NSDE 1: LECTURE 16

tyrone rees*

Let $\Omega=(a, b) \times(c, d)$. Consider the 2D heat equation:

$$
\frac{\partial u}{\partial t}=\nabla^{2} u \quad(x, y) \in \Omega, t \in(0, T]
$$

subject to the initial condition:

$$
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in \bar{\Omega}
$$

and the Dirichlet boundary condition:

$$
\left.u\right|_{\partial \Omega}=B(x, y, t), \quad t \in[0, T], \quad(x, y) \in \partial \Omega,
$$

where $\partial \Omega$ is the boundary of Ω.
Define a grid:

$$
\Delta x=(b-a) /\left(N_{x}+1\right), \Delta y=(d-c) /\left(N_{y}+1\right), \Delta t=T / M,
$$

and set

$$
\begin{aligned}
x_{i} & =a+i \Delta x, i=0, \ldots, N_{x}+1 \\
y_{j} & =c+j \Delta y, j=0, \ldots, N_{y}+1 \\
t_{m} & =m \Delta t, m=0, \ldots, M .
\end{aligned}
$$

Let us define

$$
\begin{aligned}
\delta_{x}^{2} U_{i, j} & =U_{i+1, j}-2 U_{i, j}+U_{i-1, j} \\
\delta_{y}^{2} U_{i, j} & =U_{i, j+1}-2 U_{i, j}+U_{i, j-1}
\end{aligned}
$$

Then the 2D θ-scheme is given by

$$
\begin{aligned}
\frac{U_{i, j}^{m+1}-U_{i, j}^{m}}{\Delta t} & =(1-\theta)\left(\frac{\delta_{x}^{2} U_{i, j}^{m}}{\Delta x^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m}}{\Delta y^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} U_{i, j}^{m+1}}{\Delta x^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m+1}}{\Delta y^{2}}\right) \\
U_{i, j}^{0} & =u_{0}, i=0, \ldots, N_{x}+1, j=0, \ldots, N_{y}+1 \\
U_{i, j}^{m+1} & =B\left(x_{i}, y_{j}, t_{m+1}\right), \quad\left(x_{i}, y_{j}\right) \in \partial \Omega, m=0, \ldots, M-1 .
\end{aligned}
$$

We usually order the vector of unknowns in what's called a Lexicographic ordering:

$$
U^{m}=\left[U_{1,1}^{m}, \ldots, U_{N_{x}, 1}, U_{1,2}, \ldots, U_{N_{x}, 2}, \ldots, U_{N_{x}, N y}\right]^{T}
$$

[^0]If we do this, then the matrix to be solved in an implicit method has 5 diagonals (yet not all next to each other).

Stability

As before, we analyze stability by doing a Fourier analysis, or by inserting the Fourier mode, in this case

$$
U_{i, j}^{m}=\left[\lambda\left(k_{x}, k_{y}\right)\right]^{m} e^{i\left(k_{x} x_{i}+k_{y} y_{j}\right)}
$$

This gives

$$
\begin{aligned}
\lambda-1= & -4(1-\theta)\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right] \\
& -4 \theta \lambda\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]
\end{aligned}
$$

where

$$
\mu_{x}=\frac{\Delta t}{\Delta x^{2}}, \quad \mu_{y}=\frac{\Delta t}{\Delta y^{2}}
$$

and so

$$
\lambda=\frac{1-4(1-\theta)\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]}{1+4 \theta\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]}
$$

For practical stability in ℓ_{2}, we require that

$$
\left|\lambda\left(k_{x}, k_{y}\right)\right| \leq 1 \forall\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x},\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]
$$

which demands

$$
-1 \leq \frac{1-4(1-\theta)\left[\mu_{x}+\mu_{y}\right]}{1+4 \theta\left[\mu_{x}+\mu_{y}\right]} \leq 1,
$$

and so

$$
2(1-2 \theta)\left(\mu_{x}+\mu_{y}\right) \leq 1
$$

$\operatorname{Implicit} \operatorname{Euler}(\theta=1) \quad$ unconditionally stable
Crank-Nicolson $(\theta=1 / 2) \quad$ unconditionally stable
$\operatorname{Explicit} \operatorname{Euler}(\theta=0) \quad$ conditionally stable :

$$
\mu_{x}+\mu_{y}=\Delta t\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right) \leq \frac{1}{2}
$$

Discrete maximum principle

We can write the θ-scheme as

$$
\begin{aligned}
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) U_{i, j}^{m+1}= & \left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) U_{i, j}^{m} \\
& +(1-\theta) \mu_{x}\left(U_{i+1, j}^{m}+U_{i-1, j}^{m}\right) \\
& +(1-\theta) \mu_{y}\left(U_{i, j+1}^{m}+U_{i, j-1}^{m}\right) \\
& +\theta \mu_{x}\left(U_{i+1, j}^{m+1}+U_{i-1, j}^{m+1}\right) \\
& +\theta \mu_{y}\left(U_{i, j+1}^{m+1}+U_{i, j-1}^{m+1}\right)
\end{aligned}
$$

