NSDE 1: LECTURE 15

TYRONE REES*
Another concept of Stability
ou  du
ot 022

for x € (—o0,00) and ¢ € [0, 7], where u(z,0) = up(z), and u(z,t) — 0
as r — £oo.
We shall say that a finite difference scheme for this problem is von

Neumann-stable in the ¢ norm if there exists a positive constant C' =
C(T) such that

U™ e < CNU°Mlep,  m=1,....M =T/At,

where, as usual

o 1/2
U™, = (Am Z \U]mP) )

j=—o00

Note that practical stability = von Neumann stability.
Lemma
If

A

U™ (k) = A(k)U™(k)
and
INk)| <1+ CAt Yk e |[—n/Az,/Ax],

then the scheme is von Neumann-stable.
Proof

By Parseval’s identity for the semidiscrete Fourier Transform:

1™ e, = U™

1
\/271"
1
= ——]|A

%H

1 ~
< - m

(k)T .,

= max [AR)[[|U™[|e,
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and hence
(U™ ], < (1+ CADU™ |4, m=0,1,...,M — 1.
Applying this result repeatedly, we get that
U™ ey < A+ CAY™|U |y, m=0,1,....,M—1.
< (1+CA)M||U°,, las 1+ CAt > 1, M > m]
< e8| 0, las 1+ < e€® x> 0]
=T U° [as M = T/At]

||52
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Note that, as is apparent from the proof, von-Neumann stability isn’t
helpful over long time periods. However, using it we can state an impor-
tant theorem:

Theorem: The Lax-equivalence theorem For a consistent differ-
ence approximation to a well posed linear evolutionary problem, stability
as At — 0 is necessary and sufficient for convergence.

(proof omitted)

This is the PDE equivalent of Dahlquist’s theorem for multistep meth-
ods for ODEs.

The discrete Maximum principle

Consider the Dirchlet problem. Mathematically, the maximum of
the solution must lie on the boundary (either initially, or at a space
boundary). It is important that our numerical scheme also satisfies this
property.

Proposition: the discrete Maximum principle The #-method
with 0 <0 <1 and p(1 —0) < 1/2 gives approximations U" satisfying:

Umin S Ujm S Uma:ra

where

. : m 0
Upnin = min {nglilM{Uo b, min {U] } mln {UN+1}}

0<j<N+1

and

0<j<N+1

Unpar = max {Omax {Ug"}, max {UO}  ax {UNH}}

Proof We can rewrite the §—scheme as

(1+ 200U =0u(UST + U
+ (1 =) jn}rl + Uﬁl)
+[1—2(1 - )uur.
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By hypothesis:
Ou>0 (1—0Opu>0 1—2(1—0)u>0,

with the last of these being from the assumption that p(1 —6) < 1/2.

Now, suppose that U attains it’s maximum at an internal grid point
Ujm“, s01 <7< N,0<m< M-—1 (if not, the proof is complete).
Define

U* = max{U3", U, UL, UM UM

j+1 0 Yi—1 5 Yt
Then
(14 20p) U < 0pU* +2(1 — O)puU* + [1 — 2(1 — 0)p]U*
= (14 20p)U”
and, so
Ujm+1 <U*
However, since U ;”“ is assumed to be the maximum value overall
U < Ut
and, therefore,
U]’-”+1 =U"

The maximum is therefore also attained at the points neighbouring (z;, t;+1)-
The same argument applies to these neighbouring points, and can be con-
tinued until the boundary is reached.

Therefore, the maximum is attained at a boundary point.
O
Note that the #-scheme obeys the discrete maximum principle for

p(l—10)<1/2.
This is more demanding than the stability condition:
u(l—20) <1/2 for 0 <0 <1/2.

So, e.g., Crank-Nicolson is unconditionally stable, yet it only obeys the
maximum principle for
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