
Lecture 1

Introduction

The great majority of di↵erential equations which describe real systems cannot be
solved analytically, the equations can only be solved approximately using numerical
algorithms. It is also the case that a great many problems are set in an evolutionary
framework: given the state at one time, determine the state at some future time. In
this course we try to set out the methodology whereby the behaviour of numerical
algorithms to approximate such di↵erential systems can be studied systematically and
the advantages, accuracy and pitfalls of such algorithms can be understood. Many
systems, such as used in aircraft control, power station control, guidance systems are
operated without human intervention according to computed solutions of di↵erential
systems, so we have great interest in knowing that solutions are computed accurately
and e�ciently.

Some examples of real systems are easy to find.

1. Motion under a central force field

There are many examples in molecular or stellar dynamics where motion is determined
by a central force field. The general title for this is an N -body problem. The example
you are most likely to have already seen is that of just two bodies moving in a plane
with a gravitational field. This simplifies to a one-body problem if one of the bodies
has mass (M) su�ciently massive that its position can be taken as fixed at an origin
and the position of the second body, of mass m be given by (x̂(t̂), ŷ(t̂)) with velocities
(û(t̂), v̂(t̂)) as unknowns. Then, in a gravitational problem, applying simple mechanics
shows that the motion will be described by

m
d2x̂

dt̂2
= �GMm

r̂3
x̂,

m
d2ŷ

dt̂2
= �GMm

r̂3
ŷ,

where r̂2 = x̂2 + ŷ2 and G is a universal constant, G = 6.67⇥ 10�11 m3kg�1s�2.

If these equations are rescaled with time scale T
s

and length scale L
s

= (GMT 2

s

)1/3,
so that (x̂, ŷ) = L

s

(x, y), t̂ = T
s

t and (û, v̂) = (L
s

/T
s

)(u, v), then the equations can

4

be rewritten

dx

dt
= u, (1.1)

dy

dt
= v, (1.2)

du

dt
= � x(x2 + y2)�3/2, (1.3)

dv

dt
= � y(x2 + y2)�3/2. (1.4)

Using the vector uT = [x y u v], then the system is in the form

du

dt
= f(u), (1.5)

and solutions can be found starting from some initial data u(0) = u
0

2 R4.

In a general N -body problem with motion in three dimensions we will have u,u
0

2
R6N so that the position and velocity of N -bodies can be determined. There is a
broad literature on the N -body problem, for example when the bodies are of equal
mass, there are surprisingly many closed loop periodic solutions with the general title
of N -body choreographies. As an example, it was known to Lagrange that equal
mass bodies could rotate on a circular path, with, in the case of say 3 bodies, the
particles located at the vertices of an equilateral triangle. However, for three equal
mass bodies, there is also a closed loop periodic solution where the bodies move in
a figure of eight pattern, and there are many periodic solutions when the number
of particles is increased to four or more. These choreographies are not part of this
course but they are an illustration of the importance of robust, accurate and stable
numerical computations in generating solutions for complex N -body dynamics.

2. Reaction kinetics - enzyme catalysed reaction

There are many situations in chemistry and biological systems that lead to a set
of di↵erential equations to describe evolution from some starting state. An example
from reaction kinetics comes from supposing a substrate S (concentration s) combines
with an enzyme E (concentration e) at rate ↵ to form a complex C (concentration c)
and that the complex forms a product P (concentration p) at rate � (and in doing so
releases enzyme E at the same rate) but also breaks back down into S and E at rate

5

�. Then simple reaction kinetics give

ds

dt
= �↵se+ �c, (1.6)

de

dt
= �↵se+ (� + �)c, (1.7)

dc

dt
= ↵se� (� + �)c, (1.8)

dp

dt
= �c, (1.9)

and again defining a vector uT = [s e c p] then this system can also be put in the
form

du

dt
= f(u). (1.10)

and solved starting from some initial data u(0) = u
0

2 R4. The dimension of u, u
0

will match the number of concentrations being tracked, in this case four.

3. Lorenz model

Lorenz studied motion in a layer of fluid where there is a temperature di↵erence across
the layer and he represented the flow and temperature using Fourier series. He then
made a rather severe truncation for the fluid stream function to one term and the
temperature to two terms so the model had three unknown functions, which might be
given by notation (u(t), v(t), w(t)) and then conservation of momentum and energy,
when non-dimensionalised give

du

dt
= ��u+ �v, (1.11)

dv

dt
= �uw + ⇢u� v, (1.12)

dw

dt
= uv � �w, (1.13)

where �, ⇢ and � are non-dimensional parameters. The system too can be put in a
standard framework by uT = [u v w] with

du

dt
= f(u), (1.14)

and solved starting from some initial data u(0) = u
0

2 R3.

6

4. General Formulation

These example systems have forcing function f which is not explicitly dependent on
time but

it is possible to have examples where time is an explicit argument in f so we can
formulate the very general problem:

du

dt
= f(t,u). (1.15)

where u, f 2 Rk for some k and we seek solutions starting from some initial data
u(0) = u

0

2 Rk.

In setting out the framework for numerical approximation of di↵erential systems, we
will mostly look at the case k = 1 but do keep in mind that most real examples
involve application to larger systems which involve solution of many simultaneous
di↵erential equations.

It is easy to think that the numerical solution of di↵erential equations should be a
straight forward process of just approximating the derivatives in the system in some
systematic way. What can possibly go wrong?

Using Matlab

The numerical analysis we study in this course centres on analytic methods to study
discrete approximations to di↵erential equations. As we shall see for ODEs and
particularly for PDEs, methods to approximate di↵erential equations may appear to
have certain required properties, such as known error estimates, but nevertheless,
when applied with finite accuracy computers, they fail. Hence an important adjunct
to analysis is implementation of a method. Included in the lectures will be many
matlab examples and I have included some matlab exercises in the tutorial sheets.
Oxford has a site wide licence for matlab and you are encouraged to be familiar with
writing small matlab procedures. The examination will be based only on analysis but
using matlab to study how numerical algorithms behave gives insight into analysis
and ultimately, will help in mastering this course.

I suggest you create a directory or folder for this course and add that to the default
matlab search path and then keep routines you have written, or course ones I provide,
in that folder. I will discuss finite precision arithmetic and using matlab in the first
lecture and there are many guides for using matlab that you can consult.

7

5. Example of a numerical problem

To illustrate that possibly unexpected di�culties can occur when using numerical
algorithms, consider this simple model problem:

u0(t) = 0, t > 0 (1.16)

u(0) = 1 (1.17)

with obvious exact solution u(t) = 1 for t > 0. Suppose the function u(t) is approx-
imated at time values t

n

= n�t by U
n

, so that U
n

⇡ u(t
n

). Then setting U
0

= 1
we would expect U

n

= 1 for n = 1, 2, 3, . . . to be the numerical solution. Note the
notation which will be used consistently throughout the course: u is the continuous
function that is the solution of a di↵erential equation, U

n

will usually be a set of
discrete values that are intended to approximate u at certain times t

n

and u
n

= u(t
n

)
are discrete values of the correct solution at the discrete times. This means we have
two discrete sets, {t

n

}, and {U
n

}, although if the time points are uniform, the first
set is trivial.

When dealing with sets of discrete elements we can a process that can be repeatedly
applied to elements in turn as an operator, for example, a forward di↵erence operator
might be written

�
+

[U
n

] = U
n+1

� U
n

, n = 0, 1, 2, · · · ,
and �

+

is an operator on the diescrete set (often the brackets [] are left out). It is
possible to develop an algebra for operators, see particularly Iserles book if interested.

While it may not be immediately obvious why, consider a discrete operator N which
defines the combination of values:

N [u
n

] =
�u

n+1

+ 3u
n

� 2u
n�1

�t
. (1.18)

If we suppose that �t is small and use Taylor expansions

u
n+1

= u(t
n+1

) = u(t
n

+�t) ⇡ u(t
n

) +�tu0(t
n

) +
�t2

2
u00(t

n

) + . . . (1.19)

u
n�1

= u(t
n�1

) = u(t
n

��t) ⇡ u(t
n

)��tu0(t
n

) +
�t2

2
u00(t

n

) + . . . (1.20)

then

N [u
n

] =
�u

n

+ 3u
n

� 2u
n

+�tu0
n

� 3

2

�t2u00
n

+ . . .

�t
, (1.21)

and so

N [u
n

] = u0
n

� 3

2
�tu00

n

+ . . . , (1.22)

8

where we have simplified the notation beyond just u
n

= u(t
n

) by having u0
n

= u0(t
n

),
again, notation that we will use consistently throughout the course.

However, what (1.22) shows is that we can regard N as an approximation to the
derivative u0, since clearly

u0
n

= N [u
n

] +
3

2
�tu00

n

. . . (1.23)

and so we might expect for small �t that

u0
n

⇡ N [u
n

], (1.24)

or that if we wished to approximate the solution of

u0 = f,

then we could use
U
n+1

� 3U
n

+ 2U
n�1

�t
= f(t

n

),

to generate approximate solutions that would become more accurate as �t became
smaller.

However, when the equation we are trying to integrate is just u0 = 0, consider values
U
n

satisfying N [U
n

] = 0, or equivalently,

U
n+1

= 3U
n

� 2U
n�1

. (1.25)

This should be an iteration that can be used to successively calculate an approxima-
tion for the values u

n+1

, n = 1, 2, 3, . . . that all satisfy U
n

= u
0

.

We will see later that this is an example of a multistep iteration where we need two
starting values, U

0

and U
1

in order to apply the first iteration to calculate U
2

, and
then we can calculate U

3

, . . . successively.

In the matlab demo, I have taken U
0

= 1 and U
1

= 1+e�15, a little more than machine
precision might have. The result is a sequence of vlaues that grow exponentially, see
figure 1.

We know that U
0

= 1 is the correct initial value. Suppose the initial value U
1

= 1+ ✏
so we have some small error of ✏ only in U

1

and exact value for U
0

. Then applying
this recursion manually:

U
2

= 1 + 3✏, (1.26)

U
3

= 1 + 7✏, (1.27)

U
4

= 1 + 15✏. (1.28)

9

0 20 40 60 80 100
−20

−10

0

10

20

n

lo
g

1
0
|U

n
−

u
0
|

Figure 1: Result of applying iteration U
n+2

= 3U
n+1

� 2U
n

with U
0

= 1 and U
1

=
1.000000000000001.

The general solution of the di↵erence scheme (1.25) for the starting values U
0

= 1,
U
1

= 1+✏, is U
n

= 1+(2n�1)✏ and the values we will calculate diverge exponentially
with the number of steps, since 2n = en log 2. So this very trivial model problem shows
that numerical algorithms can go wrong and if they do, it is likely that divergence will
be exponential in the number of steps, and so have an observable e↵ect after relatively
few calculations. In the matlab example, the computation has an error ✏ = 10�15 in
U
1

and the iteration should be noticably diverging from the correct value u
n

= 1 by
an order one value after say m iterations, where 2m⇥10�15 ⇠ 1, or m ⇠ 21 iterations.

10

Lecture 2

6. Picard’s Theorem

Returning to the general problem but with a single dependent variable, we will sup-
pose that the dependent variable u(t) is the exact solution of a di↵erential system:

N (t, u) = u0 � f(t, u) = 0, t > 0, (2.1)

together with appropriate initial condition u(0) = u
0

. We can assume without loss
of generality that the initial value is at t = 0. Later when we deal with partial
di↵erential equations both initial and boundary values will be needed but we will still
assume the time dependent variable starts at t = 0.

The existence of, or uniqueness for, solutions of di↵erential systems is a major field
in itself and outside the material of this course. In the main, we will assume that
a solution exists in the region of computation but just be aware that this can be a
dangerous assumption. There is one result though which is important enough that
the statement of the theorem should be known and understood.

Theorem: Picard. Suppose that f(t, u) is a continuous function of t and u in a
region ⌦ = [0, T)⇥ [u

0

�↵, u
0

+↵] of the (t, u) plane and that there exists L > 0 such
that

|f(t, u)� f(t, v)|  L|u� v| 8t, u, v 2 ⌦. (2.2)

In this expression L is called a Lipschitz constant and f is said to satisfy a Lipschitz
condition with respect to the second argument. Suppose also that

MT  ↵, (2.3)

where M = max
⌦

|f |.

Then there exists a unique continuously di↵erentiable function u(t) defined on [0, T)
satisfying

du

dt
= f(t, u), 0 < t < T (2.4)

u(0) = u
0

. (2.5)

7. Lipschitz conditions

As well as understanding the importance of Picard’s theorem in giving conditions
for a unique solution to exist, you should understand what this theorem does not
guarantee.

11

Consider this example:
u0 = u2, u(0) = u

0

. (2.6)

Provided |u| < ↵ then the function f(u) = u2 will satisfy a Lipschitz condition

|f(u)� f(v)|  2↵|u� v|, (2.7)

so it might be tempting to say, that Picard’s theorem will guarantee a solution. We
need to be careful. If we look at the theorem, then for this case M = ↵2 so the
condition MT < ↵ is really T < 1/↵. If we look at the analytic solution for u

0

> 0,

u(t) =
u
0

1� u
0

t
,

this exhibits finite time blow up a t = 1/u
0

and Picard’s theorem tells us only that
for any starting value, there will be an interval where a solution will exist but even
though we can find a Lipschitz condition for the function f , we are not guaranteed a
solution u for all times. Solutions to equation (2.6) are shown in figure 2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25
Solution of u’=u

2
 for varying u(0)

t

u

Figure 2: Solutions of the equation u0 = u2 for various initial values showing approach
to finite time blow up.

Quite simple functions can fail to satisfy a Lipschitz condition. Let

f(u) =
p
u (2.8)

on [a, 1] for a � 0 where in Figure 3 is shown both f and the tangent line through
(a,

p
a)

y(u) =
p
a+

1

2
p
a
(u� a).

We have

f(u)� f(a) =
p
u�p

a (2.9)

 p
a+

1

2
p
a
(u� a)�p

a (2.10)

 1

2
p
a
(u� a). (2.11)

12

0 a 1
0

u

f(
u
)

√a

f=√u

y=√a+(u−a)/(2√a)

Figure 3: The function f(u) =
p
u which does not satisfy a Lipschitz condition on

[0, 1].

Taking absolute values gives

|f(u)� f(a)|  1

2
p
a
|u� a| (2.12)

and 1

2

p
a

diverges as a ! 0 so f is not Lipschitz on [0, 1].

However, it is clear that for u
0

� 0, u0 =
p
u will have a solution u(t) = (

p
u
0

+ 1

2

t)2

which satisfies u(0) = u
0

for all t > 0 .

Thus we can find systems where a Lipschitz condition does not guarantee a solution
and systems where there may not be a Lipschitz condition but a solution still exists,
but nevertheless, applying a Lipschitz condition in analysis is hugely important and
you need to be able to recognise when such conditions can help with analysis, here
often when looking into errors of numerical schemes.

