
NSDE 1: LECTURE 12

TYRONE REES∗

Recap To solve

∂u

∂t
=

∂2u

∂x2

for x ∈ [0, X] and t ∈ [0, T ], where u(x, 0) = u0(x), and u(0, t) = ua(t),
u(X, t) = ub(t), set up a grid

xj = j∆x, and tm = m∆t

where

∆x = X/N in the x-direction

∆t = T/M in the t-direction.

We approximate the derivatives by u(xj, tm) ≈ Um
j , so that the deriva-

tives are approximately

∂u

∂t
(xj, tm) ≈

Um+1
j − Um

j

∆t

and

∂2u

∂x2
(xj, tm) ≈

Um
j−1 − 2Um

j + Um
j+1

(∆x)2
.

This gives

Um+1
0 = ua(tm+1), Um+1

N+1 = ub(tm+1)

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

where µ = ∆t
∆x2 .

Stability
If U is a function defined on the infinite grid xj = j∆x, j = 0,±1,±2, . . . ,

the semidiscrete Fourier transform of U is defined as

Û(k) = ∆x

∞∑
j=−∞

Uj e
−ikxj , k ∈ [−π/∆x, π/∆x]

Now, since Û(k) is a continuous function, we can take the regular inverse
Fourier transform to obtain

Uj =
1

2π

∫ π/∆x

−π/∆x

Û(k) eikj∆x dk.
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It can be shown that there’s an associated Parseval’s Identity:

∥U∥2ℓ2 =
1

2π
∥Û∥2L2

,

where

∥Û∥L2 =

(∫ π/∆x

−π/∆x

|Û(k)|2dk

)1/2

and

∥U∥ℓ2 =

(
∆x

∞∑
j=−∞

|Uj|2
)1/2

[see problem sheet]
Definition: We say that a finite difference scheme for the unsteady

heat equation is (practically) stable in the ℓ2 norm if

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, . . .M,

where Um = {Um
j }.

Now, recall the Euler scheme:

Um+1
j = Um

j + µ(Um
j−1 − 2Um

j + Um
j+1)

and inserting the inverse Fourier transform we get

1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm+1(k)dk =
1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm(k)dk+

µ

(
1

2π

∫ π/∆x

−π/∆x

eikj−1∆xÛm(k)dk

+ 2
1

2π

∫ π/∆x

−π/∆x

eikj∆xÛm(k)dk

+
1

2π

∫ π/∆x

−π/∆x

eikj+1∆xÛm(k)dk

)
Rearranging, we get

1

2π

∫ π/∆x

−π/∆x

eikj∆x
(
Ûm+1(k)− Ûm(k)− µ

(
eik∆x − 2 + e−ik∆x

)
Ûm(k)

)
dk = 0,

which, in turn means that

Ûm+1(k) = Ûm(k) + µ(eik∆x − 2 + eik∆x)Ûm(k)
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for all wave numbers k ∈ [−π/∆x, π/∆x]. Therefore

Ûm+1(k) = λ(k)Ûm(k)

where λ(k) = 1 + µ(eik∆x − 2 + eik∆x)Ûm(k) Now,

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2 Parseval

=
1√
2π

∥λÛm∥L2

≤ 1√
2π

max
k

|λ(k)|∥Ûm∥L2

= max
k

|λ(k)|∥Um∥ℓ2 Parseval

Since we want that

∥Um+1∥ℓ2 ≤ ∥Um∥ℓ2 , m = 0, 1, 2, . . . ,M − 1

we need that

max
k

|λ(k)| ≤ 1

max
k

|1 + µ(eik∆x − 2 + eik∆x)| ≤ 1

Now, since eik∆x = cos k∆x+i sin k∆x, and e−ik∆x = cos k∆x−i sin k∆x,
we can write this as

max
k

|1 + 2µ(cos k∆x− 1)| ≤ 1

max
k

|1− 4µ sin2

(
k∆x

2

)
| ≤ 1

Now, the condition that

−1 ≤ 1− 4µ sin2

(
k∆x

2

)
≤ 1 ∀k ∈ [−π/∆x, π/∆x]

holds if and only if

µ =
∆t

(∆x)2
≤ 1

2
.

We’ve proved the following theorem:
Theorem Suppose that Um

j is the solution of

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 1, 2, . . .
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where U0
j = u0(xj) and µ = ∆t

(∆x)2
≤ 1

2
. Then

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, 2, . . .M.

We say that the explicit Euler scheme is conditionally stable.
The implicit Euler scheme Consider instead the scheme

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 1, 2, . . .

where U0
j = u0(xj)

Now we have that

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) = Um
j ,

U0
j = u0(xj), where again µ = ∆t/(∆x)2).
Using an identical argument to that used for Explicit Euler, we find

the amplification factor is here

λ(k) =
1

1 + 4µ sin2
(
k∆x
2

) .
In contrast to earlier, this satisfies |λ(k)| ≤ 1 for all values of µ.

Theorem Suppose that Um
j is the solution of

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 1, 2, . . .

where U0
j = u0(xj) and µ = ∆t

(∆x)2
≤ 1

2
. Then

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 , m = 1, 2, . . .M.

We say that the explicit Euler scheme is unconditionally stable.
Fourier modes The same results can be reached using a simplier

argument, by inserting the Fourier mode into the scheme, i.e. setting
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Um
j = [λ(k)]meikj∆x. For example, substituting this into the explicit Euler

scheme:

Um+1
j = Um

j + µ
(
Um
j+1 − 2Um

j + Um
j−1

)
gives

λ(k) = 1 + µ(eik∆x − 2 + e−ik∆x),

and hence the result follows as before.
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