Numerical Solution of Differential Equations: Problem Sheet 4

- 1. A linear multistep method $\sum_{j=0}^{k} \alpha_j U_{n+j} = \Delta t \sum_{j=0}^{k} \beta_j f(t_{n+j}, U_{n+j}), n \ge 0$, for the numerical solution of the initial value problem $u' = f(t, u), u(t_0) = U_0$, on the mesh $\{t_j : t_j = t_0 + j\Delta t\}$ of uniform spacing $\Delta t > 0$ is said to be *absolutely stable* for a certain Δt if, when applied to the model problem $u' = \lambda u, u(0) = 1$, with $\lambda < 0$, on the interval $t \in [0, \infty)$, the sequence $(|U_n|)_{n\ge k}$ decays exponentially fast; i.e., $|U_n| \le C e^{-\mu n}, n \ge k$, for some positive constants C and μ .
 - a) Show that a linear multistep method is absolutely stable for $\Delta t > 0$ if and only if all roots z of its stability polynomial $\pi(z; \overline{\Delta t}) = \rho(z) \overline{\Delta t}\sigma(z)$, where ρ and σ are the first and second characteristic polynomial of the linear multistep method respectively and $\overline{\Delta t} = \lambda \Delta t$, belong to the open unit disk $D = \{z : |z| < 1\}$ in the complex plane.
 - b) For each of the following methods find the range of $\Delta t > 0$ for which it is absolutely stable (when applied to $u' = \lambda u$, u(0) = 1, $\lambda < 0$, $t \in [0, \infty)$):
 - b1) $U_{n+1} U_n = \Delta t f(t_n, U_n);$
 - b2) $U_{n+1} U_n = \Delta t f(t_{n+1}, U_{n+1});$
 - b3) $U_{n+2} U_n = \frac{1}{3}\Delta t \left[f(t_{n+2}, U_{n+2}) + 4f(t_{n+1}, U_{n+1}) + f(t_n, U_n) \right].$
- 2. Consider the θ -method

$$U_{n+1} = U_n + \Delta t \left[(1-\theta)F_n + \theta F_{n+1} \right]$$

for $\theta \in [0, 1]$.

- a) Show that the method is A-stable for $\theta \in [1/2, 1]$.
- b) A method is said to be $A(\alpha)$ -stable, $\alpha \in (0, \pi/2)$, if its region of absolute stability (as a set in the complex plane), contains the infinite wedge $\{\overline{\Delta t} : \pi \alpha < \arg(\overline{\Delta t}) < \pi + \alpha\}$. Find all $\theta \in [0, 1]$ such that the θ -method is $A(\alpha)$ -stable for some $\alpha \in (0, \pi/2)$.
- 3. Show that the second-order backward differentiation method

$$3U_{n+2} - 4U_{n+1} + U_n = 2\Delta t f(t_{n+2}, U_{n+2})$$

is A-stable.

In this question you will find it helpful to exploit the following result, known as *Schur's criterion* (which you are not expected to prove).

Consider the polynomial $\phi(z) = c_k z^k + \ldots + c_1 z + c_0, c_k \neq 0, c_0 \neq 0$, with complex coefficients. The polynomial ϕ is said to be a *Schur polynomial* if each of its roots z_j satisfies $|z_j| < 1$, $j = 1, \ldots, k$.

Given the polynomial $\phi(z)$, as above, consider the polynomial

$$\hat{\phi}(z) = \bar{c}_0 z^k + \bar{c}_1 z^{k-1} + \ldots + \bar{c}_{k-1} z + \bar{c}_k ,$$

where \bar{c}_j denotes the complex conjugate of c_j , $j = 1, \ldots, k$. Further, define

$$\phi_1(z) = \frac{1}{z} \left[\hat{\phi}(0)\phi(z) - \phi(0)\hat{\phi}(z) \right] .$$

Clearly ϕ_1 has degree $\leq k - 1$.

Then the polynomial ϕ is a Schur polynomial if and only if $|\hat{\phi}(0)| > |\phi(0)|$ and ϕ_1 is a Schur polynomial.

4. a) Determine the order of the linear multistep method

$$25U_{n+4} - 48U_{n+3} + 36U_{n+2} - 16U_{n+1} + 3U_n = 12\Delta tF_{n+4}.$$

Use matlab to help find the roots of $\rho(z) = 0$ and hence show that the method is zero stable. [If you want to try to work on the roots algebraically, you can assume that there are two real roots and a pair of complex conjugate roots for $\rho(z) = 0$ but you are still likely to need matlab or a calculator.]

- b) Show that the scheme in (a) is absolutely stable as $\operatorname{Re}[\lambda \Delta t] \to -\infty$.
- c) One way which can sometimes be used to determine the region of absolute stability is having written the polynomials in (b) as

$$\rho(z) = h\sigma(z),$$

where $h = \lambda \Delta t$, to consider the locus of points in the *h*-plane where |z| = 1. Write $z = \exp(is), -\pi \leq s \leq \pi, h = \rho(e^{is})/\sigma(e^{is}) = x(s) + iy(s)$ and work out explicit expressions for x(s) and y(s). By calculating where $\frac{dx}{ds} = 0$, show that the scheme is not A-stable but that it is $A(\alpha)$ stable and estimate an upper bound for α . Use matlab to plot the locus and confirm that your analytic estimate is in agreement with the calculated plot.

5. (Finals 2010) Consider the linear multistep method

$$U_{n+3} + aU_{n+1} + bU_n = \Delta t f(t_{n+2}, U_{n+2}), \quad n = 0, 1, \dots$$
(*)

for the numerical solution of the initial-value problem

$$u'(t) = f(t, u(t)), \quad u(0) = u_0,$$

on the uniform mesh $\{t_n = n\Delta t : n = 0, 1, 2, ...\}$ of spacing $\Delta t > 0$, where U_0, U_1, U_2 are given real numbers, a and b are real parameters, to be chosen, and prime ' denotes the derivative with respect to t.

(a) Show that there exists a unique choice of parameters a and b such that the linear multistep method (*) is consistent. What is the order of accuracy of the method for this choice of a and b?

- (b) What does it mean to say that a linear multistep method is *zero-stable*?
 - By applying the linear multistep method (*) with a and b as in part (a) to the initial value problem u'(t) = 0, u(0) = 1, show that there exist starting values U_1 and U_2 , such that the sequence $(U_n)_{n=0}^{\infty}$, generated by the linear multistep method from the starting values $U_0 = 1, U_1, U_2$, satisfies the inequality

$$|U_n| \ge \left(\frac{3}{2}\right)^n$$
 for all $n \ge 0.$ (**)

Deduce from (**) that if a linear multistep method of the form (*) is consistent, then it is not zero stable.

(c) What does it mean to say that a linear multistep method is *convergent*? Show that there exist no values of a and b such that the linear multistep method (*) is convergent.

[Any theorem that you refer to must be stated carefully.]