
NSDE 1: LECTURE 13

TYRONE REES∗

Recap To solve

∂u

∂t
=

∂2u

∂x2

for x ∈ (−∞,∞) and t ∈ [0, T ], where u(x, 0) = u0(x), and u → 0 as
→ ±∞ Set up a grid:

xj = j∆x, and tm = m∆t.

We’ve considered two schemes: Explicit Euler in time with central
differences in space:

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

and Implicit Euler in time with central differences in space:

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) = Um
j ,

where µ = ∆t/(∆x)2.
We analyzed stability using the semidiscrete Fourier transform:

Û(k) = ∆x

∞∑
j=−∞

Uj e
−ikxj , k ∈ [−π/∆x, π/∆x],

with inverse:

Uj =
1

2π

∫ π/∆x

−π/∆x

Û(k) eikj∆x dk

aliasing.m

Fourier modes The same stability results can be reached using a
simplier argument, by inserting the Fourier mode into the scheme, i.e.
setting Um

j = [λ(k)]meikj∆x. You should be able to do either method.
Consider another scheme: the θ−scheme:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2

where θ ∈ [0, 1] is a parameter:
• θ = 0: Explicit Euler scheme
• θ = 1: Implicit Euler scheme
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• θ = 1/2: Crank-Nicolson scheme
To analyse stability, note

Um+1
j −Um

j = (1− θ)µ(Um
j−1− 2Um

j +Um
j+1)+µθ(Um+1

j−1 − 2Um+1
j +Um+1

j+1 )

inserting the Fourier mode:

[λ(k)]m+1eikj∆x−[λ(k)]meikj∆x = (1− θ)µ([λ(k)]meik(j−1)∆x − 2[λ(k)]meikj∆x + [λ(k)]meik(j+1)∆x)

+ (1− θ)µ([λ(k)]m+1eik(j−1)∆x − 2[λ(k)]m+1eikj∆x + [λ(k)]m+1eik(j+1)∆x)

Dividing through by [λ(k)]meikxj gives:

λ(k)− 1 = (1− θ)µ(e−ik∆x − 2 + eik∆x) + θµλ(k)(e−ik∆x − 2 + eik∆x).

Therefore, by the same arguments as last time:

λ(k)− 1 = −4(1− θ)µ sin2

(
k∆x

2

)
− 4θµλ(k) sin2

(
k∆x

2

)
and so

λ(k) =
1− 4(1− θ)µ sin2

(
k∆x
2

)
1 + 4θµ sin2

(
k∆x
2

)
For practical stability, we require that

|λ(k)| ≤ 1 ∀ k ∈
[
−π

∆x
,
π

∆x

]
i.e.

−1 ≤ 1− 4(1− θ)µp

1 + 4θµp
≤ 1,

where we’ve written p = sin2
(
k∆x
2

)
, which takes values between 0 and 1.

We can write this as

−1 ≤ 1− 4µp

1 + 4θµp
≤ 1

This is clearly less than one, and monotonic decreasing, so we just have
to check what happens at p = 1. We get that the inequality is always
satisfied of θ ≤ 1/2, and otherwise is satisfied if

µ ≤ 1

2(1− 2θ)
.

Therefore:
• For θ ∈ [1/2, 1]: unconditionally stable
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• For θ ∈ [0, 1/2[: stable if µ ≤ 1
2(1−2θ)

Boundary conditions
In practice, we’ll be solving on a bounded domain, and so we’ll need

boundary conditions: As well as an initial condition u(x, 0) = u0(x), we
need, e.g.,

• Dirichlet boundary conditions: u(x0, t) = ua(t), u(xN+1, t) = ub(t)
• Neumann boundary conditions: ∂u

∂t
(x0, t) = ua(t),

∂u
∂t
(xN+1, t) =

ub(t)
• Mixed boundary conditions: ∂u

∂t
(x0, t) = ua(t), u(xN+1, t) = ub(t)

How do we solve the system?
We can write the θ-scheme as

Um+1
j − θµ(Um+1

j+1 − 2Um+1
j +Um+1

j−1 ) = Um
j +(1− θ)µ(Um

j+1− 2Um
j +Um

j−1)

for j = 1, . . . N . In the Dirichlet case, we know U0
j = u0(xj) for all j, and

also Um
0 = ua(tm), U

m
N+1 = ub(tm), so we can simply plug these in where

needed. This can be be written in matrix form:

Um+1−θµ


−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

. . . . . . . . .
0 1 −2

Um+1 = Um+

(1− θ)µ


−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

. . . . . . . . .
0 1 −2

Um + (1− θ)µ


ua(tm)

0
...
0

ub(tm)

+ θµ


ua(tm+1)

0
...
0

ub(tm+1)

 ,

or, if we write

K =


−2 1 0 · · · 0
1 −2 1 0 0
0 1 −2 1

. . . . . . . . .
0 1 −2

 , f =


(1− θ)µua(tm) + θµua(tm+1)

0
...
0

(1− θ)µub(tm) + θµub(tm+1)


then

(I − θµK)Um+1 = (I + (1− θ)µK)Um + f

At each step, a tridiagonal matrix must be solved (by, e.g., the Thomas
algorithm – see problem sheet 5).

3


