NSDE 1: LECTURE 12

TYRONE REES*

Recap To solve

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

for $x \in [0, X]$ and $t \in [0, T]$, where $u(x, 0) = u_0(x)$, and $u(0, t) = u_a(t)$, $u(X,t) = u_b(t)$, set up a grid

$$x_j = j\Delta x$$
, and $t_m = m\Delta t$

where

$$\Delta x = X/N$$
 in the x-direction
 $\Delta t = T/M$ in the t-direction.

We approximate the derivatives by $u(x_j, t_m) \approx U_j^m$, so that the derivatives are approximately

$$\frac{\partial u}{\partial t}(x_j, t_m) \approx \frac{U_j^{m+1} - U_j^m}{\Delta t}$$

and

$$\frac{\partial^2 u}{\partial x^2}(x_j, t_m) \approx \frac{U_{j-1}^m - 2U_j^m + U_{j+1}^m}{(\Delta x)^2}.$$

This gives

$$U_0^{m+1} = u_a(t_{m+1}), \quad U_{N+1}^{m+1} = u_b(t_{m+1})$$
$$U_j^{m+1} = U_j^m + \mu(U_{j-1}^m - 2U_j^m + U_{j+1}^m)$$

where $\mu = \frac{\Delta t}{\Delta x^2}$. Stability

If U is a function defined on the infinite grid $x_j = j\Delta x, j = 0, \pm 1, \pm 2, \ldots$, the semidiscrete Fourier transform of U is defined as

$$\hat{U}(k) = \Delta x \sum_{j=-\infty}^{\infty} U_j e^{-ikx_j}, \qquad k \in [-\pi/\Delta x, \pi/\Delta x]$$

Now, since $\hat{U}(k)$ is a continuous function, we can take the regular inverse Fourier transform to obtain

$$U_j = \frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} \hat{U}(k) \, e^{ikj\Delta x} \, dk.$$

^{*}Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

It can be shown that there's an associated Parseval's Identity:

$$\|U\|_{\ell_2}^2 = \frac{1}{2\pi} \|\hat{U}\|_{L_2}^2,$$

where

$$\|\hat{U}\|_{L_2} = \left(\int_{-\pi/\Delta x}^{\pi/\Delta x} |\hat{U}(k)|^2 dk\right)^{1/2}$$

and

$$||U||_{\ell_2} = \left(\Delta x \sum_{j=-\infty}^{\infty} |U_j|^2\right)^{1/2}$$

[see problem sheet]

Definition: We say that a finite difference scheme for the unsteady heat equation is *(practically)* stable in the ℓ_2 norm if

$$||U^m||_{\ell_2} \le ||U^0||_{\ell_2}, \ m = 1, \dots M,$$

where $U^m = \{U_j^m\}$. Now, recall the Euler scheme:

$$U_j^{m+1} = U_j^m + \mu (U_{j-1}^m - 2U_j^m + U_{j+1}^m)$$

and inserting the inverse Fourier transform we get

$$\frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj\Delta x} \hat{U}^{m+1}(k) dk = \frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj\Delta x} \hat{U}^{m}(k) dk + \\ \mu \left(\frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj-1\Delta x} \hat{U}^{m}(k) dk + 2\frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj\Delta x} \hat{U}^{m}(k) dk + \frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj+1\Delta x} \hat{U}^{m}(k) dk \right)$$

Rearranging, we get

$$\frac{1}{2\pi} \int_{-\pi/\Delta x}^{\pi/\Delta x} e^{ikj\Delta x} \left(\hat{U}^{m+1}(k) - \hat{U}^m(k) - \mu \left(e^{ik\Delta x} - 2 + e^{-ik\Delta x} \right) \hat{U}^m(k) \right) dk = 0,$$

which, in turn means that

$$\hat{U}^{m+1}(k) = \hat{U}^{m}(k) + \mu (e^{ik\Delta x} - 2 + e^{ik\Delta x})\hat{U}^{m}(k)$$
2

for all wave numbers $k \in [-\pi/\Delta x, \pi/\Delta x]$. Therefore

$$\hat{U}^{m+1}(k) = \lambda(k)\hat{U}^m(k)$$

where $\lambda(k) = 1 + \mu(e^{ik\Delta x} - 2 + e^{ik\Delta x})\hat{U}^m(k)$ Now,

$$\|U^{m+1}\|_{\ell_2} = \frac{1}{\sqrt{2\pi}} \|\hat{U}^{m+1}\|_{L_2} \quad \text{Parseval}$$
$$= \frac{1}{\sqrt{2\pi}} \|\lambda \hat{U}^m\|_{L_2}$$
$$\leq \frac{1}{\sqrt{2\pi}} \max_k |\lambda(k)| \|\hat{U}^m\|_{L_2}$$
$$= \max_k |\lambda(k)| \|U^m\|_{\ell_2} \quad \text{Parseval}$$