One step methods

A major family of solvers for ODEs are classed as one-step methods where, given
data for one time t = t

n

, the objective is to determine values at a subsequent time

13

t = t
n+1

. This may result in an algorithm which involves a number of sub-steps
within the interval [t

n

, t
n+1

] but there is no supposition that we know or use any
details of the solution prior to t = t

n

and in principle, no assumption that the values
t
0

, t
1

, . . . , t
n

, t
n+1

are evenly spaced, and as we shall see later, part of the power of
one step methods is that the step length can be varied depending on whether the
solution is varying rapidly (and so needs to have short step lengths) or slowly (and so
can have longer step lengths) in order to maintain a relatively constant error bound.

We will develop the theory of one-step methods in two parts, first by looking at
the method of Euler and some of the associated ideas, particularly for notation, and
second, looking at a general framework for one-step methods.

Explicit Euler method for an ODE

We use a standard notation that the continuous system is

N (t, u,) =
du

dt
� f(t, u) = 0. (2.13)

As already pointed out, while we will take u(t) to be a single real function, we also
note that in principle we could have u 2 Rk for some integer k > 1. Since

du

dt

�

�

�

�

t

= lim
�t!0

u(t+�t)� u(t)

�t
, (2.14)

and with t = t
n

= n�t,

du

dt

�

�

�

�

t

n

⇡ u(t
n

+�t)� u(t
n

)

�t
. (2.15)

(i) Explicit Euler: algorithm

Define u
n

= u(t
n

) and let U
n

be our approximation to u
n

. Then using the simple
definition of a derivative, we can approximate the continuous system N by a discrete
system N where

N(t
n

, U
n

, U
n+1

) =
U
n+1

� U
n

�t
� f(t

n

, U
n

) = 0, (2.16)

and the initial condition u(0) = u
0

gives

U
0

= u
0

. (2.17)

Then (2.16) provides an algorithm, called Explicit Euler:

U
n+1

= U
n

+�tf(t
n

, U
n

), n = 0, 1, 2, 3, (2.18)

14

Note that the indexing we will normally use is that we have an approximate solution
at t = t

n

and the discrete scheme or the algorithm provides an approximation at
t = t

n+1

, however, when we come to analyse the scheme for accuracy, stability and so
on, we will generally apply that at index n.

(ii) Explicit Euler: Matlab implementation

The one step explicit Euler algorithm is very easy to implement, you need to remember
that matlab vectors start with index 1, so that if we let U(1) = u

0

, the fragment of
code to carry out N steps, each of size dt will be

U(1)=U0;

t(1)=0;

for n=1:N,

t(n+1)=t(n)+dt;

U(n+1)=U(n)+dt*f(n*dt,U(n));

end

and the values at t(1), · · · , t(N + 1) will be in U(1), · · · , U(N + 1).

This data can now be graphed. Formally, we have a discrete set of data values,
(t

n

, U
n

), n = 1 . . . N+1, however, conventionally this is graphed as a series of striaght
line segments between the discrete data:

plot(t,U)

set(gca,’FONTSIZE’,18)

xlabel(’Time’,’FONTSIZE’,18)

ylable(’U’,’FONTSIZE’,18)

In this set of statements line 1 plots the data, line 2 sets the current axes (gca means
get-current-axis) fontsize to be 18 point, and then lines 3 & 4 label the axes. Please
do keep in mind that fonts may need to be larger than default size if they are to be
easily readable, particularly if the graph is exported and will then be reduced in size
in a document

(iii) Explicit Euler: truncation error

Having set the discrete approximation, (2.16), it is natural to ask how well the discrete
system approximates the continuous system. Throughout this course the truncation
error is defined as the residual when the true values for u(t) are inserted into the

15

discrete operator N , that is

T
n

= N(t
n

, u
n

, u
n+1

). (2.19)

So in this case

T
n

=
u
n+1

� u
n

�t
� f(t

n

, u
n

), (2.20)

and using a Taylor expansion for u
n+1

,

u
n+1

= u
n

+�tu0
n

+
1

2
�t2u00(⇠), ⇠ 2 (t

n

, t
n+1

), (2.21)

we calculate

T
n

=
1

2
�tu00(⇠), (2.22)

so that provided u00 is bounded, T
n

= O(�t) as �t ! 0, that is the scheme N is a
first order approximation to N for small time steps.

In some places you may find a local truncation error defined for the algorithm assuming
that the true value u

n

is used to determine the approximation over one step, denoted
Ũ
n+1

here. For the Euler scheme this gives

Ũ
n+1

= u
n

+�tf(t
n

, u
n

), (2.23)

and a local truncation error, denoted T̃
n

here,

T̃
n

= u
n+1

� Ũ
n+1

= u
n+1

� u
n

��tf(t
n

, u
n

) =
1

2
�t2u00(⇠). (2.24)

As a generalisation for our continuous system, the local truncation error (which is an
error in the approximation of u and not an error in approximation of the di↵erential
equation) will be one order higher than the discrete system truncation error (which
is an error in approximating N by N). If there is a local truncation error O(�tp+1)
and this error occurs for n steps, the solution error after n steps will be O(n�tp+1)
and letting n�t ! t as �t ! 0 then the error in u(t) will be O(�tp). So the explicit
Euler system has a second order local truncation error but as we shall see later when
we relate the error,

e
n

= u
n

� U
n

, (2.25)

to the truncation error T
n

, explicit Euler is a first order scheme for calculating u(t).

To repeat: it is important to distinguish the discrete system (2.16) from the algorithm
(2.18). To calculate the truncation error in the sense used here, you should use the
discrete system, (2.16), and not the algorithm, (2.18), and you should distinguish this
system truncation error from the local truncation error in the approximation.

16

An alternative derivation of the explicit Euler algorithm comes from integrating the
equation over [t

n

, t
n+1

],

u(t
n+1

) = u(t
n

) +

Z

t

n+1

t

n

f(s, u(s)) ds. (2.26)

The integral in this expression could be approximated by
Z

t

n+1

t

n

f(s, u(s)) ds ⇡ �tf(t
n

, u
n

). (2.27)

This does leave a problem in that we do not know u
n

, only U
n

, and replacing both
u
n

and u
n+1

with approximations U
n

, U
n+1

we get

U
n+1

= U
n

+�tf(t
n

, U
n

), n = 1, 2, 3, . . . , (2.28)

which in this case is the same as that obtained by discretising the derivative directly.

It is important to appreciate that there are two approximations being made: one is
in discretising the derivative or integral, depending on how the continuous system is
set out, but there is a second approximation in calculating f with an approximate
value U

n

and not the correct value u
n

. As a general notational point, we will later
use f

n

for f(t
n

, u
n

) and F
n

for f(t
n

, U
n

) although for the moment we will for clarity
continue with the longer form.

It is also reasonable to ask why we focus here on the di↵erential form of the continuous
system when the integral form is equally correct, and indeed it is possible to write
the di↵erential system as an integral system by redefining N by

N (t, u) = u(t)� u
0

�
Z

t

0

f(s, u(s))ds = 0. (2.29)

However, a discrete version of this integral form N at t
n+1

will likely involve all the
previous calculated values U

n

, U
n�1

, . . . , U
1

, and the complexity of analysing this leads
to focus on the one step integral form

u
n+1

= u
n

+

Z

t

n+1

t

n

f(s, u(s))ds, (2.30)

with associated local truncation error analysis and global truncation error analysis of
this equation.

(iv) Explicit Euler: systems

When we have a higher order system, for example

u00 = f(t, u, u0) (2.31)

u(0) = u
0

(2.32)

u0(0) = u0
0

, (2.33)

17

we re-write it as a set of first order equations

u0 = v v(0) = u0
0

(2.34)

v0 = f(t, u, v) u(0) = u
0

(2.35)

so that

d

dt



u
v

�

=



v
f(t, u, v)

�

(2.36)

and defining vectors

u =



u
v

�

, f =



v
f(t, u, v)

�

(2.37)

we have

du

dt
= f(t,u), u(0) =



u
0

u0
0

�

, (2.38)

and the Explicit Euler method would be

U
n+1

= U
n

+�tf(t
n

,U
n

). (2.39)

In terms of the scalar components, for (2.31)-(2.33),

U
n+1

= U
n

+�tV
n

, (2.40)

V
n+1

= V
n

+�tf(t
n

, U
n

, V
n

). (2.41)

In summary. the general notation which will be used in this course is:

Continuous system

(

N (t, u) =
du

dt
� f(t, u) = 0, 0 < t < T

u(0) = u
0

(2.42)

Discrete system

8

>

<

>

:

N(t
n

, U
n

, U
n+1

) =
U
n+1

� U
n

�t
� f(t

n

, U
n

) = 0,

with t
n

= n�t, n = 0, 1, 2, . . . , T

�t

� 1
U
0

= u
0

(2.43)

18

Lecture 3

(v) Explicit Euler: Error

Define two errors :

• solution error e
n

= u
n

� U
n

• truncation error T
n

= N(t
n

, u
n

, u
n+1

)

You should appreciate that as U
n

and U
n+1

satisfy N(t
n

, U
n

, U
n+1

) = 0, and are
approximations for u

n

and u
n+1

, the truncation error T
n

= N(t
n

, u
n

, u
n+1

) will not
be zero. However, the dependence of T

n

on �t will show how well the discrete system
approximates the continuous di↵erential system. An important goal is to relate e

n

to T
n

since we can usually estimate T
n

using Taylor series and so a bound on T
n

can
lead to a bound on e

n

.

As just set out, for the explicit Euler method

T
n

= N(t
n

, u
n

, u
n+1

) =
u
n+1

� u
n

�t
� f(t

n

, u
n

) (3.1)

but

u
n+1

= u
n

+�tu0(t
n

) +
1

2
�t2u00(⇠

n

), (3.2)

for some ⇠
n

2 (t
n

, t
n+1

) and so

T
n

=
u
n

+�tu0(t
n

) + 1

2

�t2u00(⇠
n

)� u
n

�t
� f(t

n

, u
n

) (3.3)

and using u0(t
n

) = f(t
n

, u
n

)

T
n

=
1

2
�tu00(⇠

n

). (3.4)

Provided u00 can be bounded, say ku00k1  M for some M , we have

|T
n

|  1

2
�tM. (3.5)

When |T
n

| = O(�tp) as �t ! 0 we call the method order p.

We can look at errors by subtracting the two equations:

u
n+1

� u
n

�t
� f(t

n

, u
n

) = T
n

, (3.6)

U
n+1

� U
n

�t
� f(t

n

, U
n

) = 0, (3.7)

19

so that
e
n+1

� e
n

�t
� [f(t

n

, u
n

)� f(t
n

, U
n

)] = T
n

. (3.8)

If we rearrange this

e
n+1

= e
n

+�t [f(t
n

, u
n

)� f(t
n

, U
n

)] +�tT
n

(3.9)

and now assume that f satisfies a Lipschitz condition with constant L then

|e
n+1

|  |e
n

|+�tL|u
n

� U
n

|+�t|T
n

| (3.10)

or

|e
n+1

|  (1 +�tL)|e
n

|+�t|T
n

|. (3.11)

Let T = max
n

|T
n

| and �tL = µ, then

|e
n+1

|  (1 + µ)|e
n

|+ µ
T

L
. (3.12)

It is then be shown by induction (exercise) that

|e
n

|  (1 + µ)n|e
0

|+ [(1 + µ)n � 1]
T

L
(3.13)

and using 1 + µ < eµ, for µ > 0

|e
n

|  enµ|e
0

|+ [enµ � 1]
T

L
(3.14)

 eLtn |e
0

|+ ⇥

eLtn � 1
⇤ 1

2

M

L
�t. (3.15)

Hence, provided e
0

= 0 then as t
n

! t, �t ! 0, n ! 1 we should have |e
n

| ! 0
linearly as �t ! 0 and so in terms of the time step used, explicit Euler has first order
truncation error and gives a first order accurate solution.

Summary

• Continuous system u(t) : N (t, u) = 0 for t > 0 with u(0) = u
0

,

• Discrete system {U
n

} : N(t
n

, U
n

, U
n+1

) = 0 for n = 0, . . . with initial data U
0

given,

• Error in solution e
n

= u
n

� U
n

(where u
n

= u(t
n

))

• Truncation error T
n

= N(t
n

, u
n

, u
n+1

)

• The scheme is order p provided T
n

= O(�tp) as �t ! 0,

• If we can bound e
n

using T
n

then provided T
n

! 0 we will have e
n

! 0 as
�t ! 0,

• The discrete system is a consistent approximation to the continuous system
provided T

n

! 0 as �t ! 0.

20

More on One step methods

In trying to improve on the simple explicit Euler method we can start by considering
the integral form of the solution

u
n+1

= u
n

+

Z

t

n+1

t

n

f(s, u(s)) ds. (3.16)

Denote g(s) = f(s, u(s)). As a general problem, if we want to estimate
R

t

n+1

t

n

g(s) ds,
there are many quadrature methods which might be used.

In explicit Euler we used

Z

t

n+1

t

n

g(s) ds ⇡ �tg(t
n

), (3.17)

and approximated g(t
n

) = f(t
n

, u
n

) by g(t
n

) ⇡ f(t
n

, U
n

). We know from the mean
value theorem that there is one value t? 2 [t

n

, t
n+1

] such that

Z

t

n+1

t

n

g(s) ds = �tg(t?) (3.18)

but we don’t know t?, and even if we did, we could not evaluate g(t?) = f(t?, u(t?))
without also knowing u(t?). However, this does suggest that we might be able to
‘sample’ g at one or more points in the interval [t

n

, t
n+1

] in order to better approximate
an integral over the interval. However, since we start with only the value U

n

, if we
are to sample the function g at other time points, we need to set out how we will
approximte the function u at these points in order to evaluate g = f(t, u)

(i) Theta-method: algorithm

One method, called sometimes a theta-method uses a weighted average of two values
evaluated at either end of the interval to give a quadrature formula

Z

t

n+1

t

n

g(s) ds ⇡ �t [(1� ✓)g(t
n

) + ✓g(t
n+1

)] , (3.19)

and inserting approximate values for u, gives a discrete system:

N(t
n

, t
n+1

, U
n

, U
n+1

) =
U
n+1

� U
n

�t
� [(1� ✓)f(t

n

, U
n

) + ✓f(t
n+1

, U
n+1

)] = 0.(3.20)

The case ✓ = 1/2 is of course the trapezoidal rule. Also as soon as ✓ > 0 we no longer
have a simple explicit formula for U

n+1

as the value also appears as an argmuent in
the funtion f . Such schemes have the general label of being implicit.

21

For the ODE this gives a discrete implicit algorithm:

U
n+1

= U
n

+�t [(1� ✓)f(t
n

, U
n

) + ✓f(t
n+1

, U
n+1

)] n = 0, 1, 2, (3.21)

To repeat, the algorithm is implicit because the value U
n+1

appears inside the function
f on the RHS of this equation. As already noted, we distinguish the discrete system
(3.20) from the algorithm (3.21) that would be programmed in order to compute an
approximate solution. In this implicit theta-method, because U

n+1

appears on the
right-hand-side inside the function f , U

n+1

is determined by

U
n+1

� ✓�tf(t
n+1

, U
n+1

) = U
n

+ (1� ✓)�tf(t
n

, U
n

) n = 0, 1, 2, (3.22)

This nonlinear equation for U
n+1

would need to be solved by some iterative method
such as Newton iteration, fixed point iteration or interval halving iteration at each
time step.

