
Numerical Solution of Differential Equations I:
Problem Sheet 5

1. Suppose that we have discrete data {Uj} defined on an infinite grid xj = jh, j = 0,±1,±2, . . ..
Let δ and µ be the discrete differentiation and smoothing operators defined by

(δU)j = (Uj+1 − Uj−1)/(2h) , (µU)j = (Uj+1 + Uj−1)/2 .

a. Determine the functions δU , δV , µU , µV for U = (. . . , 1,−1, 1,−1, 1,−1, 1, . . .) and
V = (. . . , 1, 0,−1, 0, 1, 0,−1, 0, . . .).

b. Determine what effect δ and µ have on the function U defined by Uj = eıkxj , j =
0,±1,±2, . . ., where k is a real constant (the wave number).

c. The semi-discrete Fourier transform of a function U defined on the infinite grid xj = jh,

j = 0,±1,±2, . . ., is the function k 7→ Û(k), k ∈ [−π/h, π/h], defined by

Û(k) = h

∞∑
j=−∞

e−ıkxjUj .

[The reason for the restriction on k is that the wave numbers |k| > π/h are not resolvable
on a grid of spacing h; this is the phenomenon of aliasing.]

Show that the inverse of the semi-discrete Fourier transform is given by the formula

Uj =
1

2π

∫ π/h

−π/h

eıkjhÛ(k) dk .

Describe the relationship between Û(k), and δ̂U(k) and µ̂U(k).

The ratios δ̂U/Û and µ̂U/Û are referred to as Fourier multipliers. Sketch the graphs
of these Fourier multipliers as functions of k ∈ [−π/h, π/h].

One would think that applying µ repeatedly to U should lead to a function that is
much smoother than U . Explain this effect by considering a sketch of the multiplier

function µ̂mU/Û for m ≫ 1. Your analysis should reveal that taking successive powers
of µ is not a perfect smoothing procedure. Explain.

2. The ℓ2(−∞,∞) norm of U and the L2(−π/h, π/h) norm of Û are defined, respectively, by

∥U∥ℓ2 =

(
h

∞∑
j=−∞

|Uj|2
)1/2

, ∥Û∥L2 =

(∫ π/h

−π/h

|Û(k)|2 dk

)1/2

.

Prove Parseval’s identity:

∥U∥ℓ2 =
1√
2π

∥Û∥L2 .

3. Consider the system of linear equations

−ajUj−1 + bjUj − cjUj+1 = dj , j = 1, . . . , J − 1 ,

with
U0 = 0 , UJ = 0 ,

where aj > 0, bj > 0, cj > 0 and bj > aj + cj for all j.



a) Show that
Uj = ejUj+1 + fj , j = J − 1, J − 2, . . . , 1 , (1)

where

ej =
cj

bj − ajej−1

, fj =
dj + ajfj−1

bj − ajej−1

, j = 1, 2, . . . , J − 1 , (2)

with e0 = 0 and f0 = 0. This method for the solution of the linear system of equations
(1), (2) is called the Thomas algorithm.

b) Show by induction that 0 < ej < 1 for j = 1, 2, . . . , J − 1. Show further that the
conditions

bj > 0 , bj ≥ |aj|+ |cj| , j = 1, 2, . . . , J − 1 ,

are sufficient to ensure that |ej| ≤ 1 for j = 1, 2, . . . , J − 1. What do you think the
practical significance of the last inequality is regarding the sensitivity of the algorithm
to rounding errors.

c) Use matlab to do the following:

(i) Generate any non-zero column vector z with N rows.

(ii) Generate a N ×N tri-diagonal matrix A with value 2 on the diagonal and −1 on
the sub- and super-diagonals. Adjust the first and last row to mimic a Dirichlet
boundary condition (so for example, A(1, 2) = 0).

(iii) Generate a sparse version S of this matrix by S=sparse(A);

(iv) Generate a N × 3 matrix B with the vector a in the first column, b in the second
column and c in the third column (imagine the tri-diagonal matrix with the diagonal
made vertical in the second column).

(v) Use tic and toc to determine the time taken to calculate

1 y=A\z ;

2 y=S\z ;

3 Implement the Thomas algorithm in conjunction with the matrix B to deter-
mine y. (needs a little programming!)

Check that your solutions are working for a small value, for example, N = 5. Then
calculate times for N = 10, 50, 100, 250, 500, 1000 and plot log10 of the time versus
N . Note that times will depend on speed of your computer so only relative times are
important. Hence explain why using the full matrix is impractical for large N .

4. Consider the simplest finite difference approximation of the heat equation ut = uxx, given
by

Un+1
j − Un

j

∆t
=

Un
j+1 − 2Un

j + Un
j−1

h2
, j = . . . ,−2,−1, 0, 1, 2, . . . ; n = 0, 1, 2, . . . .

What would the analogous difference approximation be based on values of U at just every
other point in the x direction, i.e., Un

j+2, U
n
j and Un

j−2? Now suppose that you create a
new difference approximation from these two schemes by adding 1/2 of the first difference
approximation to 1/2 of the second difference approximation. Using Fourier analysis, explore
how large ∆t can be in relation to h if this last scheme is to be stable in the ℓ2(−∞,∞)
norm.



5. (Finals 2010 - a more complex version of the previous question)

Suppose that h > 0 is a fixed mesh spacing and let Z denote the set of all integers.

(a) Let U be a real-valued function, defined on the mesh {xr := rh : r ∈ Z}, such that
the ℓ2 norm of U is finite, that is:

||U ||ℓ2 =
(
h

∞∑
r=−∞

|Ur|2
)1/2

< ∞.

Define the semi-discrete Fourier transform Û of U . Show that Parseval’s identity holds,
that is,

||U ||2ℓ2 =
1

2π
||Û ||2L2 ,

where

||Û ||L2 =

(∫ π/2

−π/2

|Û(k)|2dk
)1/2

.

(b) Consider the initial value problem

ut = κuxx, x ∈ (−∞,∞) t ∈ (0, T ];

u(x, 0) = u0(x), x ∈ (−∞,∞),

where κ is a positive real number and u0 a real-valued function, defined and continuous
on (−∞,∞) and identically zero outside of a certain bounded closed interval of R.
Let

M := {(xr, tn) : r ∈ Z, n = 0, 1, . . . ,M},

where xr = rh and tn = n∆t with ∆t = T/M , M ≥ 2 and T > 0. The following finite
difference scheme is proposed for the numerical solution of the initial-value problem on
the mesh M:

Un+1
r − Un

r

∆t
= θκ

Un+1
r+1 − 2Un+1

r + Un+1
r−1

h2
+ (1− θ)κ

Un
r+2 − 2Un

r + Un
r−2

(2h)2

for r ∈ Z and n = 0, 1, . . . ,M − 1 with U0
r = u0(xr) for r ∈ Z.

Show, using Parseval’s Identity, that

||Un+1||ℓ2 ≤ ||Un||ℓ2 , n = 0, 1, . . . ,M − 1,

provided that either (i) θ ∈ [0, 1
2
) and µ(1− 2θ)2 ≤ 2(1− θ) where µ = κ∆t/h2, or (ii)

θ ∈ [1
2
, 1],

Deduce that the scheme is conditionally stable in the ℓ2 norm when θ ∈ [0, 1
2
), and

unconditionally stable in the ℓ2 norm when θ ∈ [1
2
, 1].


