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u′ = f(t, u), u(t0) = u0.

The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)

A method is zero-stable if there exists a constant K such that, for
any two sequences U0, U1, . . . , Uk−1, and Û0, Û1, . . . , Ûk−1,

|Un − Ûn| ≤ Kmax{|U0 − Û0|, |U1 − Û1|, . . . , |Uk−1 − Ûk−1|}

for tn ≤ TM and as h → 0.
The first characteristic polynomial is given by

ρ(z) =
k∑

j=0

αjz
j

The second characteristic polynomial is given by

σ(z) =
k∑

j=0

βjz
j

Theorem (Root condition)
A linear multistep method is zero stable for any ODE

u′ = f(t, u)

where f obeys a Lipschitz condition if and only if all zeros of its first
characteristic polynomial lie inside the closed unit disk, with any that lie
on the unit circle being simple.

Lemma
Consider the kth order homogeneous linear recurrence relation

αkyn+k + · · ·+ α1yn+1 + α0yn = 0, n = 0, 1, 2, . . .

with αk ̸= 0, α0 ̸= 0, αj ∈ R, j = 1, . . . , k, and the corresponding
characteristic polynomial:

ρ(z) = αkz
k + · · ·+ α1z + α0.
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Let zr, 1 ≤ r ≤ l, l ≤ k, be distinct roots of the polynomial ρ, and let
mr ≥ 1 denote the multiplicity of zr, with m1 + · · ·+ml = k.

If a sequence (yn) of complex numbers statisfies the recurrence rela-
tion above, then

yn =
l∑

r=1

pr(n)z
n
r ∀n ≥ 0,

where pr(·) is a polynomial in n of degree mr−1, 1 ≤ r ≤ l. In particular,
if all roots are simple, (i.e. mr = 1, 1 ≤ r ≤ k), then the pr are constants.

(See, e.g, Suli and Mayers (Lemma 12.1) for a sketch of the proof)
Proof of Root condition (necessity)
We want to prove that zero-stability implies the root condition. Sup-

pose that

k∑
j=0

αjUn+j = h
k∑

j=0

βjf(tn+j, Un+j)

is zero stable. Then applying the method to the ODE u′ = 0, u(0) = 0
gives

αkUn+k + αk−1Un+k−1 + · · ·+ α1Un+1 + αoUn = 0

This is a difference equation, and from the lemma, it’s general solution
is of the form

Un =
∑
s

ps(n)z
n
s ,

where zs is a zero of

ρ(z) =
k∑

j=0

αjz
j

of multiplicity ms ≥ 1 and ps is a polynomial of degree ms − 1.
If |zs| > 1 for some s then there are starting values such that the

solution grows like |zs|n.
If |zs| = 1 and zs has multiplicity ms > 1, then there are starting

values such that the solution grows like nms−1. In either case, there are
solutions which grow unbounded as n → ∞, h → 0, nh fixed.

Consider starting data U0, U1, . . . , Uk−1 that gives such an unbounded
solution, and the starting data

Û0, Û1 = · · · = Ûk−1 = 0,
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which gives Ûn = 0 for all n ≥ 0.
Therefore, if a method violates the root condition, it cannot be zero

stable.
The proof of the converse is technical, and outside the scope of this

course.
Example
Simpson rule method:

Un+2 − Un =
h

3
(fn+2 + 4fn+1 + fn)

ρ(z) = z2 − 1

z = ±1

(where fn = f(tn, Un)).
Simple roots on the unit circle, so the method is zero-stable.
Example
Adams-Bashforth method

Un+4 − Un+3 =
h

24
(−9fn + 37fn+1 − 59fn+2 + 55fn+3)

ρ(z) = z4 − z3 = z3(z − 1)

z1 = z2 = z3 = 0, z4 = 1

Example A 3-step 6-th order accurate method:

11Un+3 + 27Un+2 − 27Un+1 − 11Un = 3h(fn+3 + 9fn+2 + 9fn+1 + fn)

ρ(z) = 11z3 + 27z2 − 27z − 11

z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356

since |z3| > 1, the method is not zero stable.
Convergence
The linear multistep method is said to be convergent if, for all initial

value problems u′ = f(t, u), u(t0) = u0 (which satisfies the assumptions
of Picard’s theorem),

lim
h→0, nh=t−t0

Un = u(t)
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for all t ∈ [t0, TM ] and for all solutions {Un}Nn=0 with consistent starting
condition, i.e., with starting values

Us = ηs(h)

for which limh→0 ηs(h) = U0, s = 0, 1, . . . , k − 1.
Convergence is a vital property of a numerical method. It tells us

that, if we take smaller and smaller time steps, we will get better and
better approximations to the true solution.
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