The implicit scheme with ✓ = 1

2

is

U
n+1

= U
n

+
1

2
�t [f(t

n

, U
n

) + f(t
n+1

, U
n+1

)] , (3.23)

and is the same as using the trapezoidal rule for approximating the integral over
(t

n

, t
n+1

).

(ii) Theta-method: error

A generalisation of the error analysis used for the explicit Euler method to this implicit
form gives

|e
n

|  e
Lt

n

1�✓L�t |e
0

|+ �t

L

⇢

�

�

�

�

1

2
� ✓

�

�

�

�

M +
1

3
�tku000k1

�

h

e
Lt

n

1�✓L�t � 1
i

. (3.24)

The value ✓ = 1

2

is a special case where the second term is O(�t2).

Semi-implicit framework: modified & improved Euler

In order to avoid having to solve a nonlinear iteration in an implicit scheme every
time step there are semi-implicit methods that rely on using an estimate for the
unknown value U

n+1

to approximate f(t
n+1

, U
n+1

). A simple example is to first make
an estimate for U

n+1

with

U?

n+1

= U
n

+�tf(t
n

, U
n

) (3.25)

and then use this estimate, U?

n+1

, in the function f :

U
n+1

= U
n

+
1

2
�t

⇥

f(t
n

, U
n

) + f(t
n+1

, U?

n+1

)
⇤

. (3.26)

22

(See example on problem sheet.) This is called improved Euler. There is also a second
form commonly used

U?

n+1/2

= U
n

+
1

2
�tf(t

n

, U
n

) (3.27)

U
n+1

= U
n

+�tf(t
n+1/2

, U?

n+1/2

). (3.28)

This is sometimes called modified Euler.

General one step methods

We can look at one step methods in a general framework by observing that both the
improved Euler algorithm

U
n+1

= U
n

+
1

2
�t [f(t

n

, U
n

) + f(t
n+1

, U
n

+�tf(t
n

, U
n

))] . (3.29)

and the modified Euler algorithm

U
n+1

= U
n

+�tf(t
n

+
1

2
�t, U

n

+
1

2
�tf(t

n

, U
n

)), (3.30)

can be written in the form

U
n+1

= U
n

+�t�(t
n

, U
n

;�t), (3.31)

where � is continuous in its variables. A little algebra will show that provided �
satisfies a Lipschitz condition with constant L with respect to its second argument

|�(t, u;�t)� �(t, v;�t)|  L|u� v|, (3.32)

then our previous analysis still holds. We first note that the algorithmic form of
discretisation, (3.31), corresponds to the discrete scheme:

N(t
n

, U
n

, U
n+1

) =
U
n+1

� U
n

�t
� �(t

n

, U
n

;�t) = 0, (3.33)

so that the truncation error is

T
n

=
u
n+1

� u
n

�t
� �(t

n

, u
n

;�t). (3.34)

Let T = max
n

|T
n

|, then as before

|e
n

|  eLtn |e
0

|+ �

eLtn � 1
� T

L
. (3.35)

We also see from (3.34) that in the limit �t ! 0 and t
n

! t the right-hand-side
becomes

lim
�t!0

n!1
n�t!t

T
n

= u0 � �(t, u; 0) (3.36)

so that consistency (T
n

! 0 as �t ! 0) requires that

�(t, u; 0) = f(t, u). (3.37)

23

Theorem: Convergence. Under the conditions assumed for f and � we have

|e
n

| = |u
n

� U
n

| ! 0 as �t ! 0, n�t ! t (3.38)

and U
n

! u(t).

Proof. Write

T
n

=
u
n+1

� u
n

�t
� �(t

n

, u
n

;�t) (3.39)

=
u
n+1

� u
n

�t
� f(t

n

, u
n

) + [�(t
n

, u
n

; 0)� �(t
n

, u
n

;�t)] (3.40)

but

u
n+1

� u
n

�t
= u0(⇠) (3.41)

for some ⇠ 2 (t
n

, t
n+1

) and hence

u
n+1

� u
n

�t
� f(t

n

, u
n

) = u0(⇠)� u0(t
n

) (3.42)

and as u0 is uniformly continuous with respect to t, for any ✏ > 0, 9�t
1

, such that
�t < �t

1

=) |u0(⇠)� u0(t
n

)|  ✏.

As � is continuous with respect to its arguments, 9�t
2

such that

�t < �t
2

=) |�(t
n

, u
n

; 0)� �(t
n

, u
n

;�t)|  ✏ (3.43)

and hence

�t  min(�t
1

,�t
2

) =) |T
n

|  2✏ (3.44)

so that

�t  min(�t
1

,�t
2

) =) |e
n

|  (eLtn � 1)
2✏

L
(3.45)

provided |e
0

| = 0.

Write

|u(t)� U
n

|  |u(t)� u(t
n

)|+ |u(t
n

)� U
n

|
| {z }

e

n

(3.46)

so as t
n

! t and as u is continuous, 9N,�t
3

such that n > N,�t < �t
3

=)
|u(t)� u(t

n

)|  ✏ and hence for �t < min(�t
1

,�t
2

,�t
3

), n > N

|u(t)� U
n

|  ✏+ (eLT � 1)
2✏

L
(3.47)

where T = max{t}. Hence |u(t)� U
n

| ! 0 as �t ! 0, n�t ! t.

24

Lecture 4

Explicit Runge–Kutta Methods

We can view the one step function � as ‘sampling’ the derivative function f at a
number of points in the interval [t

n

, t
n+1

] although of course such ‘samples’ are always
taken at values of u which are only approximations to the correct values. However, if
we do this systematically, and use Taylor expansions we can derive families of methods
with higher order of accuracy.

Denote a Runge–Kutta R stage method where R = 2, 3, . . . as one where we ‘sample’
the derivative f(t, u) at R points in [t, u] space with t in the interval [t

n

, t
n+1

] with
the intention of making the truncation error is as high order in �t a possible. Here
we will focus on explicit methods where the function f(t, u) is always evaluated at
known values of both arguments. There are implicit Ruge-Kutta methods where the
value of the second argument is not known and some form of iterative solution is
necessary within each time step, see for example the more general scheme described
in Süli & Mayers.

Assume that the function f is ‘sampled’ at R points t
n

, t
n

+ a
2

�t, . . . , t
n

+ a
R

�t and
let

�(t
n

, U
n

;�t) = c
1

k
1

+ c
2

k
2

+ . . . c
R

k
R

=
R

X

r=1

c
r

k
r

, (4.1)

where

k
1

= f(t
n

, U
n

), (4.2)

k
2

= f(t
n

+ a
2

�t, U
n

+ b
2,1

�tk
1

), (4.3)

k
3

= f(t
n

+ a
3

�t, U
n

+ b
3,1

�tk
1

+ b
3,2

�tk
2

), (4.4)

with general term:

k
r

= f(t
n

+ a
r

�t, U
n

+�t
r�1

X

s=1

b
r,s

k
s

), r = 2, . . . , R. (4.5)

Let also

a
2

= b
2,1

, (4.6)

a
3

= b
3,1

+ b
3,2

, (4.7)

a
4

= b
4,1

+ b
4,2

+ b
4,3

, (4.8)

with general term:

a
r

=
r�1

X

s=1

b
r,s

r = 2, . . . , R. (4.9)

25

We want to determine the coe�cients b
r,s

for r = 2, . . . , R and s = 1, . . . , r � 1 and
the constants a

r

so that the scheme is consistent and has truncation error of order
O(�tR).

One compact way of displaying the various coe�cents is called a Butcher table, which
for the way we have formulated the system, is, for say R = 4:

0 1
a
2

b
2,1

a
3

b
3,1

b
3,2

a
4

b
4,1

b
4,2

b
4,3

| c
1

c
2

c
3

c
4

(i) Consistency

As we saw previously in (3.33), the truncation error here is

T
n

=
U
n+1

� U
n

�t
� �(t

n

, U
n

;�t) =
u
n+1

� u
n

�t
�

R

X

r=1

c
r

k̂
r

(4.10)

where the k̂
r

are evaluated with the correct function values of u. To simplify notation,
for r = 2, 3, . . ., denote �

r

=
P

r�1

s=1

b
r,s

k̂
s

and f
n

= f(t
n

, u
n

) so that

k̂
1

= f
n

, (4.11)

k̂
r

= f(t
n

+ a
r

�t, u
n

+ �
r

�t), r = 2, . . . , R. (4.12)

Expand in time to get

k̂
r

= f(t
n

, u
n

+ �
r

�t) + a
r

�t
@f

@t
(t

n

, u
n

+ �
r

�t) +
a2
r

�t2

2!

@2f

@t2
(t

n

, u
n

+ �
r

�t) +(4.13)

Now expand in u to get

k̂
r

= f
n

+ �
r

�t
@f

@u

�

�

�

�

n

+
�2

r

�t2

2!

@2f

@u2

�

�

�

�

n

+
�3

r

�t3

3!

@3f

@u3

�

�

�

�

n

+ . . . (4.14)

+a
r

�t
@f

@t

�

�

�

�

n

+ a
r

�
r

�t2
@2f

@t@u

�

�

�

�

n

+
a
r

�2

r

�t3

2!

@3f

@t@u2

�

�

�

�

n

+ . . . (4.15)

+
a2
r

�t2

2

@2f

@t2

�

�

�

�

n

+
a2
r

�
r

�t3

2

@3f

@t2@u

�

�

�

�

n

+ . . . , (4.16)

so that

k̂
r

= f
n

+�t

⇢

�
r

@f

@u
+ a

r

@f

@t

�

+�t2 {. . .}+�t3 {. . .} , r = 2, . . . , R. (4.17)

26

Next add up the k̂
r

and collect powers of �t. We need to use

u0
n

= f
n

= f(t, u)|
n

(4.18)

u00
n

=

✓

@f

@t
+

@f

@u

du

dt

◆

�

�

�

�

n

=

✓

@f

@t
+ f

@f

@u

◆

�

�

�

�

n

(4.19)

and so on, with algebra becoming increasingly intricate as R increases. One general
observation is that, as k̂

r

= f
n

+ O(�t), r = 2, 3, . . . , when substituted into the
truncation error

T
n

=
u
n+1

� u
n

�t
�

R

X

r=1

c
r

k
r

(4.20)

= u0
n

+O(�t)�

R

X

r=1

c
r

!

f
n

+O(�t), (4.21)

so that

T
n

= [1�

R

X

r=1

c
r

!

]u0
n

+O(�t), (4.22)

and we must always require that

R

X

r=1

c
r

= 1,

for consistency.

(ii) R = 2 two stage Runge Kutta

It is a class exercise to show that when R = 2, the truncation error T ⇠ O(�t2)
provided

a
2

= b
2,1

, (4.23)

c
1

+ c
2

= 1, (4.24)

b
2,1

c
2

=
1

2
. (4.25)

This creates a one parameter family of methods, all of which are formally second
order in �t. We shall see later that this does not mean that all are usable. If we
want the ‘sampling’ to be within the interval [t

n

, t
n+1

] we need to choose a
2

to be in
(0, 1]. To simplify notation, let a

2

= ↵ for 0 < ↵  1, then

a
2

= ↵, (4.26)

c
2

=
1

2↵
(4.27)

c
1

=
2↵� 1

2↵
. (4.28)

27

This gives a one parameter family of methods, for 0 < ↵  1:

k
1

= f(t
n

, U
n

) (4.29)

k
2

= f(t
n

+ ↵�t, U
n

+ ↵�tk
1

) (4.30)

U
n+1

= U
n

+
�t

2↵
{(2↵� 1)k

1

+ k
2

} . (4.31)

Special Cases When ↵ = 1 we have improved Euler:

k
1

= f(t
n

, U
n

) (4.32)

k
2

= f(t
n

+�t, U
n

+�tk
1

) (4.33)

U
n+1

= U
n

+
�t

2
(k

1

+ k
2

). (4.34)

The Butcher table for this scheme is

0 1
1 1

1

2

1

2

When ↵ = 1

2

we have modified Euler:

k
1

= f(t
n

, U
n

) (4.35)

k
2

= f

✓

t
n

+
1

2
�t, U

n

+
1

2
�tk

1

◆

(4.36)

U
n+1

= U
n

+�tk
2

. (4.37)

The Butcher table for this scheme is

0 1
1

2

1

2

0 1

(iii) R = 3 three stage Runge Kutta

U
n+1

= U
n

+�t(c
1

k
1

+ c
2

k
2

+ c
3

k
3

). (4.38)

The consistency condition is

c
1

+ c
2

+ c
3

= 1 (4.39)

28

and T
n

⇠ O(�t3) forces

c
2

b
2,1

+ c
3

(b
3,1

+ b
3,2

) =
1

2
(4.40)

c
2

b2
2,1

+ c
3

(b
3,1

+ b
3,2

)2 =
1

3
(4.41)

c
3

b
2,1

b
3,2

=
1

6
. (4.42)

The gives a two parameter family of solutions although the popularity of fourth order
and the simplicity of second order Runge-Kutta means that third order schemes are
not often used. One standard third order Runge Kutta scheme is:

U
n+1

= U
n

+
1

6
�t(k

1

+ 4k
2

+ k
3

) (4.43)

k
1

= f(t
n

, U
n

) (4.44)

k
2

= f(t
n

+
1

2
�t, U

n

+
1

2
�tk

1

) (4.45)

k
3

= f(t
n

+�t, U
n

��tk
1

+ 2�tk
2

) (4.46)

The Butcher table for this scheme is

0 1
1

2

1

2

1 �1 2
1

6

2

3

1

6

In the case where f is independent of u, f = f(t), this is of course just a variant of
Simpson’s Rule.

(iv) R = 4 fourth order Runge Kutta

The algebra becomes increasingly tedious as R increases, for R = 4 details can be
found in many text books and a widely used and powerful case of a fourth order
method is

U
n+1

= U
n

+
1

6
�t {k

1

+ 2k
2

+ 2k
3

+ k
4

} (4.47)

k
1

= f(t
n

, U
n

) (4.48)

k
2

= f(t
n

+
1

2
�t, U

n

+
1

2
�tk

1

) (4.49)

k
3

= f(t
n

+
1

2
�t, U

n

+
1

2
�tk

2

) (4.50)

k
4

= f(t
n

+�t, U
n

+�tk
3

). (4.51)

The Butcher table for this scheme is

29

0 1
1

2

1

2

1

2

0 1

2

1 0 0 1
| 1

6

1

3

1

3

1

6

Runge-Kutta methods are very straight forward to implement and as we shall see
next, very easy to adapt to the behaviour of the solution.

30

Lecture 5

(v) Adaptive step length for Runge Kutta

One step methods can easily be modified to vary the step length �t as the function u
varies in order to account for how rapidly or slowly the solution u is varying with time.
There are a number of commonly used adaptive schemes, the underlying principle is
to use knowledge of how the error depends on �t to help estimate whether the error
may be increasing beyond some pre-set tolerance (and so smaller time steps should
be used), or whether errors are su�ciently below a tolerance that the step size can
be increased.

