Numerical Solution of Differential Equations: Problem Sheet 3

1. An alternative way to look at a one step numerical solution of the scalar equation

$$
\dot{u}=f(u), \quad u(0)=u_{0}
$$

written as

$$
U_{n+1}=U_{n}+\Phi\left(U_{n}, \Delta t\right), \quad U_{0}=u_{0},
$$

is to consider which differential equation

$$
\dot{v}=g(v, \Delta t), \quad v(0)=u_{0}
$$

has the discrete values as an exact solution: that is a function v that satisfies:

$$
v\left(t_{n+1}\right)=U_{n+1},
$$

and in particular, $v_{1}=v(\Delta t)=U_{1}$. This can be explored by writing

$$
\Phi(u, \Delta t)=\Delta t \Phi_{1}(u)+\Delta t^{2} \Phi_{2}(u)+\cdots,
$$

and assuming that g can be expanded:

$$
g(v, \Delta t)=g_{1}(v)+\Delta t g_{2}(v)+\Delta t^{2} g_{3}(v)+\cdots .
$$

Show that consistency as $\Delta t \rightarrow 0$ requires that

$$
\Phi_{1}(u)=f(u), \text { and } g_{1}(u)=f(u) .
$$

Derive that

$$
g_{2}(u)=\Phi_{2}(u)-\frac{1}{2} f(u) f^{\prime}(u) .
$$

Apply this method to the differential equation:

$$
\dot{u}=u^{2}, t>0, u(0)=u_{0} .
$$

Deduce that while u will have a finite time singularity, v will not provided $\Delta t>0$ [you do not need to solve the differential equation for v for this deduction]. Use matlab to apply forward Euler to both the differential equation for u and the differential equation for v in the case $u_{0}=0.1, \Delta t=0.02$ and $0<t<15$. Compare with the exact solution $u(t)=u_{0} /\left(1-u_{0} t\right)$.
2. Show that there is a value of the parameter b such that the linear multistep method defined by the formula $U_{n+3}+(2 b-3)\left(U_{n+2}-U_{n+1}\right)-U_{n}=b \Delta t\left(F_{n+2}+F_{n+1}\right)$ is fourth order accurate (with $F_{n}=f\left(t_{n}, U_{n}\right)$). Show further that the method is not zero-stable for this value of b.
3. a) Suppose $\dot{u}=f(u)$ and given data $\left(t_{n-2}, F_{n-2}\right),\left(t_{n-1}, F_{n-1}\right)$ and $\left(t_{n}, F_{n}\right)$ (for simplicity, assume $t_{r}=r \Delta t$, and let $F_{r}=f\left(U_{r}\right)$). Determine the quadratic that passes through these points, that is determine $\tilde{F}(t)$ satisfying $\tilde{F}\left(t_{k}\right)=U_{k}, k=n-2, n-1, n$. Integrate this quadratic over the interval $\left(t_{n}, t_{n+1}\right)$ to derive the explicit Adams prediction for U_{n+1}.
b) Recalculate the quadratic so that it interpolates F_{n-1}, F_{n} and F_{n+1} at t_{n-1}, t_{n} and t_{n+1} respectively. Integrate this function over the same interval to determine the implicit Adams prediction for U_{n+1}.
c) Use matlab to implement the two step explicit scheme and apply to the equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=i * u, 0 \leq t \leq \pi, \text { with } u(0)=i,
$$

using uniform time steps $\Delta t=\pi / N, N=10,100,1000$. You will need to decide how to determine U_{1} and U_{2} in order to start the three step scheme. Graph the value of $\log _{10} \mathcal{R}\left[U_{N}\right]$ versus $\log _{10}\left(N^{-1}\right)$ and estimate the order of convergence to the exact value of $\mathcal{R}[u(\pi)]$. Compare the convergence rate with theoretical expectation. [And keep in mind that while our subscript varies $n=0,1, \cdots, N$, vector indices in matlab will vary $1,2, \cdots, N+1]$.
4. (Finals 2012, I have extended the hint at the end)

The function $u(t), t \geq 0$ is determined by

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}=f(t, u), \quad t>0
$$

where f is a uniformly continuous function of its arguments and $u(0)=u_{0}$,
A linear multistep method for numerical approximation of this equation at the points $t_{r}=$ $r \Delta t, r=0,1,2, \ldots$, with $\Delta t>0$ is defined for integer $k>0$ by

$$
\sum_{r=0}^{k} \alpha_{r} U_{n+r}=\Delta t \sum_{r=0}^{k} \beta_{r} F_{n+r}, n=0,1, \ldots
$$

where U_{n} is an approximation to $u_{n}=u\left(t_{n}\right), F_{n}=f\left(t_{n}, U_{n}\right), \alpha_{k} \neq 0, \alpha_{0}^{2}+\beta_{0}^{2}>0$ and $\sum_{r=0}^{k} \beta_{r} \neq 0$. Denote polynomials

$$
\rho(z)=\sum_{r=0}^{k} \alpha_{r} z^{r}, \quad \sigma(z)=\sum_{r=0}^{k} \beta_{r} z^{r} .
$$

a) [6 Marks] Define the terms: truncation error, convergence, consistency, order of convergence and zero stability for a linear multistep method.
b) [8 Marks] In the case where the roots of ρ are all simple, prove that a necessary condition for convergence is that all roots lie in $\{z \in \mathcal{C}:|z| \leq 1\}$.
c) [4 Marks] Show that consistency requires

$$
\rho(1)=0, \quad \rho^{\prime}(1)=\sigma(1) .
$$

d) [7 Marks] Suppose the linear multistep method is of order p. By considering the function $u(t)=\mathrm{e}^{t}$, (so that $f(t, u)=u$) and the associated truncation error, prove that the function $\psi(z)$ defined by

$$
\psi(z)=\frac{\rho(z)}{\ln z}-\sigma(z)
$$

has a p-fold zero at $z=1$
[Hint: that is, $\psi \sim(z-1)^{p}$ as $z \rightarrow 1$. Consider specifically $z=\mathrm{e}^{\Delta t}$ as $\Delta t \rightarrow 0$.]

