Numerical Solution of Differential Equations I: Problem Sheet 1

1. Let the real function u(t), defined for $t \in [0, \infty)$ satisfy the differential equation

$$u' = \frac{\mathrm{d}u}{\mathrm{d}t} = f(t, u), \quad t > 0,$$

with initial condition u(0) given.

Verify that the following functions satisfy a Lipschitz condition with respect to u, uniformly in t, for $0 \le t \le \infty$, $u \in \mathbb{R}$:

- a) $f(t, u) = 2u(1+t)^{-4}$;
- b) $f(t, u) = e^{-(1+t)^2} \tan^{-1} u;$
- c) $f(t, u) = 2u(1 + u^2)^{-1}(1 + e^{-|t|})$

and for each case determine a bound for the truncation error when using Euler's method to approximate u(t) at equally spaced points $t_n = n\Delta t$, where $\Delta t > 0$ and n = 0, 1, 2, ...In (a) you may assume that the solution u is bounded with $|u| \leq u_{max}$ for some positive $u_{max} \in \mathbb{R}$.

2. Suppose that m is a fixed positive integer. Show that the initial value problem

$$u' = u^{2m/(2m+1)}$$
, $u(0) = 0$,

has infinitely many continuously differentiable solutions. Why does this not contradict Picard's Theorem?

3. Van der Pol's equation

$$u'' - \varepsilon (1 - u^2)u' + u = 0$$

subject to the initial conditions $u(0) = a_1$ and $u'(0) = a_2$, where a_1 and a_2 are given real numbers, and $\varepsilon > 0$ a parameter, models electrical circuits connected with electronic oscillators. Rewrite the equation as a coupled system of two first-order differential equations with appropriate initial conditions. Formulate Euler's method for this system, when $\varepsilon = 1$, $a_1 = 1/2$ and $a_2 = 1/2$, on the interval [0, T], for some T > 0 using n points with uniform spacing $\Delta t = 1/(n-1)$. Evaluate algebraically the Euler approximation to u(t) and u'(t)at the point $t = \Delta t$.

Use matlab to calculate the solution using Euler's method and graph the results for T = 20 and n = 101, 1001, 10001 for $\varepsilon = 1$, $\varepsilon = 5$.

4. Consider the initial value problem

 $u' = \log \log(4 + u^2)$, $t \in [0, 1]$, u(0) = 1,

and the sequence $(U_n)_{n=0}^N$, $N \ge 1$, generated by the explicit Euler method

$$\frac{U_{n+1} - U_n}{\Delta t} = \log \log(4 + U_n^2) , \qquad n = 0, \dots, N - 1 , \qquad U_0 = 1 ,$$

using the time points $t_n = n\Delta t$, n = 0, ..., N, with spacing $\Delta t = 1/N$. Here log denotes the logarithm with base e.

- a) Let T_n denote the truncation error of Euler's method at $t = t_n$ for this initial value problem. Show that $|T_n| \leq \Delta t/(4e)$.
- b) Verify that

$$|u_{n+1} - U_{n+1}| \le (1 + \Delta tL)|u_n - U_n| + \Delta t|T_n|$$
, $n = 0, \dots, N-1$,
where $L = 1/(2\log 4)$.

c) Let $e_n = u_n - U_n$. Prove by induction that

$$|e_n| \le (1 + \Delta tL)^n |e_0| + [(1 + \Delta tL)^n - 1] \frac{T}{L}.$$

-

d) Find a positive integer N_0 , as small as possible, such that

$$\max_{0 \le n \le N} |u_n - U_n| \le 10^{-4}$$

whenever $N \geq N_0$.

5. [2005 Finals]

Consider the initial value problem u' = f(u), u(0) = 1, where $f(u) = \tan^{-1}(1 + u^2)$. [You may assume that this problem has a unique solution $t \to u(t)$, defined for all $t \in \mathcal{R}$.] and that the functions u' and u'' are defined and continuous for all $t \in \mathcal{R}$.]

a) [8 marks] Show that $|u''| \leq \frac{\pi}{4}$ for all $t \in \mathcal{R}$. Show further that the function f satisfies the following Lipschitz condition:

$$|f(u) - f(v)| \le \frac{1}{2}|u - v| \quad \forall u, v \in \mathcal{R}.$$

b) [8 marks] The implicit Euler approximation U_n to $u_n = u(t_n)$ on the mesh $\{t_n : t_n = n\Delta t, n = 0, 1, \ldots\}$ of uniform spacing $\Delta t \in (0, 1]$, is obtained from the formula

$$\frac{U_n - U_{n-1}}{\Delta t} = f(U_n). \quad n = 1, 2, 3, \dots, \quad U_0 = 1.$$

Let $g(u) = u - \Delta t f(u)$. Show that the function g is strictly monotonic increasing and $\lim_{u \to \pm \infty} g(u) = \pm \infty$. By rewriting Euler's method as $g(U_n) = U_{n-1}$, deduce that, given $U_{n-1} \in \mathcal{R}$, the Euler approximation U_n is uniquely defined in \mathcal{R}

c) [9 marks] Show that the truncation error T_n of the implicit Euler method applied to the initial value problem under consideration satisfies

$$|T_n| \le \frac{\pi}{8} \Delta t, \quad n = 1, 2, 3, \dots$$

Show further that

$$|u_n - U_n| \le \frac{2}{2 - \Delta t} |u_{n-1} - U_{n-1}| + \frac{2\Delta t}{2 - \Delta t} |T_n|, \quad n = 1, 2, \dots,$$

and deduce that

$$|u_n - U_n| \le \frac{\pi}{4} \left[\left(1 + \frac{\Delta t}{2 - \Delta t} \right)^n - 1 \right] \Delta t, \quad n = 1, 2, \dots$$

Show that if $\Delta t \leq [25\pi(e-1)]^{-1}$, then U_n approximates u_n to within 10^{-2} for all $t_n \in [0,1]$. [You may use without proof that $(1 + \frac{\Delta t}{2-\Delta t})^n \leq e^{t_n}$ for all $\Delta t \in (0,1]$ and all $n \geq 0$.]