As an example of one adaptive method, consider the Runge-Kutta fourth order
method given above, (4.47)-(4.51), denoted RK4. The background theory is that
when using RK4 there will be some constants K

1

, K
2

, K
3

, such that

Trunction error T
n

⇠ K
1

(�t)4u(v) (5.1)

Local error |e
n

| ⇠ K
2

�t|T
n

| (5.2)

so |e
n

| ⇠ K
3

(�t)5u(v). (5.3)

Suppose we are at t
n

and want to use a step �t
n

1. apply RK4 over step �t
n

to get value U
a

where

U
a

= u
n+1

+
(�t

n

)5u(v)

5!
+O(�t6

n

) (5.4)

2. apply RK4 twice over step �t
n

/2 to get value U
b

U
b

= u
n+1

+
2(�t

n

2

)5u(v)

5!
+O(�t6

n

) (5.5)

Then

U
a

� U
b

⇠ 15

16

u(v)

5!
(�t

n

)5. (5.6)

Suppose we had used an alternative step �t
n

for which this di↵erence would exactly
be a pre-set tolerance, that is

tolerance =
15

16

u(v)

5!
(�t

n

)5. (5.7)

Thus we can remove the unknown fifth-derivative of u by dividing these expressions
✓

�t
n

�t
n

◆

5

=
tolerance

U
a

� U
b

, (5.8)

31

or

�t
n

=

✓

tolerance

U
a

� U
b

◆

1/5

�t
n

, (5.9)

and this gives an algorithm for adapting the step length: if (5.9) gives a step length
which is less than �t

n

, then we repeat the step from t
n

with the reduced step length,
if (5.9) gives an increased step length, we use that step as �t

n+1

and the value
U
n+1

= U
b

at t
n+1

. Of course we have to do more work each step since we e↵ectively
apply RK4 three times.

Algorithm: User provides start time, end time, tolerance.

1. Set TOL=tolerance

2. Set t
0

as start time, �t
0

as first step length and n = 0

3. while t
n

 end time

(a) apply RK4 with step �t
n

to determine U
a

and twice with step �t
n

/2 to
calculate U

b

(b) if |U
a

� U
b

| >TOL, step fails, set

�t
n

=

✓

TOL

|U
a

� U
b

|
◆

1/5

�t
n

(5.10)

and go back to (a). (This reduces the step and repeats.)

else |U
a

� U
b

| TOL, set

�t
n+1

=

✓

TOL

|U
a

� U
b

|
◆

1/5

�t
n

(5.11)

U
n+1

= U
b

t
n+1

= t
n

+�t
n

n = n+ 1

(this increases the step length for next step).

end while

As we have been dealing with local error the lengthening of step can be misleading,
the global error has order (�t)4 so in (5.11) above we can use as an alternative

�t
n+1

=

✓

TOL

|U
a

� U
b

|
◆

1/4

�t
n

. (5.12)

32

This is more robust in practice. It is also good practice to set some minimum step
length and to alert a user if the predicted step length becomes too small, usually
stopping the integration from continuing. We will look at implementing this adaptive
algorithm in the routine rk4a.m.

The adaptation method above is only one of a number that are widely used. Another
strategy is to use the flexibility inherent in Runge-Kutta families of solutions to
produce increments with di↵erent order of magnitude but using the same time points
within the step from t

n

to t
n+1

and then to use the di↵erence between the estimates
to control step length.

In the matlab ode23 family, a second and a third order method is used. The Butcher
table is modified slightly so as to have two rows at the bottom showing coe�cents for
the two di↵erent order estimates of the increment. The Butcher table is:

0 1
1/2 1/2
3/4 0 3/4
1 2/9 3/9 4/9

2/9 3/9 4/9
11/72 30/72 40/72 �9/72

For this routine, a second order estimate for the update is

U
a

= U(n) +
�t

9
(2k

1

+ 3k
2

+ 4k
3

),

and this value is used to evaluate k
4

at time t
n

+�t, and then a third order estimate
for the update is

U
b

= U
n

+
�t

72
(11k

1

+ 30k
2

+ 40k
3

� 9k
4

).

With these two estimates, one might crudely say U
a

= u
n

+ O(�t2) and U
b

⇡ u
n

so
that the di↵erence U

a

�U
b

can be used as a measure of accuracy and by introducing
a tolerance, the step length reduced if the di↵erence is too large or increased if the
di↵erence is smaller than the tolerance. This is illustrated in the course matlab routine
rk23a.m and is the basis of the ode23 family of routines in matlab.

The same idea can be applied using a fourth and fifth order comparison, this is used
for ode45 in matlab. It is based on a method by Dormand and Prince. In this case
there are seven calculations to estimate the tangent, f , and the Butcher table is:

33

0 1

1/5 1/5

3/10 3/40 9/40

4/5 44/45 �56/15 32/9

8/9 19372/6561 �25360/2187 64448/6561 �212/729

1 9017/3168 �355/33 46732/5247 49/176 �5103/18656

1 35/384 0 500/1113 125/192 �2187/6784 11/84

c

r

35/384 0 500/1113 125/192 �2187/6784 11/84 0

d

r

5179/57600 0 7571/16695 393/640 �92097/339200 187/2100 1/40

As with the 2-3 method, we calculate a fourth order estimate,

U
a

= U
n

+�t(c
1

⇤ k
1

+ c
2

⇤ k
2

+ c
3

⇤ k
3

+ c
4

⇤ k
4

+ c
5

⇤ k
5

+ c
6

⇤ k
6

),

and a fifth order estimate

U
b

= U
n

+�t(d
1

⇤ k
1

+ d
2

⇤ k
2

+ d
3

⇤ k
3

+ d
4

⇤ k
4

+ d
5

⇤ k
5

+ d
6

⇤ k
6

+ d
7

⇤ k
7

),

and use the di↵erence U
a

�U
b

as an indicator of the error in the step, again repeating
the step with a decreased step size if this di↵erence is greater than some pre-set
tolerance, and increasing the next time step length if the di↵erence is less that the
tolerance. One way of doing this is shown in the course routine rk45a.m but it is also
the basis for ode45 in matlab.

Semi-implicit methods: Predictor-Corrector

All implicit methods will in principle require solution of a non-linear equation (or
system) at each time step. A version of Newton iteration can be used so that within
the time stepping sequence, there is another iteration that provides convergence of
the Newton iteration. A drawback with Newton iteration is that the derivative (or for
a system, the Jacobian) of the function f is required, this may be known analytically
or it may be approximated numerically but this can be a significant problem. Alter-
native methods for implicit schemes, which are a variant on fixed point methods, and
which do not require evaluation of a derviative or Jacobian matrix are often labelled
predictor-corrector or semi-implicit schemes These usually combine an explicit ‘pre-
dictor’ step with a semi-implicit iteration even if the latter is only one step and not
taken to convergence.

As an example of this idea, consider a fully implicit Euler method

U
n+1

= U
n

+�tf(t
n+1

, U
n+1

), (5.13)

where U
n

is the computed value at t
n

. Then an explicit predictor for the value U
n+1

is

U (0)

n+1

= U
n

+�tf(t
n

, U
n

), (5.14)

34

and this allows a corrector step which uses this value in the implicit formula,

U
n+1

= U
n

+�tf(t
n+1

, U (0)

n+1

). (5.15)

Alternately, the predictor step can be used to give an initial value for a fixed point
iteration where iterates are successively calculated by

U (k+1)

n+1

= U
n

+�tf(t
n+1

, U (k)

n+1

) k = 0, 1, 2, . . . , (5.16)

until |U (k+1)

n+1

� U (k)

n+1

| is less than a predefined tolerance.

Another fixed point iteration might be based on Improved Euler (or the trapezoidal
rule), so that

U (k+1)

n+1

= U
n

+
1

2
�t

h

f(t
n

, U
n

) + f(t
n+1

, U (k)

n+1

)
i

k = 0, 1, 2, . . . , (5.17)

again, until |U (k+1)

n+1

� U (k)

n+1

| is less than a predefined tolerance.

Example: Van der Pol oscillator

A Van der Pol oscillator is an example of a second order system, essentially an oscil-
lator with non-linear damping, which with no forcing is described by

u00 + ↵(u2 � 1)u0 + u = 0 (5.18)

u(0) = u
0

, (5.19)

u0(0) = v
0

, (5.20)

or as a second order system

u0 = v, u(0) = u
0

, (5.21)

v0 = �u� ↵(u2 � 1)v, v(0) = v
0

. (5.22)

This is a modification of the simple spring and mass we considered at the start of
this lecture, reducing to the same equations when ↵ = 0 and like that system, has a
limit cycle behaviour in (u, v) space. In the matlab code vanderpol.m we use three
algorithms, explicit Euler, improved Euler and implicit Euler using a predictor step
to give an initial value for a fixed point iteration. In each case we use the initial
conditions u

0

= 2, v
0

= 0.

If we set ↵ = 0, then a computed solution is illustrated in Figure 4 where as should be
expected now, the explicit scheme results in a growing solution, the implicit scheme
decays and while Improved Euler appears to conserve the solution correctly, it also
has a discrete solution where u2 + v2 is increasing very slowly.

Setting ↵ > 0 brings in the non-linear term, example calculations for ↵ = 2 with
the same time step, �t = 0.01 are shown in Figure 5 where both first order explicit

35

0 10 20 30 40
−3

−2

−1

0

1

2

3

t

U

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

U
V

(a) (b)

Figure 4: Numerical solution of Van der Pol system when ↵ = 0, �t = 0.01. (a) Plot
of U versus t: (- - -) Explicit Euler, (—) Improved Euler, (- . -) Implicit Euler. (b)
Plot of V versus U for Improved Euler

0 10 20 30 40
−3

−2

−1

0

1

2

3

t

U

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

U

V

(a) (b)

Figure 5: Numerical solution of Van der Pol system when ↵ = 2, �t = 0.01. (a) Plot
of U versus t: (- - -) Explicit Euler, (—) Improved Euler, (- . -) Implicit Euler. (b)
Plot of V versus U for Improved Euler

and implicit Euler are poor, one showing a cycle growing in amplitude and with an
increasing period (explicit Euler) and one decreasing in amplitude and with decreasing

36

0 10 20 30 40
−3

−2

−1

0

1

2

3

t

U

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

U

V

(a) (b)

Figure 6: Numerical solution of Van der Pol system when ↵ = 0, �t = 0.001. (a)
Plot of U versus t: (- - -) Explicit Euler, (—) Improved Euler, (- . -) Implicit Euler.
(b) Plot of V versus U for Improved Euler

period (implicit Euler). In part (b) of the figure the phase plot of Improved Euler
shows that periodicity is being preserved by the method.

Of course, one can improve the performance of a first order scheme by decreasing the
time step, and in Figure 6, the solution appears much better.

However, if this integration is carried on to longer itmes, the solution for the two first
order methods remains problematic, see Figure 7

It is also worth observing that for the linear system with the two first order dis-
cretisations, both theory and the computations show that growth (explicit) or decay
(implicit) are exponential, yet in the non-linear system, while the oscillation period
shows very slow change, the amplitude does not appear to grow exponentially.

37

360 370 380 390 400
−3

−2

−1

0

1

2

3

t

U

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

U

V

(a) (b)

Figure 7: Numerical solution of Van der Pol system when ↵ = 0, �t = 0.001 at
longer time. (a) Plot of U versus t: (- - -) Explicit Euler, (—) Improved Euler, (- . -)
Implicit Euler. (b) Plot of V versus U for Improved Euler

38

Lecture 6

Symplectic methods

The numerical solution of evolutionary dynamical systems is a major application
area for the material we are studying. We can only touch briefly on this large field
of research and understanding. Consider a simple mass and spring system, scaled so
that the displacement, x, and the velocity, u, are given by

x0 = u, u0 = �x. (6.1)

As should be well known to you, this can also be set in a Hamiltonian framework,
where the Hamiltonian, representing here the sum of potential and kinetic energy,

H =
1

2
(x2 + u2),

is conserved. There is a geometric view of the solutions, namely that for this case,
solutions where the Hamiltonian, H, is constant, are given by circles in (x, u) space
and in terms of mapping in the (x, u) space, trajectories are area preserving. So an
important question is whether a numerical method preserves these properties.

For this example, let the system be defined by the vector uT = (x, u), then the energy
of the system can be characterised by H = 1

2

uTu. A sensible question is to ask how
this quantity evolves using the numerical scheme. If we look at say, explicit Euler,
where in matrix form,

✓

X
n+1

U
n+1

◆

=

✓

1 �t
��t 1

◆✓

X
n

U
n

◆

,

then

�

X
n+1

U
n+1

�

✓

X
n+1

U
n+1

◆

=
�

X
n

U
n

�

✓

1 ��t
�t 1

◆✓

1 �t
��t 1

◆✓

X
n

U
n

◆

or
H

n+1

= (1 +�t2)H
n

,

so that the energy will grow in time for all practical time steps.

Consider the hybrid Euler scheme

U
n+1

= U
n

��tX
n

, (6.2)

X
n+1

= X
n

+�tU
n+1

. (6.3)

In matrix terms
✓

1 ��t
0 1

◆✓

X
n+1

U
n+1

◆

=

✓

1 0
��t 1

◆✓

X
n

U
n

◆

.

37

This scheme also does not leave the original Hamiltonian, H(x, u), unaltered, but it
does preserve a modified Hamiltonian

Ĥ(x, u) =
1

2
(x2 + u2)� 1

2
�txu = H(x, u)� 1

2
�txu.

This is called a symplectic scheme and it is a general property of symplectic schemes
that while not preserving the original Hamiltonian, they do exactly preserve an ap-
proximate Hamiltonian, which, in the limit of �t ! 0, restores the original Hamilto-
nian.

A commonly referred to symplectic scheme that is second order is the Stömer-Verlet
scheme. Suppose the system to be integrated is

x0 = u (6.4)

u0 = f(x), (6.5)

for example, derived from a dynamical system x00 = f(x). In the Stömer-Verlet
scheme a half step is taken to estimate the velocity at the mid point of the interval,
a full step to estimate the displacement at the new time step and then a second half
step based on the new displacement updates the velocity, so that

Û
n+1/2

= U
n

+
1

2
�tf(X

n

), (6.6)

X
n+1

= X
n

+�tÛ
n+1/2

, (6.7)

U
n+1

= Û
n+1/2

+
1

2
�tf(X

n+1

). (6.8)

If the intermediate value is eliminated, the scheme is

X
n+1

= X
n

+�tU
n

+
1

2
�t2f(X

n

), (6.9)

U
n+1

= U
n

+
1

2
�t[f(X

n

) + f(X
n+1

)]. (6.10)

A further property we can investigate is how area is or is not preserved in dynamical
systems. If we start with the example:

x0 = y, x(0) = x
0

, (6.11)

y0 = �x, y(0) = y
0

, (6.12)

with Hamiltonian H = (x2 + y2)/2 = (x2

0

+ y2
0

)/2 being constant since

dH

dt
= xx0 + yy0 = 0.

