
NSDE 1: LECTURE 7

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

For the last two weeks we’ve been looking at one-step methods. These
use information (tn, Un) that is the most recent step to update the ap-
proximate solution Un+1 at tn+1 = tn + h. To do this, we (in the case of
Runge-Kutta methods) evaluate the function multiple times at points in
between tn and tn+1 to obtain a more accurate solution.

This can improve the accuracy, may not be the most efficient method,
especially in the case where the function is expensive to evaluate.

Recall that the inpiration for one-step methods was re-writing the
ODE over a time step as

u(tn+1)− u(tn) =

∫ tn+1

tn

u′(t)dt =

∫ tn+1

tn

f(t, u(t))dt.

Runge-Kutta methods evaluated the function at points in between tn and
tn+1 in order to better approximate the integral on the right hand side.

Instead, we could integrate over more than one time step, and get
a more accurate numerical method by re-using function evaluations we
already have. For example,∫ tn+2

tn

u′(t)dt =

∫ tn+2

tn

f(t, u(t))dt

Using, for example, Simpson’s rule, we get

u(tn+2)− u(tn) ≈
2h

6
[f(tn+2, u(tn+2)) + 4f(tn+1, u(tn+1)) + f(tn, u(tn))] ,

which suggests the numerical method

Un+2 = Un +
h

3
[f(tn+2, Un+2) + 4f(tn+1, Un+1) + f(tn, Un)] ,

We’re given U0, we can use a one-step method to find U1, and then we
can use this numerical scheme to approximate the solution at the other
time steps.

General form The general form of a linear multistep method is

k∑
j=0

αjUn+j = h

k∑
j=0

βjf(tn+j, Un+j)
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As before, if βk = 0 then the method is explicit, and if βk ̸= 0 then the
method is implicit. (So Simpson’s rule is an implicit 2-step method).

As before, we define:
The truncation error:

Tn =

∑k
j=0[αju(tn+j)− hβju

′(tn+j)]

h
∑k

j=0 βj

consistency:

lim
h→0,n→∞,nh=tn−t0

Tn = 0

And a method is pth order accurate if:

|Tn| ≤ Khp.

Note that

u(tn+j) = u(tn) + (jh)u′(tn) +
(jh)2

2!
u′′(tn) + . . .

and also

u′(tn+j) = u′(tn) + (jh)u′′(tn) +
(jh)2

2!
u′′′(tn) + . . .

Subsituting this into Tn we get

Tn =
1

h
∑k

j=1 βj

[C0u(tn) + C1hu
′(tn) + C2h

2u′′(tn) + · · · ]

where

C0 =
k∑

j=0

αj,

C1 =
k∑

j=1

jαj −
k∑

j=0

βj

. . .

Cq =
k∑

j=1

jq

q!
αj −

k∑
j=1

jq−1

(q − 1)!
βj

The method is consistent if limTn = 0, which is equivalent to requir-
ing that C0 = 0 and C1 = 0.

Furthermore, the method is pth order accurate if and only if

C0 = C1 = · · · = Cp = 0 and Cp+1 ̸= 0
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and, in this case,

Tn =
Cp+1∑k
j=1 βj

hpu(p+1)(tn) +O(hp)

Cp+1 is called the error constant.
Adams methods
A particular class of methods, known as Adams methods, have the

form

Un+k = Un+k−1 + h
k∑

j=0

βjf(tn+j, Un+j)

i.e., αk = 1, αk−1 = −1, αj = 0, j < k − 1.
If we require an explicit method (βk = 0), then we can pick the re-

maining k coefficients to eliminate as many terms as possible in the Taylor
expansion. These methods are called Adams-Bashforth methods:

Un+1 = Un + hf(tn, Un) 1st order

Un+2 = Un+1 +
h

2
(−f(tn, Un) + 3f(tn+1, Un+1)) 2nd order

Un+3 = Un+2 +
h

12
(5f(tn, Un)− 16f(tn+1, Un+1) + 23f(tn+2, Un+2)) 3rd order

Un+4 = Un+3 +
h

23
(−9f(tn, Un) + 37f(tn+1, Un+1)− 59f(tn+2, Un+2) + 55f(tn+3, Un+3) 4th order

If we allow βk ̸= 0, then we have one more free parameter, and so can
get a method of one order higher than the equivalent Adams-Bashforth
method. These methods are called Adams-Moulton methods:

Un+1 = Un +
h

2
(f(tn, Un) + f(tn+1, Un+1)) 2nd order

Un+2 = Un+1 +
h

12
(−f(tn, Un) + 8f(tn+1, Un+1) + 5f(tn+3, Un+3))

Un+3 = Un+2 +
h

24
(f(tn, Un)− 5f(tn+1, Un+1) + 19f(tn+2, Un+2) + 9f(tn+3, Un+3))

Zero-stability
Suppose we have a general k−step method

k∑
j=0

αjUn+j = h
k∑

j=0

βjf(tn+j, Un+j)

U0 is given, U1, . . . , Un−1 have to be computed. Question: how do the
errors in U1, . . . , Uk−1 affect the later values?
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Definintion A linear k−step method for

u′ = f(t, u), u(t0) = u0, t ∈ [t0, Tm]

is said to be zero-stable if there exists a constant K such that, for any
two sequences U0, U1, . . . , Uk−1, and Û0, Û1, . . . , Ûk−1,

|Un − Ûn| ≤ Kmax{|U0 − Û0|, |U1 − Û1|, . . . , |Uk−1 − Ûk−1|}

for tn ≤ TM and as h → 0.
This isn’t actually useful for checking zero stability – in practice we

reformulate in terms of polynomials:
The first characteristic polynomial is given by

ρ(z) =
k∑

j=0

αjz
j

The second characteristic polynomial is given by

σ(z) =
k∑

j=0

βjz
j

Theorem (Root condition)
A linear multistep method is zero stable for any ODE

u′ = f(t, u)

where f obeys a Lipschitz condition if and only if all zeros of its first
characteristic polynomial lie inside the closed unit disk, with any that lie
on the unit circle being simple.

Example
Simpson rule method:

Un+2 − Un =
h

3
(fn+2 + 4fn+1 + fn)

ρ(z) = z2 − 1

z = ±1

(where fn = f(tn, Un)).
Simple roots on the unit circle, so the method is zero-stable.
Example
Adams-Bashforth method

Un+4 − Un+3 =
h

24
(−9fn + 37fn+1 − 59fn+2 + 55fn+3)
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ρ(z) = z4 − z3 = z3(z − 1)

z1 = z2 = z3 = 0, z4 = 1

Example A 3-step 6-th order accurate method:

11Un+3 + 27Un+2 − 27Un+1 − 11Un = 3h(fn+3 + 9fn+2 + 9fn+1 + fn)

ρ(z) = 11z3 + 27z2 − 27z − 11

z1 = 1, z2 ≈ −0.3189, z3 ≈ −3.1356

since |z3| > 1, the method is not zero stable.
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