NSDE 1: LECTURE 13

TYRONE REES*

Recap To solve

ou  du
ot x>
for x € (—o0,00) and t € [0,7], where u(z,0) = up(z), and v — 0 as
— +o0 Set up a grid:
xj; = jAz, and t,, = mALt.

We’ve considered two schemes: Explicit Euler in time with central
differences in space:

Urtt = U + p(Ur, — 207" 4+ UTL))
and Implicit Euler in time with central differences in space:

Uittt — (U =20t 1 Ut = U

where p = At/(Az)?.

We analyzed stability using the semidiscrete Fourier transform:

Uk) = Az Z U; e *ei ke |—n/Ax,m/Ax],

j=—o0

with inverse:

1 T/Az o
Uj = — Ul(k) e*ia® df,
27 —7/Ax
aliasing.m
Fourier modes The same stability results can be reached using a
simplier argument, by inserting the Fourier mode into the scheme, i.e.
setting U™ = [A(k)]™e*727 . You should be able to do either method.

Consider another scheme: the 8—scheme:
m—+1 m m m m m+1 m+1 m+1
At (Ax)? (Ax)?

where 0 € [0, 1] is a parameter:
e 0 = 0: Explicit Euler scheme
e 0 = 1: Implicit Euler scheme
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e ) = 1/2: Crank-Nicolson scheme
To analyse stability, note

U}”H ~U" = (1-0)u(U", —2U" +UL,) —|—u9(Uj’T{1 — 2U}“Jrl U;T{l)
inserting the Fourier mode:
AR AR RS = (1= B)u((AK)]" RIS — gA(R]"HIBT 4 [A(R] eI D)
+ (1= ) (k)™ e TDA2 — oA (k)] ™ HeMIAT 4 [A(k)] MU TDAT)
Dividing through by [A(k)]™e®i gives:
Ak) =1 = (1= O)u(e™™5 = 24 7) 4+ GuA (k) (e — 2+ M4),
Therefore, by the same arguments as last time:

kAx

A(k) =1 = —4(1 — 0)psin” (T) — 40p\(k) sin (me)

and so
1—4(1 — )psin® (£52)

Alk) = 1+ 40 sin ("”Am)

For practical stability, we require that

-7 T
< -
IAk)| <1 VEke {Am’Am}
1.e.

< 1—4(1—-0)up <
1+ 46up

Y

where we’ve written p = sin? (’“%—‘”), which takes values between 0 and 1.
We can write this as

4
<1 PP
1+ 460up
This is clearly less than one, and monotonic decreasing, so we just have

to check what happens at p = 1. We get that the inequality is always
satisfied of # < 1/2; and otherwise is satisfied if

1
<
H=51 20
Therefore:

e For 6 € [1/2,1]: unconditionally stable
2



e For 6 € [0,1/2[: stable if u < m
Boundary conditions
In practice, we’ll be solving on a bounded domain, and so we’ll need
boundary conditions: As well as an initial condition u(z,0) = ug(z), we
need, e.g.,
e Dirichlet boundary conditions: u(zg,t) = u.(t), uw(zny1,t) = up(t)
e Neumann boundary conditions: %(xo,t) = ugy(t), %(xNH,t) =
ub(t)
e Mixed boundary conditions: %%(zg,t) = uq(t), w(zni1,t) = up(t)
How do we solve the system?
We can write the #-scheme as

U™ = 0u(U =207 + U = U+ (1= O) (U — 207" + UT)

for j =1,... N. In the Dirichlet case, we know U = ug(x;) for all j, and
also Uj" = uq(tm), UN,1 = up(tm), so we can simply plug these in where
needed. This can be be written in matrix form:

-2 1 0 --- 0
1 -2 1 0 0
Um-i—l_g,u 0 1 _— 1 Um+1 — Umy
0o 1 =2
-2 1 0 --- 0 Uq () Ua(tmt1)
1 -2 1 0 0 0 0
(1-6p|0 1 =2 1 U+ (1-0)u + 0
0 1 —2 ub(tm) ub(tm-i-l)
or, if we write
-2 1 0 --- 0 (1 = 0)pug(tm) + Opug(tmir)
1 -2 1 0 0 0
K=10 1 -2 1 7 f = :
0

o
|
[\

(1 = 0)pup(tm) + Oprvip (tmsr)
then
(I —0uK)U™ = (I + (1 —0)uK)U™ +f

At each step, a tridiagonal matrix must be solved (by, e.g., the Thomas
algorithm — see problem sheet 5).



