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Another concept of Stability

∂u

∂t
=

∂2u

∂x2

for x ∈ (−∞,∞) and t ∈ [0, T ], where u(x, 0) = u0(x), and u(x, t) → 0
as x → ±∞.

We shall say that a finite difference scheme for this problem is von
Neumann-stable in the ℓ2 norm if there exists a positive constant C =
C(T ) such that

∥Um∥ℓ2 ≤ C∥U0∥ℓ2 , m = 1, . . . ,M = T/∆t,

where, as usual

∥Um∥ℓ2 =

(
∆x

∞∑
j=−∞

|Um
j |2
)1/2

.

Note that practical stability ⇒ von Neumann stability.
Lemma
If

Ûm+1(k) = λ(k)Ûm(k)

and

|λ(k)| ≤ 1 + C∆t ∀k ∈ [−π/∆x, π/∆x],

then the scheme is von Neumann-stable.
Proof
By Parseval’s identity for the semidiscrete Fourier Transform:

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2

=
1√
2π

∥λ(k)Ûm∥L2

≤ 1√
2π

max
k

|λ(k)|∥Ûm∥L2

= max
k

|λ(k)|∥Um∥ℓ2
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and hence

∥Um+1∥ℓ2 ≤ (1 + C∆t)∥Um∥ℓ2 , m = 0, 1, . . . ,M − 1.

Applying this result repeatedly, we get that

∥Um∥ℓ2 ≤ (1 + C∆t)m∥U0∥ℓ2 , m = 0, 1, . . . ,M − 1.

≤ (1 + C∆t)M∥U0∥ℓ2 [as 1 + C∆t > 1,M > m]

≤ eC∆tM∥U0∥ℓ2 [as 1 + x ≤ ex, x > 0]

= eCT∥U0∥ℓ2 [as M = T/∆t]

□
Note that, as is apparent from the proof, von-Neumann stability isn’t

helpful over long time periods. However, using it we can state an impor-
tant theorem:

Theorem: The Lax-equivalence theorem For a consistent differ-
ence approximation to a well posed linear evolutionary problem, stability
as ∆t → 0 is necessary and sufficient for convergence.

(proof omitted)
This is the PDE equivalent of Dahlquist’s theorem for multistep meth-

ods for ODEs.
The discrete Maximum principle
Consider the Dirchlet problem. Mathematically, the maximum of

the solution must lie on the boundary (either initially, or at a space
boundary). It is important that our numerical scheme also satisfies this
property.

Proposition: the discrete Maximum principle The θ-method
with 0 ≤ θ ≤ 1 and µ(1− θ) ≤ 1/2 gives approximations Um

j satisfying:

Umin ≤ Um
j ≤ Umax,

where

Umin = min

{
min

0≤m≤M
{Um

0 }, min
0≤j≤N+1

{U0
j }, min

0≤m≤T
{Um

N+1}
}

and

Umax = max

{
max

0≤m≤M
{Um

0 }, max
0≤j≤N+1

{U0
j }, max

0≤m≤T
{Um

N+1}.
}

Proof We can rewrite the θ−scheme as

(1 + 2θµ)Um+1
j =θµ(Um+1

j+1 + Um+1
j−1 )

+ (1− θ)µ(Um
j+1 + Um

j−1)

+ [1− 2(1− θ)µ]Um
j .
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By hypothesis:

θµ ≥ 0 (1− θ)µ ≥ 0 1− 2(1− θ)µ ≥ 0,

with the last of these being from the assumption that µ(1− θ) ≤ 1/2.
Now, suppose that U attains it’s maximum at an internal grid point

Um+1
j , so 1 ≤ j ≤ N , 0 ≤ m ≤ M − 1 (if not, the proof is complete).

Define

U⋆ = max{Um+1
j+1 , Um+1

j−1 , Um
j+1, U

m
j−1, U

m
j }.

Then

(1 + 2θµ)Um+1
j ≤ θµU⋆ + 2(1− θ)µU⋆ + [1− 2(1− θ)µ]U⋆

= (1 + 2θµ)U⋆

and, so

Um+1
j ≤ U⋆

However, since Um+1
j is assumed to be the maximum value overall

U⋆ ≤ Um+1
j ,

and, therefore,

Um+1
j = U⋆.

The maximum is therefore also attained at the points neighbouring (xj, tm+1).
The same argument applies to these neighbouring points, and can be con-
tinued until the boundary is reached.

Therefore, the maximum is attained at a boundary point.
□
Note that the θ-scheme obeys the discrete maximum principle for

µ(1− θ) ≤ 1/2.

This is more demanding than the stability condition:

µ(1− 2θ) ≤ 1/2 for 0 ≤ θ ≤ 1/2.

So, e.g., Crank-Nicolson is unconditionally stable, yet it only obeys the
maximum principle for

µ =
∆t

∆x2
≤ 1.
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