is said to be convergent if, for all initial
value problems u′ = f(t, u), u(t0) = u0 (which satisfies the assumptions
of Picard’s theorem),

lim
h→0, nh=t−t0

Un = u(t)

for all t ∈ [t0, TM ] and for all solutions {Un}Nn=0 with consistent starting
condition, i.e., with starting values

Us = ηs(h)

for which limh→0 ηs(h) = U0, s = 0, 1, . . . , k − 1.
Convergence is a vital property of a numerical method. It tells us

that, if we take smaller and smaller time steps, we will get better and
better approximations to the true solution.

Theorem Zero stability is a necessary condition for convergence.
Proof Since the scheme converges for all f , choose f = 0. In partic-

ular, let u(0) = 0 with solution u = 0.
Then

k∑
j=0

αjUn+j = 0 (0.1)

As the method is convergent, Un → 0 as h → 0, nh → t for consistent
starting values U0, . . . , Uk−1.

Now, let z = reiθ be a root of ρ(z) = 0.
Choose the starting data Um = hrmcos(mθ), which is consistent with

the initial condition. Note that Um satisfies (0.1), since by writing

Um = Re(hrmeimθ) = hRe(zm),
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then

k∑
j=0

αjUn+j = h
k∑

j=0

Re(zm+k) = h
∑
j=0

Re(znρ(z)) = 0,

since z was a root of ρ(z) = 0.
Therefore, the values Un = hrn cos(nθ) are solutions of the discrete

method starting from a consistent set of initial values.
• Suppose θ ̸= 0, π. then

U2
n − Un+1Un−1 = h2r2n

[
cos2(nθ)− cos((n+ 1)θ) cos((n− 1)θ)

]
so

U2
n − Un+1Un−1 = h2r2n sin2 θ

The LHS tends to zero as n → ∞, nh → t, as all values converge
to zero. The right hand side must therefore also tend to zero.
However, this is only possibly if r ≤ 1.

• if θ = 0 or π, then since

Un = hrn (θ = 0)

or

Un = hrn(−1)n (θ = π)

we again have that since Un → 0, r ≤ 1.
Now, if z is a double root of ρ(z), Un = hnrn cos(nθ) also satisfies

(0.1), and so r < 1. Therefore all roots on the unit circle must be simple.
Hence, if the scheme is convergent, the roots of the first characteristic

polynomial satisfy root condition, and hence the scheme is zero-stable.
Theorem
Consistency is a necessary condition for convergence.
Proof
Recall that a linear multistep method is consistent if and only if

k∑
j=0

αj = 0, and
k∑

j=0

jαj =
k∑

j=0

βj.

Assume that a linear multi-step method is convergent for all functions
f .

• Consider the function f = 0 with initial value u(0) = 1, so the
solution is u = 1. Now U0 = U1 = · · ·Uk−1 is a consistent set of
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initial data, and convergence gives Un → 1 as nh → t, h → 0.
The method is

k∑
j=0

Un+j = 0,

and since, in the limit, Un+s → 1 for s = 1, . . . k, we have
∑k

j=0 αk =
0, as required.

• Next consider f = 1 with initial value u(0) = 0, so that u′ = 1.
Here the solution is u(t) = t, and so Un → t as nh → t, h → 0.
The method is

k∑
j=0

αjUn+j = h

k∑
j=0

βj.

Convergence tells us that Un+r = (n+ r)h, so

k∑
j=0

αj(n+ j)h = h

k∑
j=0

βj

i.e.

k∑
j=0

αjn+
k∑

j=1

jαj = h

k∑
j=0

βj

since the first term is zero by part (i), we must have

k∑
j=1

jαj = h

k∑
j=0

βj

Putting these two results together, convergence implies the scheme will
be consistent.

Dahlquist Theorem
For a linear multi-step method that is consistent with the ODE u′ =

f(t, u), where f obeys a Lipschitz condition, and starting with consistent
initial data, zero-stability is necessary and sufficient for convergence.

—
Dahlquist’s theorem tells us that if a linear multistep method is not

zero-stable, then it’s global error cannot be made arbirarily small by
taking h sufficiently small. In fact, if the root condition is violated, then
no matter how good the initial data is, there exists a solution that will
grow by an arbitrarily large number.
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