
NSDE 1: LECTURE 6

TYRONE REES∗

u′ = f(t, u), u(t0) = u0.

Last time we looked at ways of controlling the step size using adaptive
algorithms. This is useful for when we want the error to remain within
some tolerance.

Another strategy is to use Runge-Kutta methods of different orders
on top of each other. Because of the flexibility allowed in RK methods,
it is possible to find sets of two families that evaluate the function at the
same points, yet have different orders. For example, consider the method
with Butcher table:

0 1
1/2 1/2
3/4 0 3/4
1 2/9 3/9 4/9

2/9 3/9 4/9
11/72 30/72 40/72 −9/72

,

which is short-hand for the two methods

Ua
n+1 = Un +

∆tn
9

(2k1 + 3k2 + 4k3)

(a second order method), and

U b
n+1 = Un +

∆tn
72

(11k1 + 30k2 + 40k3 − 9k4)

(a third order method).
Here we can say that u(tn+1) = Ua

n+1+K2(∆tn)
2+O(∆tn)

3, and also
that u(tn+1) = U b

n+1+O(∆tn)
3. Since, for small ∆tn, we can assume that

the O(∆tn)
3 term is negligible, we have that

|U b
n+1 − Ua

n+1| ≈ K2(∆tn)
2.

We can then follow the same procedure as before. This scheme (developed
by Dogacki and Shampine in 1989) is the basis of the ode23 solver in
Matlab.

The first such method to be found was an order five-six pair, discoverd
by Fehlberg (working for NASA) in the late sixties. A similar method,
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based on fourth and fifth order methods, was developed by Dormand and
Price (1980), and this is the basis for the ode45 solver in matlab. It’s
Butcher table is:

0 1
1/5 1/5
3/10 3/40 9/40
4/5 44/45 −56/15 32/9
8/9 19372/6561 −25360/2187 64448/6561 −212/729
1 9017/3168 −355/33 46732/5247 49/176 −5103/18656
1 35/384 0 500/1113 125/192 −2187/6784 11/84

cr 35/384 0 500/1113 125/192 −2187/6784 11/84 0
dr 5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

Symplectic methods
Sometimes, however, it’s not (only) the error that we’re interested in.
A very important field of study is dynamical systems, in particular

Hamiltonian systems. A Hamiltonian system consists of l = 2m differen-
tial equations:

x′
i =

∂H

∂ui

u′
i = −∂H

∂xi

for i = 1, . . . , l. The scalar function H(x,u) is called the Hamiltonian.
(see B7.1). A typical example is a system of particles; in this case x(t)
are the positions of particles at time t, and u(t) are their velocities. In
this case H is the total energy.

Example
Consider a simple harmonic oscillator. Let x be the postition at time

t, and u be it’s velocity. The (scaled) system can be written as

x′′ = −x ⇒ x′ = u, u′ = −x.

This can be set in Hamiltonian framework by writing the Hamiltonian

H =
1

2
(x2 + u2).

Note that the Hamiltonian corresponds to the total energy in the system,
and so conservation of energy tells us that solution of the dynamical sys-
tem correspond to the Hamiltonian being constant – in this case, circles
in the (x, u) plane.

Let the solution be given by u = (x, u). Then the Hamiltonian can be
written as H = 1

2
uTu. A reasonable question to ask is how this evolves

using the numerical scheme.
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Explicit Euler for this system looks like[
Xn+1

Un+1

]
=

[
Xn

Un

]
+ h

[
Un

−Xn

]
=

[
1 h
−h 1

] [
Un

Xn

]
and so[
Xn+1 Un+1

] [Xn+1

Un+1

]
=

[
Un Xn

] [1 −h
h 1

] [
1 h
−h 1

] [
Un

Xn

]
= (1+h2)

[
Xn Un

] [Xn

Un

]
and so

Hn+1 = (1 + h2)Hn.

So the Hamiltonian (and hence the energy) grows in time for all time
steps.

Now, consider the hybrid Euler scheme[
Un+1

Xn+1

]
=

[
Un

Xn

]
+ h

[
−Xn

Un+1

]
or, in matrix terms:[

1 −h
0 1

] [
Xn+1

Un+1

]
=

[
1 0
−h 1

] [
Xn

Un

]
This also doesn’t leave the Hamiltonian H unaltered, but it does

preserve a modified Hamiltonian:

Ĥ(x, u) =
1

2
(x2 + u2)− 1

2
hxu = H(x, u)− 1

2
hxu.

This is called a symplectic scheme; while the original Hamiltonian is
not preserved, it is recovered in the limit as h → 0.

A common symplectic scheme is the Stömer-Verlet scheme. If the
system to be solved is

x′ = u

u′ = f(x),

then the Stömer-Verlet scheme takes the form:

Un+1/2 = Un +
1

2
hf(Xn)

Xn+1 = Xn + hUn+1/2

Un+1 = Un+1/2 +
1

2
hf(Xn+1),
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which, if we eliminate the intermediate value, gives the scheme

Xn+1 = Xn + hUn +
1

2
h2f(Xn)

Un+1 = Un +
1

2
[f(Xn) + f(Xn+1)]

Consider an area in the (x, u) plane, corresponding to a set of initial
conditions. Another property of Hamiltonian mechanics is that, as the
state of the system progresses, the area remains constant.

Recall that the area of a parallelogram with corners (x1, y1), (x2, y2), (x3, y3)
is given by

A =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
Consider again the dynamical system

x′ = u u′ = −x.

Now, suppose again that we had three initial conditions (X1
0 , U

1
0 ), (X

2
0 , U

2
0 ), (X

3
0 , U

3
0 ),

and evolve these using Euler’s method

X i
n = X i

n + hU i
n, U i

n = U i
n − hX i

n,

with area

An =

∣∣∣∣∣∣
X1

n U1
n 1

X2
n U2

n 1
X3

n U3
n 1

∣∣∣∣∣∣
To make the algebra easier, let’s choose initial (X0, Y0), (X0 +A, Y0)

and (X0, Y0 +B).
Then after one step of Euler these move to

(X0 + hU0,U0 − hX0),

(X0 + A+ hU0,U0 − h(X0 + A)) and

(X0 + h(U0 +B),U0 +B − hX0)

The area is therefore given by

A =

∣∣∣∣∣∣
X0 + hU0 U0 − hX0 1

X0 + A+ hU0 U0 − h(X0 + A) 1
X0 + h(U0 +B) U0 +B − hX0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
X0 + hU0 U0 − hX0 1

A −hA 0
hB B 0

∣∣∣∣∣∣
= (1 + h2)AB.
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Therefore the area increases exponentially as Euler progresses. Symplec-
tic methods preserve the area (see problem sheet 2).
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