Now take a small area in the (x, y) plane, a rectangle with three corners given by
(x, y), (x+ dx, y), (x, y + dy), and area

38

dA =

�

�

�

�

x y 1
x+ dx y 1

x y + dy 1

�

�

�

�

=

�

�

�

�

x y 1
dx 0 0
0 dy 0

�

�

�

�

= dx ⇤ dy,

as expected.

Now consider a small parallelagram with three corners (x
1

, y
1

), (x
2

, y
2

) and (x
3

, y
3

),
and area

A =

�

�

�

�

x
1

y
1

1
x
2

y
2

1
x
3

y
3

1

�

�

�

�

so that

dA

dt
=

�

�

�

�

x0
1

y0
1

0
x
2

y
2

1
x
3

y
3

1

�

�

�

�

+

�

�

�

�

x
1

y
1

1
x0
2

y0
2

0
x
3

y
3

1

�

�

�

�

+

�

�

�

�

x
1

y
1

1
x
2

y
2

1
x0
3

y0
3

0

�

�

�

�

.

Hence

dA

dt
=

�

�

�

�

y
1

�x
1

0
x
2

y
2

1
x
3

y
3

1

�

�

�

�

+

�

�

�

�

x
1

y
1

1
y
2

�x
2

0
x
3

y
3

1

�

�

�

�

+

�

�

�

�

x
1

y
1

1
x
2

y
2

1
y
3

�x
3

0

�

�

�

�

,

and evaluating the determinants and summing,

dA

dt
= 0,

and the mapping is area preserving.

Now look at a numerical method, here we consider Euler’s method, where in one time
step of size �t, if we take three points (X

1

, Y
1

), (X
2

, Y
2

), (X
3

, Y
3

),

X
r

! X
r

+�tY
r

, Y
r

! Y
r

��tX
r

, r = 1, 2, 3,

with area

A =

�

�

�

�

X
1

Y
1

1
X

2

Y
2

1
X

3

Y
3

1

�

�

�

�

.

Algebra can be simplified by choosing points (X
1

, Y
1

), (X
1

+ h, Y
1

), (X
1

, Y
1

+ k) and
denote the initial element of area as A

0

= hk. In one timestep the vertices change
accordiny to Euler’s method to give area

A
1

= A(�t) =

�

�

�

�

X
1

+�tY
1

Y
1

��tX
1

1
X

1

+ h+�tY
1

Y
1

��t(X
1

+ h) 1
X

1

+�t(Y
1

+ k) Y
1

+ k ��tX
1

1

�

�

�

�

39

or

A
1

=

�

�

�

�

X
1

+�tY
1

Y
1

��tX
1

1
h ��th 0

�tk k 0

�

�

�

�

,

and thus
A

1

= (1 +�t2)hk,

so that explicit Euler’s method will not preserve area and elements of area will increase
exponentially.

Showing that a simple simplectic method does preserve area is in problem sheet 2,
question 4.

Further reading: see Simulating Hamiltonian Dynamics by Benedikt Leimkuhler &
Sebastian Reich

40

Lecture 7

Linear Multistep Methods

(i) Formulation

The integral form (3.16) where we used the interval [t
n

, t
n+1

] as the interval of in-
tegration is not the only form possible, for example, instead of integrating over this
interval, the integral could be over a larger interval, such as [t

n�1

, t
n+1

] with starting
value u

n�1

:

u
n+1

= u
n�1

+

Z

t

n+1

t

n�1

f(s, u(s)) ds, (7.1)

and we could use a trapezoidal rule

u
n+1

⇡ u
n�1

+�t [f(t
n�1

, u
n�1

) + f(t
n+1

, u
n+1

)] , (7.2)

leading to an implicit method:

U
n+1

= U
n�1

+�t [f(t
n�1

, U
n�1

) + f(t
n+1

, U
n+1

)] . (7.3)

Alternately, Simpson’s rule applied to the integral in (7.1) gives,

u
n+1

⇡ u
n�1

+
�t

3
[f(t

n�1

, u
n�1

) + 4f(t
n

, u
n

) + f(t
n+1

, u
n+1

)] (7.4)

giving an implicit method:

U
n+1

= U
n�1

+
�t

3
[f(t

n�1

, U
n�1

) + 4f(t
n

, U
n

) + f(t
n+1

, U
n+1

)] . (7.5)

Both these algorithms relate the approximation U
n+1

at t
n+1

to values at more than
one previous time step. This idea leads to a range of methods which are classed as
‘multi-step’. We will later see that there are good reasons other than accuracy why
some such methods may not be useful and particularly for multi-step methods, we
will become concerned with numerical stability in addition to accuracy.

Definition. Denote f
n

= f(t
n

, u
n

) and F
n

= f(t
n

, U
n

), then a linear k-step method
can be written

k

X

j=0

↵
j

U
n+j

= �t
k

X

j=0

�
j

F
n+j

n = 0, 1, 2, . . . (7.6)

where the coe�cients ↵
0

, . . . ,↵
k

and �
0

, . . . , �
k

are specified real constants with ↵
k

6= 0
(that is the constant values are not dependent on the specific function f being inte-
grated). If �

k

= 0 the method is explicit, if �
k

6= 0 the method is implicit. For the
scheme to be k step we also need one of ↵

0

and �
0

to be non-zero.

41

One method to systematically develop multi-step algorithms uses the following ap-
proach. Suppose that in addition to being given U

0

= u
0

, we have by some method
calculated U

1

. This means we know values F
0

= f(t
0

, U
0

) and F
1

= f(t
1

, U
1

). We can
then fit a linear polynomial to the values (t

0

, F
0

) and (t
1

, F
1

) as shown in Figure 8.

t

*

t
1

t
0

t
2

F
1

f(t, u(t))

F
0

*

Figure 8: Fitting a linear polynomial to the values (t
0

, F
0

) and (t
1

, F
1

).

The linear polynomial

F (t) = F
0

+
t� t

0

t
1

� t
0

(F
1

� F
0

), (7.7)

can be used to estimate integrals of the function f(t, u(t)). The algebra is considerably
simplified if the variable t is rescaled by the step length (which we are assuming is
constant), let ⌘ = (t� t

0

)/�t so that

F (⌘) = (1� ⌘)F
0

+ ⌘F
1

. (7.8)

Now we know that

u
2

= u
0

+

Z

t

2

t

0

f(s, u(s)) ds (7.9)

so we can approximate

U
2

= U
0

+

Z

t

2

t

0

F (s) ds (7.10)

= U
0

+�t

Z

2

0

F (⌘) d⌘ (7.11)

= U
0

+�t

Z

2

0

((1� ⌘)F
0

+ ⌘F
1

) d⌘. (7.12)

This gives

U
2

= U
0

+ 2�tF
1

. (7.13)

42

While we have not specified how the value U
1

might be determined, if we used

U
1

= U
0

+�tf(t
0

, U
0

),

then the estimate U
2

will be the same as for modified Euler using a step length 2�t
but subsequent interates are not the same as for modified Euler.

There are other integral variants we could use together with the linear approximation
for f(s, u(s)), for example, we could write

u
2

= u
1

+

Z

t

2

t

1

f(s, u(s)) ds (7.14)

giving a discrete scheme

U
2

= U
1

+�t

Z

2

1

F (⌘) d⌘ (7.15)

= U
1

+�t

Z

2

1

((1� ⌘)F
0

+ ⌘F
1

) d⌘, (7.16)

which is

U
2

= U
1

+�t

✓

3

2
F
1

� 1

2
F
0

◆

. (7.17)

The process of fitting a curve to previous data can be extended using more terms, for
example, if we use estimates for U

0

, U
1

and U
2

we can fit a quadratic to F ; in terms
of ⌘ = (t� t

0

)/�t,

F (⌘) = F
0

+ ⌘(F
1

� F
0

) +
1

2
⌘(⌘ � 1)(F

2

� 2F
1

+ F
0

) (7.18)

=

✓

1� 3

2
⌘ +

1

2
⌘2
◆

F
0

+ (2⌘ � ⌘2)F
1

+
1

2
⌘(⌘ � 1)F

2

, (7.19)

and

U
3

= U
2

+�t

Z

3

2

F (⌘) d⌘, (7.20)

gives

U
3

= U
2

+
�t

12
(23F

2

� 16F
1

+ 5F
0

). (7.21)

For all linear multi-step methods, when you determine coe�cients �
r

, we will see that
there are consistency checks that can be made: if the function f is f = 1 then the
solution should be U

n

= U
0

+ n�t, in this case the left-hand-side of (7.21) would be
equal to 3�t, so putting F

0

= F
1

= F
2

= 1 and U
2

= 2�t, then the sum of right-
hand-side terms should also be equal to 3�t. We will look at consistency conditions
in more detail later.

These are examples of what are generally called Adams methods. Two important
fourth order cases are

43

1. Adams-Bashforth (explicit)

U
n+4

= U
n+3

+
1

24
�t [55F

n+3

� 59F
n+2

+ 37F
n+1

� 9F
n

] . (7.22)

2. Adams-Moulton (implicit)

U
n+4

= U
n+3

+
1

24
�t [9F

n+4

+ 19F
n+3

� 5F
n+2

+ F
n+1

] . (7.23)

(ii) Zero Stability

Suppose initial data U
0

, . . . U
k�1

is used successively to generate U
k

, . . . U
n

and di↵er-
ent initial data Û

0

, . . . Û
k�1

generates Û
k

, . . . Û
n

using the same method for discretis-
ing u0 = f(t, u). Then the method is zero-stable provided for all functions f , there
9K > 0 such that

|U
n

� Û
n

|  Kmax
n

|U
0

� Û
0

|, . . . , |U
k�1

� Û
k�1

|
o

(7.24)

as �t ! 0.

Example: Consider the multistep method

2U
n+1

+ 3U
n

� 6U
n�1

+ U
n�2

= 6�tf(t
n

, U
n

). (7.25)

This is third order accurate, which can be seen by setting out Taylor expansion in a
tableau:

Terms in
Taylor expansion 1 �tu0 �t2u00 �t3u000 �t4u◆v

2U
n+1

2 2 1 1

3

1

12

3U
n

3
�6U

n�1

�6 6 �3 1 �1

4

U
n�2

1 �2 2 �4

3

2

3

0 6 0 0 1

2

so we see that T
n

= 1

12

�t3u◆v(⇠
n

).

However, take data U
0

= 1 + ✏, U
1

= 1 � ✏, U
2

= 1 + ✏, and f ⌘ 0. Then using the
formula

U
n+1

=
1

2
{�3U

n

+ 6U
n�1

� U
n�2

} (7.26)

gives

U
3

= 1� 5✏ (7.27)

U
4

= 1 + 11✏ (7.28)

U
5

= 1� 32✏ . . . (7.29)

44

whereas data U
0

= 1, U
1

= 1, U
2

= 1 gives U
n

= 1 for n = 3, 4, This is an
example of an instability in the discrete approximation which becomes important as
soon as we use finite precision computation.

To understand what has happened and how we can analyse multistep methods we go
back to the discrete method with f = 0

2U
n+1

+ 3U
n

� 6U
n�1

+ U
n�2

= 0. (7.30)

This is a di↵erence equation, we try solutions U
n

⇠ k�n to get

k(2�3 + 3�2 � 6�+ 1) = 0. (7.31)

We assume k 6= 0 so that � should be a root of

2�3 + 3�2 � 6�+ 1 = 0. (7.32)

Hence

(�� 1)(2�2 + 5�� 1) = 0 (7.33)

and

� = 1, � = �1

4
(5±

p
33) = �2.69, 0.19. (7.34)

This means that the general solution of the di↵erence equation is

U
n

= k
1

1n + k
2

(0.19)n + k
3

(�2.69)n, (7.35)

where k
1

, k
2

, k
3

will come from the initial data. When k
3

6= 0, the values computed
for U

n

will grow exponentially (2.69n = en log 2.69 = e0.99n). Finite precision arithmetic
means there will always be a component in the initial data that has k

3

6= 0, even
if only at the level of machine precison. For most double precision arithmetic using
64bit arithmetic, machine precision is around 10�15 so in that case the growing last
term will be O(1) after (2.69)n ⇥ 10�15 ⇠ 1, around only 16 iterations.

45

Lecture 8

Definition. For a linear multistep method

k

X

j=0

↵
j

U
n+j

= �t
k

X

j=0

�
j

F
n+j

n = 0, 1, 2, . . . (8.1)

define two characteristic polynomials

⇢(z) =
k

X

j=0

↵
j

zj First characteristic polynomial (8.2)

�(z) =
k

X

j=0

�
j

zj Second characteristic polynomial. (8.3)

Theorem. A linear multistep method is zero stable if and only if the roots of ⇢ lie in
the closed unit disc with any on the unit circle being simple.

The condition on the roots of ⇢ in this theorem is called the root condition .

Proof. The necessary part follows the same line that we saw in the example above, if
a root has magnitude greater than one then there will be an exponentially growing
part of any solution. The need for roots on circle to be simple is best understood by
recalling that for a linear ODE with constant coe�cients, for example u00 � 2u0 + u =
0 which has a double root in characteristic equation, the solutions are et and tet,
similarly for a di↵erence equation U

n+1

� 2U
n

+ U
n�1

= 0 in addition to U
n

= 1
being a solution, U

n

= n is also a solution which will grow errors in the original data
(multiplicity r implies 1, n, n2, . . . , nr�1 as solutions).

Su�ciency is a long and complicated proof and so is regarded as outside of the course,
nevertheless we can look briefly at the essence of this part of the proof of the theorem.

Let U(n) = [U
n

, . . . , U
n+k�1

]T .

For f = 0, define matrix A by U(n+1) = AU(n). A is the k ⇥ k matrix

A =

0

B

B

B

B

B

@

0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 1

�↵

0

↵

k

�↵

1

↵

k

. �↵

k�1

↵

k

1

C

C

C

C

C

A

, (8.4)

so that in this particular case where f = 0, U(n) = AnU(0). Note also that because
of the unit values on the first k � 1 rows, we must have kAk1 � 1.

46

Lemma 1. Root condition and f = 0) kU(n)k1  KkU(0)k1 for some K so that

kAnk1  K 8n. (8.5)

Note here that because of kAk1 � 1, we must have K � 1. This is critical in deriving
the next lemma.

Lemma 2. For A as defined and k ⇥ k matrices D
m

, m = 0, . . . , n � 1 all with
kD

m

k1  K
1

k
n�1

Y

m=0

(A+�tD
m

)k1  KeKK

1

n�t. (8.6)

This lemma is shown by expanding the product, using triangle inequalites and then
inequalities such as kAn�mD

m

Am�1k1  kAn�mk1kD
m

k1kAm�1k1  KK
1

K and
K � 1 to show that

k
n�1

Y

m=0

(A+�tD
m

)k1  K
n�1

Y

m=0

(1 +�tKK
1

) = K(1 +�tKK
1

)n, (8.7)

from which the result follows by the comparison 1 + x  exp x.

