
Numerical Solution of Differential Equations I:
Problem Sheet 1

1. Let the real function u(t), defined for t ∈ [0,∞) satisfy the differential equation

u′ =
du

dt
= f(t, u), t > 0,

with initial condition u(0) given.

Verify that the following functions satisfy a Lipschitz condition with respect to u, uniformly
in t, for 0 ≤ t ≤ ∞, u ∈ R:

a) f(t, u) = 2u(1 + t)−4 ;

b) f(t, u) = e−(1+t)2 tan−1 u ;

c) f(t, u) = 2u(1 + u2)−1(1 + e−|t|)

and for each case determine a bound for the truncation error when using Euler’s method
to approximate u(t) at equally spaced points tn = n∆t, where ∆t > 0 and n = 0, 1, 2, . . ..
In (a) you may assume that the solution u is bounded with |u| ≤ umax for some positive
umax ∈ R.

2. Suppose that m is a fixed positive integer. Show that the initial value problem

u′ = u2m/(2m+1) , u(0) = 0 ,

has infinitely many continuously differentiable solutions. Why does this not contradict
Picard’s Theorem?

3. Van der Pol’s equation
u′′ − ε(1− u2)u′ + u = 0

subject to the initial conditions u(0) = a1 and u′(0) = a2, where a1 and a2 are given
real numbers, and ε > 0 a parameter, models electrical circuits connected with electronic
oscillators. Rewrite the equation as a coupled system of two first–order differential equations
with appropriate initial conditions. Formulate Euler’s method for this system, when ε = 1,
a1 = 1/2 and a2 = 1/2, on the interval [0, T ], for some T > 0 using n points with uniform
spacing ∆t = 1/(n − 1). Evaluate algebraically the Euler approximation to u(t) and u′(t)
at the point t = ∆t.

Use matlab to calculate the solution using Euler’s method and graph the results for T = 20
and n = 101, 1001, 10001 for ε = 1, ε = 5.

4. Consider the initial value problem

u′ = log log(4 + u2) , t ∈ [0, 1] , u(0) = 1 ,

and the sequence (Un)
N
n=0, N ≥ 1, generated by the explicit Euler method

Un+1 − Un

∆t
= log log(4 + U2

n) , n = 0, . . . , N − 1 , U0 = 1 ,

using the time points tn = n∆t, n = 0, . . . , N , with spacing ∆t = 1/N . Here log denotes
the logarithm with base e.



a) Let Tn denote the truncation error of Euler’s method at t = tn for this initial value
problem. Show that |Tn| ≤ ∆t/(4e).

b) Verify that

|un+1 − Un+1| ≤ (1 + ∆tL)|un − Un|+∆t|Tn| , n = 0, . . . , N − 1 ,

where L = 1/(2 log 4).

c) Let en = un − Un. Prove by induction that

|en| ≤ (1 + ∆tL)n|e0|+ [(1 + ∆tL)n − 1]
T

L
.

d) Find a positive integer N0, as small as possible, such that

max
0≤n≤N

|un − Un| ≤ 10−4

whenever N ≥ N0.

5. [2005 Finals]

Consider the initial value problem u′ = f(u), u(0) = 1, where f(u) = tan−1(1 + u2).
[You may assume that this problem has a unique solution t → u(t), defined for all t ∈ R
and that the functions u′ and u′′ are defined and continuous for all t ∈ R.]

a) [8 marks] Show that |u′′| ≤ π
4
for all t ∈ R. Show further that the function f satisfies

the following Lipschitz condition:

|f(u)− f(v)| ≤ 1

2
|u− v| ∀u, v ∈ R.

b) [8 marks] The implicit Euler approximation Un to un = u(tn) on the mesh {tn : tn =
n∆t, n = 0, 1, . . .} of uniform spacing ∆t ∈ (0, 1], is obtained from the formula

Un − Un−1

∆t
= f(Un). n = 1, 2, 3, . . . , U0 = 1.

Let g(u) = u−∆tf(u). Show that the function g is strictly monotonic increasing and
limu→±∞ g(u) = ±∞. By rewriting Euler’s method as g(Un) = Un−1, deduce that,
given Un−1 ∈ R, the Euler approximation Un is uniquely defined in R

c) [9 marks] Show that the truncation error Tn of the implicit Euler method applied to
the initial value problem under consideration satisfies

|Tn| ≤
π

8
∆t, n = 1, 2, 3, . . . .

Show further that

|un − Un| ≤
2

2−∆t
|un−1 − Un−1|+

2∆t

2−∆t
|Tn|, n = 1, 2, . . . ,

and deduce that

|un − Un| ≤
π

4

[(
1 +

∆t

2−∆t

)n

− 1
]
∆t, n = 1, 2, . . . .

Show that if ∆t ≤ [25π(e − 1)]−1, then Un approximates un to within 10−2 for all
tn ∈ [0, 1]. [You may use without proof that (1 + ∆t

2−∆t
)n ≤ etn for all ∆t ∈ (0, 1] and

all n ≥ 0.]