Since we want that

$$||U^{m+1}||_{\ell_2} \le ||U^m||_{\ell_2}, \qquad m = 0, 1, 2, \dots, M-1$$

we need that

$$\max_{k} |\lambda(k)| \le 1$$
$$\max_{k} |1 + \mu(e^{ik\Delta x} - 2 + e^{ik\Delta x})| \le 1$$

Now, since $e^{ik\Delta x} = \cos k\Delta x + i\sin k\Delta x$, and $e^{-ik\Delta x} = \cos k\Delta x - i\sin k\Delta x$, we can write this as

$$\max_{k} |1 + 2\mu(\cos k\Delta x - 1)| \le 1$$
$$\max_{k} |1 - 4\mu \sin^2\left(\frac{k\Delta x}{2}\right)| \le 1$$

Now, the condition that

$$-1 \le 1 - 4\mu \sin^2\left(\frac{k\Delta x}{2}\right) \le 1 \qquad \forall k \in [-\pi/\Delta x, \pi/\Delta x]$$

holds if and only if

$$\mu = \frac{\Delta t}{(\Delta x)^2} \le \frac{1}{2}.$$

We've proved the following theorem:

Theorem Suppose that U_j^m is the solution of

$$\frac{U_j^{m+1} - U_j^m}{\Delta t} = \frac{U_{j+1}^m - 2U_j^m + U_{j-1}^m}{(\Delta x)^2}, \ j = 1, 2, \dots$$

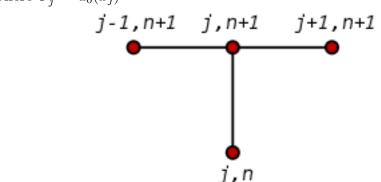
where $U_j^0 = u_0(x_j)$ and $\mu = \frac{\Delta t}{(\Delta x)^2} \leq \frac{1}{2}$. Then

$$||U^m||_{\ell_2} \le ||U^0||_{\ell_2}, \ m = 1, 2, \dots M$$

We say that the explicit Euler scheme is *conditionally stable*. **The implicit Euler scheme** Consider instead the scheme

$$\frac{U_j^{m+1} - U_j^m}{\Delta t} = \frac{U_{j+1}^{m+1} - 2U_j^{m+1} + U_{j-1}^{m+1}}{(\Delta x)^2}, \ j = 1, 2, \dots$$

where $U_j^0 = u_0(x_j)$



Now we have that

$$U_j^{m+1} - \mu(U_{j+1}^{m+1} - 2U_j^{m+1} + U_{j-1}^{m+1}) = U_j^m$$

 $U_j^0 = u_0(x_j)$, where again $\mu = \Delta t / (\Delta x)^2$).

Using an identical argument to that used for Explicit Euler, we find the amplification factor is here

$$\lambda(k) = \frac{1}{1 + 4\mu \sin^2\left(\frac{k\Delta x}{2}\right)}.$$

In contrast to earlier, this satisfies $|\lambda(k)| \leq 1$ for all values of μ . **Theorem** Suppose that U_i^m is the solution of

$$\frac{U_j^{m+1} - U_j^m}{\Delta t} = \frac{U_{j+1}^{m+1} - 2U_j^{m+1} + U_{j-1}^{m+1}}{(\Delta x)^2}, \ j = 1, 2, \dots$$

where $U_j^0 = u_0(x_j)$ and $\mu = \frac{\Delta t}{(\Delta x)^2} \leq \frac{1}{2}$. Then

$$||U^m||_{\ell_2} \le ||U^0||_{\ell_2}, \ m = 1, 2, \dots M.$$

We say that the explicit Euler scheme is *unconditionally stable*.

Fourier modes The same results can be reached using a simplier argument, by inserting the *Fourier mode* into the scheme, i.e. setting

 $U_j^m = [\lambda(k)]^m e^{ikj\Delta x}.$ For example, substituting this into the explicit Euler scheme:

$$U_{j}^{m+1} = U_{j}^{m} + \mu \left(U_{j+1}^{m} - 2U_{j}^{m} + U_{j-1}^{m} \right)$$

gives

$$\lambda(k) = 1 + \mu(e^{ik\Delta x} - 2 + e^{-ik\Delta x}),$$

and hence the result follows as before.