The numerical solution of parabolic problems

For the rest of the course we're going to look at problems of the form:

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(a(x, t) \frac{\partial u}{\partial x}\right)+f(x, t),
$$

with $u(x, 0)=u_{0}(x)$ and appropriate boundary condititions.
In practice, we're going to concentrate on the model problem:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Before we look at how to solve this numerically, let's explore what the analytic solution looks like. To do this, we're going to use the Fourier transform:

$$
\hat{u}(\xi)=F[u](\xi)=\int_{-\infty}^{\infty} u(x) e^{-i x \xi} d x
$$

Applying this to the PDE, we get:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\partial u}{\partial t}(x, t) e^{-i x \xi} d x & =\int_{-\infty}^{\infty} \frac{\partial^{2} u}{\partial t^{2}}(x, t) e^{-i x \xi} d x \\
\frac{d}{d t} \underbrace{\int_{-\infty}^{\infty} u(x, t) e^{-i x \xi} d x}_{\hat{u}(\xi, t)} & =(i \xi)^{2} \underbrace{\int_{-\infty}^{\infty} u(x, t) e^{-i x \xi} d x}_{\hat{u}(\xi, t)}
\end{aligned}
$$

where we've integrated by parts twice on the RHS and ignored boundary terms at $\pm \infty$. So

$$
\frac{d \hat{u}}{d t}=-\xi^{2} \hat{u} .
$$

This has solutions

$$
\hat{u}(\xi, t)=A(\xi) e^{-\xi^{2} t}=\hat{u}(\xi, 0) e^{-\xi^{2} t}
$$

[^0]Now we just need to apply the inverse Fourier transform:

$$
\begin{aligned}
u(x, t) & =F^{-1}\left(e^{-\xi^{2} t} \hat{u}_{0}\right) \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{u}_{0}(\xi) e^{-\xi^{2} t} e^{i \xi x} d \xi \\
& =\ldots \text { messy calculation } \ldots \\
& =\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} /(4 t)} u_{0}(y) d y
\end{aligned}
$$

AnalyticSolution.m
This behaviour can be explained by Parseval's identity:

$$
\|u\|_{L_{2}(-\infty, \infty)}^{2}=\frac{1}{2 \pi}\|\hat{u}\|_{L_{2}(-\infty, \infty)}^{2}
$$

where

$$
\|u\|_{L_{2}(\infty, \infty)}=\left(\int_{-\infty}^{\infty}|u(x)|^{2} d x\right)^{1 / 2}
$$

If we apply this to our function:

$$
\begin{aligned}
\|u(\cdot, t)\|_{L_{2}(-\infty, \infty)}^{2} & =\frac{1}{2 \pi}\|\hat{u}(\cdot, t)\|_{L_{2}(-\infty, \infty)}^{2} \\
& =\frac{1}{2 \pi}\left\|e^{-\xi^{2} t} \hat{u}_{0}(\cdot)\right\|_{L_{2}(-\infty, \infty)}^{2} \\
& \leq \frac{1}{2 \pi} \max _{\xi}\left|e^{-\xi^{2} t}\right|\left\|\hat{u}_{0}\right\|_{2}^{2} \\
& \leq \frac{1}{2 \pi}\left\|\hat{u}_{0}\right\|_{2}^{2} \\
& =\left\|u_{0}\right\|_{2}^{2} \quad[\text { by Parseval's identity }]
\end{aligned}
$$

This is an important property of the solution, that we must make sure is satisfied by any numerical approximation.

Proof of Parseval's identity

Let $v(x)$ and $w(x)$ be two functions.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \hat{w}(x) v(x) d x & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(\xi) e^{-i \xi x} d \xi v(x) d x \\
& =\int_{-\infty}^{\infty} w(\xi) \int_{-\infty}^{\infty} e^{-i \xi x} v(x) d x d \xi \\
& =\int_{-\infty}^{\infty} w(\xi) \hat{v}(\xi) d \xi
\end{aligned}
$$

Now, if we let $w(\xi)=\overline{\hat{v}(\xi)}$, then

$$
\hat{w}(\xi)=\int_{-\infty}^{\infty} \overline{\hat{v}(x)} e^{-i \xi x} d x=\overline{\int_{-\infty}^{\infty} \hat{v}(x) e^{i \xi x} d x}=2 \pi \bar{v}
$$

Where we've used the fact that $v=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{v} e^{i \xi x} d x$ (by definition of the inverse Fourier transform). Therefore

$$
\begin{aligned}
2 \pi \int_{-\infty}^{\infty} \bar{v}(x) v(x) d x & =\int_{-\infty}^{\infty} \overline{\hat{v}(\xi)} \hat{v}(\xi) d s \\
\Rightarrow\|v\|_{2}^{2} & =\frac{1}{2 \pi}\|\hat{v}\|_{2}^{2}
\end{aligned}
$$

Discretization Suppose $x \in[0, X]$ and $t \in[0, T]$, where $T>0$ is a given final time, and $0, X$ are the left and right boundaries.

Construct a finite-difference grid:

$$
\begin{aligned}
\Delta x & =x_{\text {end }} / N \text { in the } x \text {-direction } \\
\Delta t & =T / M \text { in the } t \text {-direction }
\end{aligned}
$$

so that

$$
x_{j}=j \Delta x, \text { and } t_{m}=m \Delta t
$$

Since

$$
\frac{\partial u}{\partial t}\left(x_{j}, t_{m}\right)=\lim _{\Delta t \rightarrow 0} \frac{u\left(x_{j}, t_{m}+\Delta t\right)-u\left(x_{j}, t_{m}\right)}{\Delta t}
$$

and

$$
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{j}, t_{m}\right)=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{j}+\Delta x, t_{m}\right)-2 u\left(x_{j}, t_{m}\right)+u\left(x_{j}-\Delta x, t_{m}\right)}{(\Delta x)^{2}}
$$

We can approximate $u\left(x_{j}, t_{m}\right) \approx U_{j}^{m}$, so that

$$
\frac{\partial u}{\partial t}\left(x_{j}, t_{m}\right)=\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}
$$

and

$$
\frac{\partial^{2} u}{\partial x^{2}}\left(x_{j}, t_{m}\right)=\frac{U_{j-1}^{m}-2 U_{j}^{m}+U_{j+1}^{m}}{(\Delta x)^{2}}
$$

This scheme can be illustrated by the stencil:

Putting it together, suppose we want to approximate the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

for $x \in[0, X]$ and $t \in[0, T]$, where $u(\mathbf{x}, 0)=u_{0}(\mathbf{x})$, and $u(0, t)=u_{a}(t)$, $u(X, t)=u_{b}(t)$. Then we get that

$$
U_{j}^{0}=u_{0}\left(x_{j}\right), \quad j=0, \pm 1, \pm 2, \cdots
$$

and then we can update U at the next time step by

$$
\begin{aligned}
& U_{0}^{m+1}=u_{a}\left(t_{m+1}\right), \quad U_{N+1}^{m+1}=u_{b}\left(t_{m+1}\right) \\
& \\
& \quad \frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}=\frac{U_{j-1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta t)^{2}} .
\end{aligned}
$$

The final relation can also be written as

$$
U_{j}^{m+1}=U_{j}^{m}+\mu\left(U_{j-1}^{m}-2 U_{j}^{m}+U_{j+1}^{m}\right),
$$

where $\mu=\frac{\Delta t}{\Delta x^{2}}$.

[^0]: *Rutherford Appleton Laboratory, Chilton, Didcot, UK, tyrone.rees@stfc.ac.uk

