NSDE 1: LECTURE 13

TYRONE REES*
Recap To solve

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in(-\infty, \infty)$ and $t \in[0, T]$, where $u(x, 0)=u_{0}(x)$, and $u \rightarrow 0$ as $\rightarrow \pm \infty$ Set up a grid:

$$
x_{j}=j \Delta x, \text { and } t_{m}=m \Delta t
$$

We've considered two schemes: Explicit Euler in time with central differences in space:

$$
U_{j}^{m+1}=U_{j}^{m}+\mu\left(U_{j-1}^{m}-2 U_{j}^{m}+U_{j+1}^{m}\right)
$$

and Implicit Euler in time with central differences in space:

$$
U_{j}^{m+1}-\mu\left(U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}\right)=U_{j}^{m}
$$

where $\mu=\Delta t /(\Delta x)^{2}$.
We analyzed stability using the semidiscrete Fourier transform:

$$
\hat{U}(k)=\Delta x \sum_{j=-\infty}^{\infty} U_{j} e^{-i k x_{j}}, \quad k \in[-\pi / \Delta x, \pi / \Delta x]
$$

with inverse:

$$
U_{j}=\frac{1}{2 \pi} \int_{-\pi / \Delta x}^{\pi / \Delta x} \hat{U}(k) e^{i k j \Delta x} d k
$$

aliasing.m
Fourier modes The same stability results can be reached using a simplier argument, by inserting the Fourier mode into the scheme, i.e. setting $U_{j}^{m}=[\lambda(k)]^{m} e^{i k j \Delta x}$. You should be able to do either method.

Consider another scheme: the θ-scheme:

$$
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}=(1-\theta) \frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}+\theta \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}
$$

where $\theta \in[0,1]$ is a parameter:

- $\theta=0$: Explicit Euler scheme
- $\theta=1$: Implicit Euler scheme

[^0]- $\theta=1 / 2$: Crank-Nicolson scheme

To analyse stability, note

$$
U_{j}^{m+1}-U_{j}^{m}=(1-\theta) \mu\left(U_{j-1}^{m}-2 U_{j}^{m}+U_{j+1}^{m}\right)+\mu \theta\left(U_{j-1}^{m+1}-2 U_{j}^{m+1}+U_{j+1}^{m+1}\right)
$$

inserting the Fourier mode:

$$
\begin{aligned}
& {[\lambda(k)]^{m+1} e^{i k j \Delta x}-} {[\lambda(k)]^{m} e^{i k j \Delta x}=(1-\theta) \mu\left([\lambda(k)]^{m} e^{i k(j-1) \Delta x}-2[\lambda(k)]^{m} e^{i k j \Delta x}+[\lambda(k)]^{m} e^{i k(j+1) \Delta x}\right) } \\
&+(1-\theta) \mu\left([\lambda(k)]^{m+1} e^{i k(j-1) \Delta x}-2[\lambda(k)]^{m+1} e^{i k j \Delta x}+[\lambda(k)]^{m+1} e^{i k(j+1) \Delta x}\right)
\end{aligned}
$$

Dividing through by $[\lambda(k)]^{m} e^{i k x_{j}}$ gives:

$$
\lambda(k)-1=(1-\theta) \mu\left(e^{-i k \Delta x}-2+e^{i k \Delta x}\right)+\theta \mu \lambda(k)\left(e^{-i k \Delta x}-2+e^{i k \Delta x}\right)
$$

Therefore, by the same arguments as last time:

$$
\lambda(k)-1=-4(1-\theta) \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)-4 \theta \mu \lambda(k) \sin ^{2}\left(\frac{k \Delta x}{2}\right)
$$

and so

$$
\lambda(k)=\frac{1-4(1-\theta) \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)}{1+4 \theta \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)}
$$

For practical stability, we require that

$$
|\lambda(k)| \leq 1 \quad \forall k \in\left[\frac{-\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]
$$

i.e.