Having established the inequality in the second lemma, the outline proof follows as:

Let U(n) and V(n) be two sequences from di↵erent starting values, use the Lipschitz
condition on f to write

U(n+1) �V(n+1) = (A+�tD
n

)
�

U(n) �V(n)

�

(8.8)

=

"

n

Y

m=0

(A+�tD
m

)

#

�

U(0) �V(0)

�

. (8.9)

So using Lemma 2 and 1

kU(n+1) �V(n+1)k1  KeKK

1

�t(n+1)kU(0) �V(0)k1 (8.10)

and because n�t is bounded by the interval of integration, the constant in this equa-
tion must also be bounded and thus the root condition implies zero stability.

Examples

1. Explicit Euler and implicit Euler are zero stable as ⇢(z) = z � 1.

47

2. Adams Bashforth written in the form

U
n+4

� U
n+3

=
�t

24
[55F

n+3

� 59F
n+2

+ 37F
n+1

� 9F
n

] (8.11)

has ⇢(z) = z3(z�1) so satisfies the root condition and the method is zero stable.

3. Third order example

2U
n+3

+ 3U
n+2

� 6U
n+1

+ U
n

= 6�tF
n+2

(8.12)

has

⇢(z) = 2z3 + 3z2 � 6z + 1 (8.13)

= (z � 1)(z + 2.69)(z � 0.19) (8.14)

which has a root outside the unit disc and so the method is not zero stable.

To reiterate, we refer to conditions on ⇢ that roots lie in closed unit disc and with
simple roots on unit circle as the root condition.

(iii) Consistency

For a linear k step method we must rearrange the scheme so it is an analogue for the
continuous system u0 = f ; doing this defines the truncation error as

T
n

=

P

k

j=0

↵
j

u
n+j

��t
P

k

j=0

�
j

f
n+j

�t
P

k

j=0

�
j

(8.15)

where we need to have

k

X

j=0

�
j

= �(1) 6= 0. (8.16)

A method will be consistent provided T
n

! 0 as �t ! 0. To show this, expand the
right-hand-side of (8.15) as �t ! 0 using Taylor series.

T
n

=

P

k

j=0

↵
j

u
n+j

��t
P

k

j=0

�
j

u0
n+j

�t
P

k

j=0

�
j

(8.17)

=
1

�t�(1)

⇥

C
0

u
n

+ C
1

�tu0
n

+ C
2

�t2u00
n

+ . . .+ C
p

�tpu(p)

n

+ . . .
⇤

. (8.18)

For the scheme to be consistent we need T
n

! 0 as �t ! 0, so that we will require

C
0

= 0 (8.19)

C
1

= 0. (8.20)

48

To determine the coe�cients C
p

in (8.18) we have to apply Taylor expansions to the
various terms:

u
n+j

= u
n

+ j�tu0
n

+
(j�t)2

2!
u00
n

+ . . . +
(j�t)p

p!
u(p)

n

+ . . . (8.21)

u0
n+j

= u0
n

+
j�t

1!
u00
n

+
(j�t)2

2!
u000
n

+ . . .+
(j�t)p�1

(p� 1)!
u(p)

n

+ . . .(8.22)

Hence

C
0

=
k

X

j=0

↵
j

= 0 (8.23)

C
1

=
k

X

j=0

j↵
j

�
k

X

j=0

�
j

= ⇢0(1)� �(1) = 0, (8.24)

and consistency requires

⇢(1) = 0, ⇢0(1) = �(1) 6= 0 (8.25)

(and as ⇢0(1) 6= 0 the root at z = 1 must be simple).

The general form for p � 2 is

C
p

=
k

X

j=0

jp

p!
↵
j

�
k

X

j=0

jp�1

(p� 1)!
�
j

(8.26)

=
k

X

j=1

jp

p!
↵
j

�
k

X

j=1

jp�1

(p� 1)!
�
j

. (8.27)

We suppose C
0

= C
1

= . . . = C
p

= 0, with C
p+1

6= 0 so that

T
n

=
C

p+1

�(1)
�tpu(p+1)

n

+O(�tp+1) (8.28)

and the method is order p. The value C
p+1

/�(1) is called the error constant of the
method.

Example: wlog set ↵
2

= 1 and consider the method

U
n+2

+ ↵
1

U
n+1

+ ↵
0

U
n

= �t(�
2

F
n+2

+ �
1

F
n+1

+ �
0

F
n

) (8.29)

with first and second characteristic polynomials

⇢(z) = z2 + ↵
1

z + ↵
0

(8.30)

�(z) = �
2

z2 + �
1

z + �
0

. (8.31)

There are five unknowns ↵
1

, ↵
0

, �
2

, �
1

and �
0

so if we set C
0

= C
1

= C
2

= C
3

= 0
there will be a one parameter family of third order methods. The equations are

49

• p = 0, 1 + ↵
1

+ ↵
0

= 0

• p = 1, 2 + ↵
1

= �
2

+ �
1

+ �
0

• p = 2,
22

2!
+

12

2!
↵
1

= 2�
2

+ �
1

• p = 3,
23

3!
+

13

3!
↵
1

=
22

2!
�
2

+
12

2!
�
1

with solution

↵
1

= �(1 + ↵
0

) �
2

=
5 + ↵

0

12
�
1

=
2� 2↵

0

3
�
2

= �1 + 5↵
0

12
. (8.32)

The first characteristic polynomial is z2 � (1 + ↵
0

)z + ↵
0

= 0 so

⇢(z) = (z � ↵
0

)(z � 1) = 0 (8.33)

and so scheme is zero stable provided �1  ↵
0

< 1. If we look at the term where
p = 4 then

C
4

= �1 + ↵
0

24
6= 0 if ↵

0

6= �1. (8.34)

In the specific case of ↵
0

= �1 this will give a fourth order scheme:

U
n+2

� U
n

=
�t

3
(F

n+2

+ 4F
n+1

+ F
n

) (8.35)

which is Simpson’s rule.

50

Lecture 8

Definition. For a linear multistep method

k

X

j=0

↵
j

U
n+j

= �t
k

X

j=0

�
j

F
n+j

n = 0, 1, 2, . . . (8.1)

define two characteristic polynomials

⇢(z) =
k

X

j=0

↵
j

zj First characteristic polynomial (8.2)

�(z) =
k

X

j=0

�
j

zj Second characteristic polynomial. (8.3)

Theorem. A linear multistep method is zero stable if and only if the roots of ⇢ lie in
the closed unit disc with any on the unit circle being simple.

The condition on the roots of ⇢ in this theorem is called the root condition .

Proof. The necessary part follows the same line that we saw in the example above, if
a root has magnitude greater than one then there will be an exponentially growing
part of any solution. The need for roots on circle to be simple is best understood by
recalling that for a linear ODE with constant coe�cients, for example u00 � 2u0 + u =
0 which has a double root in characteristic equation, the solutions are et and tet,
similarly for a di↵erence equation U

n+1

� 2U
n

+ U
n�1

= 0 in addition to U
n

= 1
being a solution, U

n

= n is also a solution which will grow errors in the original data
(multiplicity r implies 1, n, n2, . . . , nr�1 as solutions).

Su�ciency is a long and complicated proof and so is regarded as outside of the course,
nevertheless we can look briefly at the essence of this part of the proof of the theorem.

Let U(n) = [U
n

, . . . , U
n+k�1

]T .

For f = 0, define matrix A by U(n+1) = AU(n). A is the k ⇥ k matrix

A =

0

B

B

B

B

B

@

0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 1

�↵

0

↵

k

�↵

1

↵

k

. �↵

k�1

↵

k

1

C

C

C

C

C

A

, (8.4)

so that in this particular case where f = 0, U(n) = AnU(0). Note also that because
of the unit values on the first k � 1 rows, we must have kAk1 � 1.

46

Lemma 1. Root condition and f = 0) kU(n)k1  KkU(0)k1 for some K so that

kAnk1  K 8n. (8.5)

Note here that because of kAk1 � 1, we must have K � 1. This is critical in deriving
the next lemma.

Lemma 2. For A as defined and k ⇥ k matrices D
m

, m = 0, . . . , n � 1 all with
kD

m

k1  K
1

k
n�1

Y

m=0

(A+�tD
m

)k1  KeKK

1

n�t. (8.6)

This lemma is shown by expanding the product, using triangle inequalites and then
inequalities such as kAn�mD

m

Am�1k1  kAn�mk1kD
m

k1kAm�1k1  KK
1

K and
K � 1 to show that

k
n�1

Y

m=0

(A+�tD
m

)k1  K
n�1

Y

m=0

(1 +�tKK
1

) = K(1 +�tKK
1

)n, (8.7)

from which the result follows by the comparison 1 + x  exp x.

Having established the inequality in the second lemma, the outline proof follows as:

Let U(n) and V(n) be two sequences from di↵erent starting values, use the Lipschitz
condition on f to write

U(n+1) �V(n+1) = (A+�tD
n

)
�

U(n) �V(n)

�

(8.8)

=

"

n

Y

m=0

(A+�tD
m

)

#

�

U(0) �V(0)

�

. (8.9)

So using Lemma 2 and 1

kU(n+1) �V(n+1)k1  KeKK

1

�t(n+1)kU(0) �V(0)k1 (8.10)

and because n�t is bounded by the interval of integration, the constant in this equa-
tion must also be bounded and thus the root condition implies zero stability.

Examples

1. Explicit Euler and implicit Euler are zero stable as ⇢(z) = z � 1.

47

2. Adams Bashforth written in the form

U
n+4

� U
n+3

=
�t

24
[55F

n+3

� 59F
n+2

+ 37F
n+1

� 9F
n

] (8.11)

has ⇢(z) = z3(z�1) so satisfies the root condition and the method is zero stable.

3. Third order example

2U
n+3

+ 3U
n+2

� 6U
n+1

+ U
n

= 6�tF
n+2

(8.12)

has

⇢(z) = 2z3 + 3z2 � 6z + 1 (8.13)

= (z � 1)(z + 2.69)(z � 0.19) (8.14)

which has a root outside the unit disc and so the method is not zero stable.

To reiterate, we refer to conditions on ⇢ that roots lie in closed unit disc and with
simple roots on unit circle as the root condition.

(iii) Consistency

For a linear k step method we must rearrange the scheme so it is an analogue for the
continuous system u0 = f ; doing this defines the truncation error as

T
n

=

P

k

j=0

↵
j

u
n+j

��t
P

k

j=0

�
j

f
n+j

�t
P

k

j=0

�
j

(8.15)

where we need to have

k

X

j=0

�
j

= �(1) 6= 0. (8.16)

A method will be consistent provided T
n

! 0 as �t ! 0. To show this, expand the
right-hand-side of (8.15) as �t ! 0 using Taylor series.

T
n

=

P

k

j=0

↵
j

u
n+j

��t
P

k

j=0

�
j

u0
n+j

�t
P

k

j=0

�
j

(8.17)

=
1

�t�(1)

⇥

C
0

u
n

+ C
1

�tu0
n

+ C
2

�t2u00
n

+ . . .+ C
p

�tpu(p)

n

+ . . .
⇤

. (8.18)

For the scheme to be consistent we need T
n

! 0 as �t ! 0, so that we will require

C
0

= 0 (8.19)

C
1

= 0. (8.20)

48

To determine the coe�cients C
p

in (8.18) we have to apply Taylor expansions to the
various terms:

u
n+j

= u
n

+ j�tu0
n

+
(j�t)2

2!
u00
n

+ . . . +
(j�t)p

p!
u(p)

n

+ . . . (8.21)

u0
n+j

= u0
n

+
j�t

1!
u00
n

+
(j�t)2

2!
u000
n

+ . . .+
(j�t)p�1

(p� 1)!
u(p)

n

+ . . .(8.22)

Hence

C
0

=
k

X

j=0

↵
j

= 0 (8.23)

C
1

=
k

X

j=0

j↵
j

�
k

X

j=0

�
j

= ⇢0(1)� �(1) = 0, (8.24)

and consistency requires

⇢(1) = 0, ⇢0(1) = �(1) 6= 0 (8.25)

(and as ⇢0(1) 6= 0 the root at z = 1 must be simple).

The general form for p � 2 is

C
p

=
k

X

j=0

jp

p!
↵
j

�
k

X

j=0

jp�1

(p� 1)!
�
j

(8.26)

=
k

X

j=1

jp

p!
↵
j

�
k

X

j=1

jp�1

(p� 1)!
�
j

. (8.27)

We suppose C
0

= C
1

= . . . = C
p

= 0, with C
p+1

6= 0 so that

T
n

=
C

p+1

�(1)
�tpu(p+1)

n

+O(�tp+1) (8.28)

and the method is order p. The value C
p+1

/�(1) is called the error constant of the
method.

Example: wlog set ↵
2

= 1 and consider the method

U
n+2

+ ↵
1

U
n+1

+ ↵
0

U
n

= �t(�
2

F
n+2

+ �
1

F
n+1

+ �
0

F
n

) (8.29)

with first and second characteristic polynomials

⇢(z) = z2 + ↵
1

z + ↵
0

(8.30)

�(z) = �
2

z2 + �
1

z + �
0

. (8.31)

There are five unknowns ↵
1

, ↵
0

, �
2

, �
1

and �
0

so if we set C
0

= C
1

= C
2

= C
3

= 0
there will be a one parameter family of third order methods. The equations are

49

• p = 0, 1 + ↵
1

+ ↵
0

= 0

• p = 1, 2 + ↵
1

= �
2

+ �
1

+ �
0

• p = 2,
22

2!
+

12

2!
↵
1

= 2�
2

+ �
1

• p = 3,
23

3!
+

13

3!
↵
1

=
22

2!
�
2

+
12

2!
�
1

with solution

↵
1

= �(1 + ↵
0

) �
2

=
5 + ↵

0

12
�
1

=
2� 2↵

0

3
�
2

= �1 + 5↵
0

12
. (8.32)

The first characteristic polynomial is z2 � (1 + ↵
0

)z + ↵
0

= 0 so

⇢(z) = (z � ↵
0

)(z � 1) = 0 (8.33)

and so scheme is zero stable provided �1  ↵
0

< 1. If we look at the term where
p = 4 then

C
4

= �1 + ↵
0

24
6= 0 if ↵

0

6= �1. (8.34)

In the specific case of ↵
0

= �1 this will give a fourth order scheme:

U
n+2

� U
n

=
�t

3
(F

n+2

+ 4F
n+1

+ F
n

) (8.35)

which is Simpson’s rule.

50

Lecture 9

(iv) Convergence

Convergence is a very important property that allows us to be sure that, provided we
take su�ciently small time steps, we will obtain better and better approximations to
the true solutions of the di↵erential system. This does not refer to how ‘good’ our
approximation is to the true value, only that the more e↵ort we apply, the better will
be our approximation (but not how much better).

For a scheme to converge we need

U
n

! u(t) as �t ! 0 and n�t ! t, (9.1)

and in particular we can define consistent starting conditions by the requirement that
U
j

! u
0

as �t ! 0 for j = 0, . . . , k � 1.

Theorem. Zero stability is a necessary condition for convergence.

