Numerical Solution of Differential Equations I: Problem Sheet 1

1. Let the real function $u(t)$, defined for $t \in[0, \infty)$ satisfy the differential equation

$$
u^{\prime}=\frac{\mathrm{d} u}{\mathrm{~d} t}=f(t, u), \quad t>0
$$

with initial condition $u(0)$ given.
Verify that the following functions satisfy a Lipschitz condition with respect to u, uniformly in t, for $0 \leq t \leq \infty, u \in \mathbb{R}$:
a) $f(t, u)=2 u(1+t)^{-4}$;
b) $f(t, u)=\mathrm{e}^{-(1+t)^{2}} \tan ^{-1} u$;
c) $f(t, u)=2 u\left(1+u^{2}\right)^{-1}\left(1+\mathrm{e}^{-|t|}\right)$
and for each case determine a bound for the truncation error when using Euler's method to approximate $u(t)$ at equally spaced points $t_{n}=n \Delta t$, where $\Delta t>0$ and $n=0,1,2, \ldots$. In (a) you may assume that the solution u is bounded with $|u| \leq u_{\max }$ for some positive $u_{\max } \in \mathbb{R}$.
2. Suppose that m is a fixed positive integer. Show that the initial value problem

$$
u^{\prime}=u^{2 m /(2 m+1)}, \quad u(0)=0
$$

has infinitely many continuously differentiable solutions. Why does this not contradict Picard's Theorem?
3. Van der Pol's equation

$$
u^{\prime \prime}-\varepsilon\left(1-u^{2}\right) u^{\prime}+u=0
$$

subject to the initial conditions $u(0)=a_{1}$ and $u^{\prime}(0)=a_{2}$, where a_{1} and a_{2} are given real numbers, and $\varepsilon>0$ a parameter, models electrical circuits connected with electronic oscillators. Rewrite the equation as a coupled system of two first-order differential equations with appropriate initial conditions. Formulate Euler's method for this system, when $\varepsilon=1$, $a_{1}=1 / 2$ and $a_{2}=1 / 2$, on the interval [$0, T$], for some $T>0$ using n points with uniform spacing $\Delta t=1 /(n-1)$. Evaluate algebraically the Euler approximation to $u(t)$ and $u^{\prime}(t)$ at the point $t=\Delta t$.
Use matlab to calculate the solution using Euler's method and graph the results for $T=20$ and $n=101,1001,10001$ for $\varepsilon=1, \varepsilon=5$.
4. Consider the initial value problem

$$
u^{\prime}=\log \log \left(4+u^{2}\right), \quad t \in[0,1], \quad u(0)=1
$$

and the sequence $\left(U_{n}\right)_{n=0}^{N}, N \geq 1$, generated by the explicit Euler method

$$
\frac{U_{n+1}-U_{n}}{\Delta t}=\log \log \left(4+U_{n}^{2}\right), \quad n=0, \ldots, N-1, \quad U_{0}=1
$$

using the time points $t_{n}=n \Delta t, n=0, \ldots, N$, with spacing $\Delta t=1 / N$. Here \log denotes the logarithm with base e.
a) Let T_{n} denote the truncation error of Euler's method at $t=t_{n}$ for this initial value problem. Show that $\left|T_{n}\right| \leq \Delta t /(4 \mathrm{e})$.
b) Verify that

$$
\left|u_{n+1}-U_{n+1}\right| \leq(1+\Delta t L)\left|u_{n}-U_{n}\right|+\Delta t\left|T_{n}\right|, \quad n=0, \ldots, N-1
$$

where $L=1 /(2 \log 4)$.
c) Let $e_{n}=u_{n}-U_{n}$. Prove by induction that

$$
\left|e_{n}\right| \leq(1+\Delta t L)^{n}\left|e_{0}\right|+\left[(1+\Delta t L)^{n}-1\right] \frac{T}{L}
$$

d) Find a positive integer N_{0}, as small as possible, such that

$$
\max _{0 \leq n \leq N}\left|u_{n}-U_{n}\right| \leq 10^{-4}
$$

whenever $N \geq N_{0}$.
5. [2005 Finals]

Consider the initial value problem $u^{\prime}=f(u), u(0)=1$, where $f(u)=\tan ^{-1}\left(1+u^{2}\right)$.
[You may assume that this problem has a unique solution $t \rightarrow u(t)$, defined for all $t \in \mathcal{R}$ and that the functions u^{\prime} and $u^{\prime \prime}$ are defined and continuous for all $t \in \mathcal{R}$.]
a) [8 marks] Show that $\left|u^{\prime \prime}\right| \leq \frac{\pi}{4}$ for all $t \in \mathcal{R}$. Show further that the function f satisfies the following Lipschitz condition:

$$
|f(u)-f(v)| \leq \frac{1}{2}|u-v| \quad \forall u, v \in \mathcal{R} .
$$

b) [8 marks] The implicit Euler approximation U_{n} to $u_{n}=u\left(t_{n}\right)$ on the mesh $\left\{t_{n}: t_{n}=\right.$ $n \Delta t, n=0,1, \ldots\}$ of uniform spacing $\Delta t \in(0,1]$, is obtained from the formula

$$
\frac{U_{n}-U_{n-1}}{\Delta t}=f\left(U_{n}\right) . \quad n=1,2,3, \ldots, \quad U_{0}=1
$$

Let $g(u)=u-\Delta t f(u)$. Show that the function g is strictly monotonic increasing and $\lim _{u \rightarrow \pm \infty} g(u)= \pm \infty$. By rewriting Euler's method as $g\left(U_{n}\right)=U_{n-1}$, deduce that, given $U_{n-1} \in \mathcal{R}$, the Euler approximation U_{n} is uniquely defined in \mathcal{R}
c) [9 marks] Show that the truncation error T_{n} of the implicit Euler method applied to the initial value problem under consideration satisfies

$$
\left|T_{n}\right| \leq \frac{\pi}{8} \Delta t, \quad n=1,2,3, \ldots
$$

Show further that

$$
\left|u_{n}-U_{n}\right| \leq \frac{2}{2-\Delta t}\left|u_{n-1}-U_{n-1}\right|+\frac{2 \Delta t}{2-\Delta t}\left|T_{n}\right|, \quad n=1,2, \ldots,
$$

and deduce that

$$
\left|u_{n}-U_{n}\right| \leq \frac{\pi}{4}\left[\left(1+\frac{\Delta t}{2-\Delta t}\right)^{n}-1\right] \Delta t, \quad n=1,2, \ldots
$$

Show that if $\Delta t \leq[25 \pi(\mathrm{e}-1)]^{-1}$, then U_{n} approximates u_{n} to within 10^{-2} for all $t_{n} \in[0,1]$. [You may use without proof that $\left(1+\frac{\Delta t}{2-\Delta t}\right)^{n} \leq \mathrm{e}^{t_{n}}$ for all $\Delta t \in(0,1]$ and all $n \geq 0$.]