$$
-1 \leq \frac{1-4(1-\theta) \mu p}{1+4 \theta \mu p} \leq 1
$$

where we've written $p=\sin ^{2}\left(\frac{k \Delta x}{2}\right)$, which takes values between 0 and 1 . We can write this as

$$
-1 \leq 1-\frac{4 \mu p}{1+4 \theta \mu p} \leq 1
$$

This is clearly less than one, and monotonic decreasing, so we just have to check what happens at $p=1$. We get that the inequality is always satisfied of $\theta \leq 1 / 2$, and otherwise is satisfied if

$$
\mu \leq \frac{1}{2(1-2 \theta)}
$$

Therefore:

- For $\theta \in[1 / 2,1]$: unconditionally stable
- For $\theta \in\left[0,1 / 2\left[:\right.\right.$ stable if $\mu \leq \frac{1}{2(1-2 \theta)}$

Boundary conditions

In practice, we'll be solving on a bounded domain, and so we'll need boundary conditions: As well as an initial condition $u(x, 0)=u_{0}(x)$, we need, e.g.,

- Dirichlet boundary conditions: $u\left(x_{0}, t\right)=u_{a}(t), u\left(x_{N+1}, t\right)=u_{b}(t)$
- Neumann boundary conditions: $\frac{\partial u}{\partial t}\left(x_{0}, t\right)=u_{a}(t), \frac{\partial u}{\partial t}\left(x_{N+1}, t\right)=$ $u_{b}(t)$
- Mixed boundary conditions: $\frac{\partial u}{\partial t}\left(x_{0}, t\right)=u_{a}(t), u\left(x_{N+1}, t\right)=u_{b}(t)$ How do we solve the system?

We can write the θ-scheme as
$U_{j}^{m+1}-\theta \mu\left(U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}\right)=U_{j}^{m}+(1-\theta) \mu\left(U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}\right)$
for $j=1, \ldots N$. In the Dirichlet case, we know $U_{j}^{0}=u_{0}\left(x_{j}\right)$ for all j, and also $U_{0}^{m}=u_{a}\left(t_{m}\right), U_{N+1}^{m}=u_{b}\left(t_{m}\right)$, so we can simply plug these in where needed. This can be be written in matrix form:

$$
\begin{array}{r}
U^{m+1}-\theta \mu\left[\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & \\
& & \ddots & \ddots & \ddots \\
& 0 & 1 & -2
\end{array}\right] U^{m+1}=U^{m}+ \\
(1-\theta) \mu\left[\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & 0 & 1 & -2
\end{array}\right] U^{m}+(1-\theta) \mu\left[\begin{array}{c}
u_{a}\left(t_{m}\right) \\
0 \\
\vdots \\
0 \\
u_{b}\left(t_{m}\right)
\end{array}\right]+\theta \mu\left[\begin{array}{c}
u_{a}\left(t_{m+1}\right) \\
0 \\
\vdots \\
0 \\
u_{b}\left(t_{m+1}\right)
\end{array}\right],
\end{array}
$$

or, if we write

$$
K=\left[\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & \\
& & \ddots & \ddots & \ddots \\
& & 0 & 1 & -2
\end{array}\right], \quad \mathbf{f}=\left[\begin{array}{c}
(1-\theta) \mu u_{a}\left(t_{m}\right)+\theta \mu u_{a}\left(t_{m+1}\right) \\
0 \\
\vdots \\
0 \\
(1-\theta) \mu u_{b}\left(t_{m}\right)+\theta \mu u_{b}\left(t_{m+1}\right)
\end{array}\right]
$$

then

$$
(I-\theta \mu K) U^{m+1}=(I+(1-\theta) \mu K) U^{m}+\mathbf{f}
$$

At each step, a tridiagonal matrix must be solved (by, e.g., the Thomas algorithm - see problem sheet 5).

[^0]: *Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