If $\left(\mu_{x}+\mu_{y}\right)(1-\theta) \leq 1 / 2$, then the θ-scheme obeys a Discrete maximum principle, so that

$$
U_{\min } \leq U_{i, j}^{m} \leq U_{\max }
$$

where

$$
U_{\min }=\min \left\{\min \left\{U_{i, j}^{0}\right\}, \min \left\{U_{i, j}^{m}\right\}_{\left(x_{i}, y_{j}\right) \in \partial \Omega}\right\}
$$

and

$$
U_{\max }=\max \left\{\max \left\{U_{i, j}^{0}\right\}, \max \left\{U_{i, j}^{m}\right\}_{\left(x_{i}, y_{j}\right) \in \partial \Omega}\right\}
$$

Proof: exactly similarly to the 1D proof.
Summary For

$$
\left(\mu_{x}+\mu_{y}\right)(1-\theta) \leq 1 / 2
$$

The θ-scheme obeys the discrete maximum principle. This is more demanding than the ℓ_{2}-stability condition:

$$
\left(\mu_{x}+\mu_{y}\right)(1-2 \theta) \leq 1 / 2, \quad 0 \leq \theta \leq 1 / 2
$$

Error analysis

We define the truncation error

$$
T_{i, j}^{m}=\frac{u_{i, j}^{m+1}-u_{i, j}^{m}}{\Delta t}-(1-\theta)\left(\frac{\delta_{x}^{2} u_{i, j}^{m}}{\Delta x^{2}}+\frac{\delta_{y}^{2} u_{i, j}^{m}}{\Delta y^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} u_{i, j}^{m+1}}{\Delta x^{2}}+\frac{\delta_{y}^{2} u_{i, j}^{m+1}}{\Delta y^{2}}\right),
$$

where $u_{i, j}^{m}=u\left(x_{i}, y_{j}, t_{m}\right)$. After applying some Taylor expansions we get

$$
T_{i, j}^{m}= \begin{cases}O\left(\Delta x^{2}+\Delta y^{2}+\Delta t^{2}\right), & \theta=1 / 2 \\ O\left(\Delta x^{2}+\Delta y^{2}+\Delta t\right), & \theta \neq 1 / 2\end{cases}
$$

We now look at the global error. First, note that we can rearrange the truncation error formula to give

$$
\begin{aligned}
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) u_{i, j}^{m+1}= & \left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) u_{i, j}^{m} \\
& +(1-\theta) \mu_{x}\left(u_{i+1, j}^{m}+u_{i-1, j}^{m}\right) \\
& +(1-\theta) \mu_{y}\left(u_{i, j+1}^{m}+u_{i, j-1}^{m}\right) \\
& +\theta \mu_{x}\left(u_{i+1, j}^{m+1}+u_{i-1, j}^{m+1}\right) \\
& +\theta \mu_{y}\left(u_{i, j+1}^{m+1}+u_{i, j-1}^{m+1}\right) \\
& +\Delta t T_{i, j}^{m} . \quad(* *)
\end{aligned}
$$

Defining the global error

$$
e_{i, j}^{m}=U_{i, j}^{m}-u\left(x_{i}, y_{j}, t_{m}\right)
$$

then $e_{i, j}^{0}=0$ and $e_{i, j}^{m}=0$ for $\left(x_{i}, y_{j}\right) \in \partial \Omega$, and, subtracting $(*)$ from $(* *)$, we get

$$
\begin{aligned}
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) e_{i, j}^{m+1}= & \left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) e_{i, j}^{m} \\
& +(1-\theta) \mu_{x}\left(e_{i+1, j}^{m}+e_{i-1, j}^{m}\right) \\
& +(1-\theta) \mu_{y}\left(e_{i, j+1}^{m}+e_{i, j-1}^{m}\right) \\
& +\theta \mu_{x}\left(e_{i+1, j}^{m+1}+e_{i-1, j}^{m+1}\right) \\
& +\theta \mu_{y}\left(e_{i, j+1}^{m+1}+e_{i, j-1}^{m+1}\right) \\
& +\Delta t T_{i, j}^{m}
\end{aligned}
$$

Then if $E^{m}=\max _{i, j}\left|e_{i, j}^{m}\right|$ and $T^{m}=\max _{i, j}\left|T_{i, j}^{m}\right|$, and we assume that

$$
1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right) \geq 0,
$$

(Discrete Maximum Principle) then we have

$$
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) E^{m+1} \leq 2 \theta\left(\mu_{x}+\mu_{y}\right) E^{m+1}+E^{m}+\Delta t T^{m}
$$

and hence

$$
E^{m+1} \leq E^{m}+\Delta t T^{m}
$$

As in the 1D case, as $E^{0}=0$,

$$
E^{m} \leq T \max _{m} \max _{i, j}\left|T_{i, j}^{m}\right|
$$

(where T is the maximum time), and so

$$
\max _{m} \max _{i, j}\left|u\left(x_{i}, y_{j}, t_{m}\right)-U_{i, j}^{m}\right| \leq T \max _{m} \max _{i, j}\left|T_{i, j}^{m}\right|
$$

[^0]: *Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