Proof. Suppose a linear multistep method is convergent for all functions f .

Since there has to be convergence for all f , we can in particular choose f ⌘ 0 and
the method must converge.

Consider this case, u0 = 0, u(0) = 0 with solution u = 0.

The discrete scheme reduces to:

↵
k

U
n+k

+ . . .+ ↵
0

U
n

= 0. (9.2)

As the method is convergent, U
n

! 0 as �t ! 0, n�t ! t, for consistent starting
values U

0

, . . . , U
k�1

.

Now suppose z = rei✓ is a root of ⇢(z) = 0 and choose U
n

= �trn cos(n✓). This set
is consistent with the initial value u(0) = 0, since U

0

, . . . U
k�1

! 0 = u(0) as �t ! 0.
The set also satisfies (9.2) since by writing

U
n

= Re(�trnein✓) = �tRe(zn)

then

↵
k

U
n+k

+ . . .+ ↵
0

U
n

= �tRe(↵
k

zn+k + . . .+ ↵
0

zn) (9.3)

and so

↵
k

U
n+k

+ . . .+ ↵
0

U
n

= �tRe(zn⇢(z)) = 0, (9.4)

as z is a root of ⇢. Hence we know that the values U
n

= �trn cos(n✓) are solutions
of the discrete method starting from a consistent set of intial values.

51

1. Suppose ✓ 6= 0, ⇡, then

U2

n

� U
n+1

U
n�1

= �t2r2n
⇥

cos2(n✓)� cos((n+ 1)✓) cos((n� 1)✓)
⇤

(9.5)

so that

U2

n

� U
n+1

U
n�1

= �t2r2n sin2 ✓. (9.6)

The LHS of this equation must tend to zero as n ! 1, n�t ! t > 0 as all
the values must converge to the solutions of the continuous system. Thus the
RHS of this equation must also tend to zero. However, since n�t ! t > 0 and
sin ✓ 6= 0, that will only be possible provided r  1; if r > 1 then the RHS
would become unbounded.

2. If ✓ = 0, ⇡ let

U
n

=

⇢

�trn ✓ = 0
�trn(�1)n ✓ = ⇡

(9.7)

or equivalently

U
n

=

⇢

(n�t) r
n

n

✓ = 0

(n�t) r
n

(�1)

n

n

✓ = ⇡
(9.8)

and again we will have that since U
n

! 0, we must also have r  1.

If z = rei✓ is a double root of ⇢(z) then U
n

= �tnrn cos(n✓) also satisfies (9.2)
and now we deduce that we need r < 1 for U

n

! 0, so any root on unit circle
must be simple (higher order roots follow same argument, if root of order s consider
U
n

= �tnmrn cos(n✓) for m = 0, . . . , s� 1).

Hence, for a discrete scheme that is convergent for all functions f , the roots of the
first characteristic polynomial ⇢ must satisfy root condition, and so the scheme must
be zero stable.

Theorem. Consistency is a necessary condition for convergence.

Proof. We use the same methods here as in the last proof, we assume a linear multistep
method is convergent for all functions f and then consider two special cases.

1. Use the function f ⌘ 0 with inital value u(0) = 1, so that u0 = 0, with solution
u(t) = 1.

Let U
0

= U
1

= . . . = U
k�1

= 1 be a consistent set of initial data. Convergence
gives U

n

! 1 as n�t ! t, �t ! 0 but method is

↵
k

U
n+k

+ ↵
k�1

U
n+k�1

+ . . .+ ↵
0

U
n

= 0 (9.9)

52

so in limit U
n

, U
n+1

, . . . , U
n+k

! 1 we must have

↵
k

+ ↵
k�1

+ . . .+ ↵
0

= 0

and hence ⇢(1) = 0.

2. Next use the function f ⌘ 1 with initial value u(0) = 0 so that u0 = 1, with
solution u(t) = t and convergence will guarantee that U

n

! t as n�t ! t,
�t ! 0.

When f ⌘ 1 the method is

↵
k

U
n+k

+ ↵
k�1

U
n+k�1

+ . . .+ ↵
0

U
n

= �t(�
k

+ . . .+ �
0

). (9.10)

Convergence to the solution u(t) = t means that when we consider the limit
n ! 1, and n�t ! t, we can replace the values U

n+r

, r = 0, 1, . . . , k in this
scheme with U

n+r

= (n+ r)�t so that it must be the case that

↵
k

(n+ k)�t+ . . .+ ↵
0

n�t = �t(�
k

+ . . .+ �
0

) (9.11)

so using ↵
k

+ ↵
k�1

+ . . .+ ↵
0

= 0 we are left with

k↵
k

+ . . .+ ↵
1

| {z }

⇢

0
(1)

= �
k

+ . . .+ �
0

| {z }

�(1)

(9.12)

It is also true that U
0

, . . . , U
k�1

are consistent initial data. Hence convergence
implies

⇢(1) = 0, ⇢0(1) = �(1), (9.13)

that is, the scheme will be consistent. (We have already shown that convergence
implies zero stability so that ⇢0(1) 6= 0 as the root at z = 1 must be simple.)

Theorem (Dahlquist). Suppose the linear multistep method

k

X

j=0

↵
j

U
n+j

= �t
k

X

j=0

�
j

F
n+j

(9.14)

is consistent with the ODE u0 = f(t, u) and that f satisfies a Lipschitz condition.
Then provided initial data U

0

, . . . , U
k�1

is consistent as �t ! 0, zero stability is
necessary and su�cient for convergence. If u(t) 2 Cp+1 and truncation error is order
(�t)p then global error is order (�t)p provided initial data error also at least as small.

53

Proof. (Outline for the explicit method)

We have already shown that convergence) zero stability and consistency. From the
definition of the scheme and the truncation error we have

↵
k

U
n+k

+ . . .+ ↵
0

U
n

= �t(�
k�1

F
n+k�1

+ . . .+ �
0

F
n

) (9.15)

↵
k

u
n+k

+ . . .+ ↵
0

u
n

= �t(�
k�1

f
n+k�1

+ . . .+ �
0

f
n

) + �(1)�tT
n

. (9.16)

Subtract and re-arrange to that

e
n+k

= �
k

X

j=0

↵
j

↵
k

e
n+j

��t
k�1

X

j=0

�
j

↵
k

(f
n+j

� F
n+j

) +
�(1)

↵
k

�tT
n

. (9.17)

Let

e(n) = [e
n

, e
n+1

, . . . , e
n+k�1

]T (9.18)

and apply Lipschitz condition to

|f
n+j

� F
n+j

| = |f(t
n+j

, u
n+j

)� f(t
n+j

, U
n+j

)| (9.19)

 L|u
n+j

� U
n+j

| (9.20)

or using constants L
n,j

,

f
n+j

� F
n+j

= L
n,j

(u
n+j

� U
n+j

) (9.21)

for some L
n,j

with |L
n,j

|  L so that

e(n+1) = (A+�tD
n

)e(n) +
�(1)

↵
k

�t

2

6

6

6

4

0
...
0
T
n

3

7

7

7

5

(9.22)

with

A =

0

B

B

B

B

B

@

0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 1

�↵

0

↵

k

�↵

1

↵

k

. �↵

k�1

↵

k

1

C

C

C

C

C

A

, D
n

=

0

B

B

B

B

B

@

0 0
. . .

. . .
0 0

L
n,0

. L
n,k�1

1

C

C

C

C

C

A

.(9.23)

Hence

e(n) =
n�1

Y

m=0

(A+�tD
m

)e(0) +
�(1)

↵
k

�t
n�1

X

j=0

n�1

Y

j+1

(A+�tD
m

)T
j

(9.24)

then using zero stability we can bound matrices so that

ke(n)k1  Kke(0)k1 +

�

�

�

�

�(1)

↵
k

�

�

�

�

n�tKmax
j

|T
j

|. (9.25)

54

1. As �t ! 0, starting data is consistent, so that ke(0)k1 ! 0 as �t ! 0.

2. As n�t ! t and �t ! 0, max
j

|T
j

| ! 0 so we must also have ke(n)k1 ! 0,
that is the method converges.

When max |T
j

| = O(�tp) then as �t ! 0, so also is ke(n)k1 provided ke(0)k1 =
O(�tp) as �t ! 0.

55

Lecture 10

(v) Absolute Stability

Zero stability tells us that as �t ! 0, a method will converge. However, we compute
with fixed �t > 0 so we need to know that for fixed �t, |U

n

| will approximate
closely the correct solution, usually a pre-requisite for this to happen is that we need
to ensure at least that the approximation remains bounded as n becomes large. It
is too di�cult to proceed much further for arbitrary functions f(t, u) so theory is
developed for a simplified system, our general experience is that the results we obtain
for this simple case are excellent indicators of conditions that are needed for general
situations.

In particular, we study the application to the problem where f(t, u) = �u,

u0 = �u, u(0) = u
0

6= 0, Re(�) < 0 (10.1)

with exact solution

u(t) = u
0

e�t (10.2)

where
�

�

�

�

u(t)

u
0

�

�

�

�

= e�|Re(�)|t (10.3)

so that
�

�

�

�

u(t)

u
0

�

�

�

�

! 0 as t ! 1. (10.4)

Applying a linear multistep method with f = �u give the scheme:

k

X

r=0

(↵
r

� ��t�
r

)U
n+r

= 0. (10.5)

This is a di↵erence equation and as we have used before, we try a solution U
n

= azn

with |z| 6= 0 for some constant a, so that

k

X

r=0

(↵
r

� ��t�
r

) zn+r = 0 (10.6)

zn
"

k

X

r=0

↵
r

zr
!

� ��t
n

X

r=0

�
r

zr
#

= 0 (10.7)

zn [⇢(z)� ��t�(z)] = 0. (10.8)

58

Define a polynomial
⇧(z;�t) = ⇢(z)��t�(z) (10.9)

where zn⇧(z;�t) = 0 when U
n

is a solution of the recurrence relation. However, since

|azn| = |aen log z| (10.10)

for U
n

! 0 as n ! 1 we will need |z| < 1 for each root of ⇧(z;�t) = 0.

This is an important but subtle point. The continuous system has but one decaying
exponential solution. When we use a k-term multi-step method, we introduce ad-
ditional solutions to the kth order di↵erence equation, and we need as a minimum
requirement for stability that each solution of the di↵erence equation will decay when
f is proportional to u for the value of �t we use. If there is one solution of the
discrete system that, for our fixed �t > 0 that does not have the property of decay
to zero when f ⇠ u, then when we use floating point arithmetic, there will always
be a component of this ’unstable’ solution in the discrete approximation and it will
grow exponentially in value with the number of time steps.

Definition. A linear multistep method is absolutely stable for �t if and only if all
roots of ⇧(z;�t) lie inside the unit disc. An interval a < �t < b where the method
is absolutely stable is called an interval of absolute stability.

Example 1: Simpson’s Rule

U
n+2

� U
n

=
�t

3
(F

n+2

+ 4F
n+1

+ F
n

) (10.11)

⇢(z) = z2 � 1 (10.12)

�(z) =
1

3

�

z2 + 4z + 1
�

(10.13)

⇧(z;�t) =

✓

1� �t

3

◆

z2 � 4

3
�tz �

✓

1 +
�t

3

◆

. (10.14)

Roots are

z
1

(�t) =

q

1 + 1

3

�t
2

+ 2

3

�t

1� �t

3

(10.15)

z
2

(�t) =
�
q

1 + 1

3

�t
2

+ 2

3

�t

1� �t

3

(10.16)

and in class exercise, show that one root always has modulus greater than one. Hence
method zero stable but never absolutely stable.

Example 2: Euler’s method (class exercise)

U
n+1

� U
n

= �tF
n

(10.17)

⇧(z;�t) = z � 1��t. (10.18)

59

Root is z = 1 +�t and |z| < 1 implies �1 < 1 +�t < 1 or �2 < �t < 0, so interval
of absolute stability is (�2, 0).

Definition. A linear k step method is absolutely stable in an open set R
A

of the
complex plane if for all �t 2 R

A

, the roots z
j

of the stability polynomial ⇧(z;�t)
satisfy |z

j

| < 1. The set R
A

is the region of absolute stability.

Definition. The method is A-stable if the region of absolute stability R
A

contains the
whole left hand complex half plane.

Example 1: Explicit Euler

⇧(z;�t) = z � (1 +�t). (10.19)

This has root z = 1+�t and so the region of absolute stability is a circle with centre
�1 and radius 1 as shown in Figure 9. This method is not A-stable.

Example 2: Implicit Euler

⇧(z;�t) = (1��t)z � 1. (10.20)

This has root z = (1��t)
�1

and so the region of absolute stability is the whole
complex plane except for a circle with centre 1 and radius 1 as shown in Figure 10.
This method is A-stable.

Some further results (proofs beyond the scope of the course) are

Theorem: Dahlquist (1963). Dahlquist’s theorem states:

1. No explicit linear multistep method is A stable.

2. The order of an A stable implicit linear multistep method cannot exceed 2.

3. The second order A stable linear multistep method with smallest error constant
in the trapezoidal rule.

Definitions. A linear multistep method is A(↵)-stable for ↵ 2 �0, ⇡
2

�

if the region of
absolute stability contains the infinite wedge

�⇡ � ↵ < arg(�t) < �⇡ + ↵ (10.21)

as shown in Figure 11.

A method is A(0)-stable if it is A(↵)-stable for some ↵ 2 �0, ⇡
2

�

.

A method is A
0

-stable if R
A

includes the negative real axis.

60

Im(�̄t)

Re(�̄t)

�1

Figure 9: Showing shaded region of absolute stability for the explicit Euler method.

Re(�̄t)

Im(�̄t)

1

Figure 10: Showing shaded region of absolute stability for the implicit Euler method.

61

Im(�̄t)

Re(�̄t)

↵

Figure 11: Showing shaded region of absolute stability for an A(↵) stable method.

Since ⇧(z;�t) = ⇢(z)��t�(z), if ⇠ is a root then

⇢(⇠)

�t
= �(⇠) (10.22)

and as �t ! �1 will need �(⇠(�t)) ! 0, so roots ⇠ will also be roots of just
�(z) = 0. If choose �(z) = �

k

zk then will know that ⇠(�t) ! 0 as �t ! �1. This
leads to a family of implicit backward di↵erentiation (BDF) methods

k

X

j=0

↵
j

U
n+j

= �
k

�tF
n+k

(10.23)

(with ↵
k

= 1).

k stability convergence p
1 A stable p = 1
2 A stable p = 2
3 A(88⇡/180) stable p = 3
4 A(73⇡/180) stable p = 4

For k > 2, stability is restricted to a wedge as in Figure 11.

with solutions of implicit equations found by and explicit predictor step and then by

62

Newton iteration to solve

U
n+k

��t�
k

f(t
n+k

, U
n+k

) = �
k�1

X

j=0

↵
j

U
n+j

(10.24)

using the explicit predictor value as starting value for Newton iterations.

(vi) Sti↵ systems

In dealing with systems of di↵erential equations it is relatively common to find that
the one step and multistep methods we have studied may not work well with some
systems where di↵erent parts of the overall solution evolve or decay on very di↵erent
time scales.

As a model for this type of behaviour, consider

u00 + (1 + a)u0 + au = 0 (10.25)

re-written as

u0 = v (10.26)

v0 = �(1 + a)v � au (10.27)

or

d

dt



u
v

�

=



0 1
�a �(1 + a)

�

| {z }

A



u
v

�

(10.28)

with solutions u = c
1

e�t + c
2

e�at.

If a � 1 then there are two very di↵erent time scales, one term O(1) and one O(a�1).

If we calculate eigenvalues (�
1

= �1 and �
2

= �a) and eigenvectors

z
1

=

1p
2

� 1p
2

!

, z
2

=

� 1p
1+a

2

ap
1+a

2

!

(10.29)

then A can be decomposed

A = X⇤X�1 where X = [z
1

, z
2

] and ⇤ =

 �1 0
0 �a

�

(10.30)

so if


p
q

�

= X�1



u
v

�

=



p
2(au+ v)p

1 + a2(u+ v)

�

(10.31)

63

where

X =

"

1p
2

� 1p
1+a

2

� 1p
2

ap
1+a

2

#

(10.32)

then

dp

dt
= �p (10.33)

dq

dt
= �aq (10.34)

however, integration of both equations together would proceed using the time step
needed for stability of (10.34). Such a system is called sti↵.

If we consider a more general linear system with some matrix A on the RHS,

du

dt
= Au (10.35)

explicit Euler would give

U
n+1

= (I +�tA)U
n

= (I +�tA)n+1U
0

(10.36)

and re-writing

I +�tA = X⇤X�1 (10.37)

where

⇤ =

0

B

@

�
1

0
. . .

0 �
m

1

C

A

(10.38)

is diagonal matrix of eigenvalues (⇤ may be more complicated if there are multiple
eigenvalues, if interested, look up Jordan normal form) then

U
n+1

= X⇤n+1X�1U
0

(10.39)

so we need max
j

|�
j

| < 1 where �
j

are eigenvalues of I+�tA. However, if eigenvalues
of A are µ

j

, then the eigenvalues of I + �tA are 1 + �tµ
j

. Clearly we would need
Re(µ

j

) < 0 for each j in order that the system has only decaying solutions. Hence
for absolute stability we will need

�t <
2

max |µ
j

| (10.40)

if the eigenvalues were all real and negative. In a sti↵ system normally have groups of
eigenvalues near the origin (but with negative real part) and a few with large negative
real part and they will force �t to be very small for an explicit method.

64

If, however, we used an implicit method

U
n+1

= U
n

+�tAU
n+1

(10.41)

which can be written as

(I ��tA)U
n+1

= U
n

(10.42)

or

U
n+1

= (I ��tA)�(n+1)U
0

. (10.43)

So now
�

�

�

�

1

1��tµ
j

�

�

�

�

< 1 (10.44)

for all j provided Re(µ
j

) < 0 hence this method is stable for all step sizes if A is
positive definite.

ODEs — Summary

• Continuous system N (t, u) = u0 � f(t, u) = 0, u(0) = u
0

• Discrete system N(t
n

, U
n+1

, U
n

) = 0, U
0

= u
0

• Truncation error T
n

= N(t
n

, u
n+1

, u
n

), explicit/implicit distinction

• One step methods U
n+1

= U
n

+�t�(t
n

, U
n

)

• Runge-Kutta methods, analysis of T
n

, adaptive time steps

• Multistep methods
P

k

j=0

↵
j

U
n+j

= �t
P

k

j=0

�
j

F
n+j

. Derivation of simple cases,
analysis of truncation error

• Zero stability — definition, root condition, proof that root condition is necessary

• Consistency — derivation of schemes of order p

• Convergence — definition and theorems

1. Zero stability a necessary condition with proof

2. Consistency a necessary condition with proof

3. Dahlquist: convergence , zero stability and consistency (without proof)

• Absolute stability, definition of stability polynomials, application to simple ex-
amples

• Definition of A stability and variants, understanding of background ideas about
location of eigenvalues in complex plane

• Basic understanding of why some systems may be sti↵

65

Lecture 11

II. Numerical Solution of Parabolic PDEs

While a great many interesting physical systems can be set in the framework of
evolutionary ordinary di↵erential equations, there are many more situations where
both spatial and temporal variability needs to be determined. In the main, we will
look at problems where there is one space dimension, and most of the methods we
derive can be generalised to multiple space dimensions using orthogonal constructions
of the one space dimension discretisation.

As a generalisation, whereas for systems of ODEs, stability is important, it is usu-
ally accuracy and implementation that dominate choice of numerical parameters such
as time step or numerical method and the computation is algorithmically relatively
straight forward to implement (although large systems with say, implicit backward
di↵erence (BDF) methods, can have implementation problems); when dealing with
both time and space independent variables, stability can become an extremely prob-
lematic requirement and the consequent size of the computational problem can lead to
algorithmic complexity that is separate from the discretisation of the original problem
and is related to how solution of the discrete system can be computed in a practical
way.

As a model problem in one space dimension, let u = u(x, t) satisfy for t > 0

@u

@t
=

@

@x

✓

D(u)
@u

@x

◆

, D(u) > 0, (11.1)

with u(x, 0) = u
0

(x) and one of

(a) u(x
L

, t) = u
L

(t), u(x
R

, t) = u
R

(t) (bounded domain)

(b) u(x, t) ! 0 as x ! ±1 (infinite domain).

Generally we will take D = 1.

We can have more complicated boundary conditions involving derivatives, you should
have already encountered the notation: Dirichlet conditions for fixed boundary values,
Neumann conditions for derivative boundary conditions and Robin conditions for
mixed value and derivative conditions.

In order to understand some of the problems that come about in discretising PDEs
we need to recall a little about the behaviour of continuous systems with di↵usion.

66

In particular, consider the specific model problem

@u

@t
=

@2u

@x2

(11.2)

u(x, 0) = u
0

(x) (11.3)

u ! 0 as x ! ±1. (11.4)

Methods for analytic solution of this equation are not part of this course but the
general form of the analytic solution is of interest since that defines many properties
we require a numerical scheme to replicate if it is to be accurate.

Define a Fourier transform for v(x) by

v̂(k) =

Z 1

�1
v(x)e�ikx dx = F (v). (11.5)

Apply the transform to the PDE giving
Z 1

�1

@u

@t
e�ikx dx =

Z 1

�1

@u

@x2

e�ikx dx. (11.6)

On the left-hand-side we assume we can change the order of integration and di↵eren-
tiation and on the right-hand-side we integrate by parts and use the fact that u ! 0
and @u

@x

! 0 as x ! ±1 to get

d

dt

Z 1

�1
u(x, t)e�ikx dx

| {z }

û(k,t)

= �k2

Z 1

�1
u(x, t)e�ikx dx

| {z }

û(k,t)

, (11.7)

or

dû

dt
= �k2û, (11.8)

with solutions û(k, t) = A(k)e�k

2

t for some function A(k). Applying the initial con-
dition allows us to determine A(k) giveing

û(k, t) = û
0

(k)e�k

2

t.

Next we apply the inverse Fourier transform

v(x) =
1

2⇡

Z 1

�1
v̂(k)eikx dk = F�1[v̂] (11.9)

so

u(x, t) =
1

2⇡

Z 1

�1
û
0

(k)e�k

2

teikx dk. (11.10)

67

The reason for deriving this form of the continuous solution is that it shows there will
be a sum (integral over k) of modes of the form

e�k

2

teikx. (11.11)

When we look in more detail at a numerical approximation on a discrete mesh, with
t = n�t and x = rh, as we shall see shortly, we define a numerical parameter
µ = �t/h2 and then the continuous solution should obey

û(k, t+�t) = e�µ(kh)

2

û(k, t), (11.12)

or that each continuous mode should have amplification factor over a time step �t of

⇤(k) = e�µ(kh)

2

. (11.13)

If the continuous solution is then restricted to the discrete mesh, each mode of the
continuous solution will have the form

un

r

⇠ [e�µ(kh)

2

]neikrh ⌘ ⇤(k)neikrh. (11.14)

A consequence of this structure is that in a numerical scheme we look for discrete
modes of the form

Un

r

⇠ �(k)neikrh, (11.15)

and we can view the discrete system as an attempt to have �(k) replicate ⇤(k).

This is a key concept: provided we are dealing with a linear PDE, the analytic solution
will be a composition (i.e. integral over k) of modes of the form (11.11) each with
an amplification factor ⇤(k) and assuming our discrete approximation is also a linear
system, then the numerical solution should likewise be a composition (i.e. sum over r)
of modes of the form (11.15) and these modes are oscillatory in the space dimension
together with some amplification (decay or growth) factor � for each time step.

The inverse Fourier transform can be manipulated further by substituting the ingte-
gral form for û

0

(k),

u(x, t) =
1

2⇡

Z 1

�1

Z 1

�1
u
0

(s)eisk ds e�k

2

teıkx dk (11.16)

=
1

2⇡

Z 1

�1
u
0

(s)

Z 1

�1
e�k

2

t+ık(x�s) dk ds. (11.17)

Let k2t = p2 so that dk = dp/
p
t and ⇠ = x�s

2

p
t

. Then

u(x, t) =
1

2⇡
p
t

Z 1

�1
u
0

(s)

Z 1

�1
e
�
⇣
p� ı(x�s)

2

p
t

⌘
2

e
(x�s)

2

4t dp ds (11.18)

=
1

2⇡
p
t

Z 1

�1
u
0

(s)e
(x�s)

2

4t

Z 1

�1
e�(p�ı⇠)

2

dp ds. (11.19)

68

The integral in p has no poles so we can change variables to integrate along a new
path from �1� ı⇠ to 1� ı⇠ and then we can move the path to �1 to 1 so that
the value of the integral is

R1
�1 e�p

2

dp = 2
R1
0

e�p

2

dp =
p
⇡. Hence

u(x, t) =
1

2
p
⇡t

Z 1

�1
u
0

(s)e
(x�s)

2

4t ds. (11.20)

Or, using x�s

2

p
t

= ⇠ so that s = x � 2
p
t⇠, ds = �2

p
t d⇠, as s ! �1, ⇠ ! +1 and

as s ! +1, ⇠ ! �1, we get

u(x, t) =
1p
⇡

Z 1

�1
u
0

(x� 2
p
t⇠)e�⇠

2

d⇠ (11.21)

and if we let u
0

(x) = �(x) then

u(x, t) =
1

2
p
⇡t

e�x

2

/4t. (11.22)

The solution decays to zero as t ! 1 as shown in Figure 12.

0
0

small t

large t

diffusion

Figure 12: Solution in time and space of a di↵usion equation with an initial delta
function distribution in space.

For continuous functions v(x) with transform v̂(k) we can define an L
2

norm

kvk
L

2

⌘ kvk
2

=

�

�

�

�

Z 1

�1
|v(x)|2 dx

�

�

�

�

1/2

(11.23)

(note the term |v(x)|2 rather than v(x)2 since v may be complex and a similar integral
over k for v̂).

69

Parseval’s Identity. An important identity relating the norm of a function to the
norm of its Fourier transform is:

kvk
2

=
1p
2⇡

kv̂k
2

(11.24)

or equivalently
Z 1

�1
|v(x)|2 dx =

1

2⇡

Z 1

�1
|v̂(k)|2 dk. (11.25)

Proof. Method A (the course does not assume knowledge of � functions but this is
a standard proof of Parseval’s identity)

kvk2
2

=

Z 1

�1
v(x)v̄(x) dx (11.26)

=
1

4⇡2

Z 1

�1

Z 1

�1
v̂(k)eikx dk

Z 1

�1

¯̂v(s)e�isx ds dx (11.27)

=
1

2⇡

Z 1

�1

Z 1

�1
v̂(k)¯̂v(s)



1

2⇡

Z 1

�1
eix(k�s) dx

�

| {z }

�(k�s)

dk ds (11.28)

=
1

2⇡

Z 1

�1
v̂(k)

Z 1

�1

¯̂v(s)�(k � s) ds dk. (11.29)

Hence

kvk2
2

=
1

2⇡

Z 1

�1
v̂(k)¯̂v(k) dk =

1

2⇡
kv̂k2

2

(11.30)

Method B

Let v(x) and w(x) be two functions, then
Z 1

�1
ŵ(x)v(x) dx =

Z 1

�1

Z 1

�1
w(s)e�isx ds v(x) dx (11.31)

=

Z 1

�1
w(s)

Z 1

�1
e�isxv(x) dx ds. (11.32)

Hence
Z 1

�1
ŵ(x)v(x) dx =

Z 1

�1
w(s)v̂(s) ds. (11.33)

Let w(s) = ¯̂v(s), then

ŵ(s) =

Z 1

�1

¯̂v(x)e�isx dx =

Z 1

�1
v̂(x)eisx dx = 2⇡v. (11.34)

70

This gives

2⇡

Z 1

�1
v̄(x)v(x) dx =

Z 1

�1

¯̂v(s)v̂(s) ds, (11.35)

or equivalently

kvk2
2

=
1

2⇡
kv̂k2

2

. (11.36)

This leads to an important feature of this model problem since we have shown

û(k, t) = e�k

2

tû
0

(k) (11.37)

so that

kuk
2

=
1p
2⇡

kûk
2

=
1p
2⇡

ke�k

2

tû
0

(k)k
2

(11.38)

and

kuk
2

 1p
2⇡

max
k

|e�k

2

t/2| · kû
0

k
2

 1p
2⇡

kû
0

k
2

= ku
0

k
2

, (11.39)

or

ku(t)k
2

 ku(0)k
2

, 8 t > 0, (11.40)

and so we will want any numerical solution to behave this way too.

If we consider the case where x is confined to a finite region, for example

u
t

= u
xx

, 0 < x < 1 (11.41)

u(0, t) = 0 (11.42)

u(1, t) = 0 (11.43)

u(x, 0) = u
0

(x), 0  x  1 (11.44)

(with initial and boundary conditions shown in Figure 13), then using separation of
variables we try

u(x, t) = X(x)T (t) (11.45)

and we see that

X 00

X
(x) =

Ṫ

T
(t) (11.46)

71

u = u
0

(x)

u = 0u = 0

t

x

Figure 13: The initial and boundary conditions for the finite x case.

and so each side of this equation of these must be some constant. To satisfy the
homogeneous boundary conditions we need the constant to be negative and to satisfy
the boundary conditions at x = 0 and x = 1 we can choose

X
m

= sin(m⇡x), m = 1, 2, . . . (11.47)

with

Ṫ
m

= �m2⇡2T
m

(11.48)

or

T
m

(t) = A
m

e�m

2

⇡

2

t (11.49)

and so the solution is a weighted sum of modes

u(x, t) =
1
X

m=1

A
m

e�m

2

⇡

2

t sin(m⇡x) (11.50)

where the constants or weights A
m

will come from the Fourier series of the initial
condition:

u
0

(x) =
1
X

m=1

A
m

sin(m⇡x). (11.51)

Again, solutions will decay as t ! 1.

72

Formulating a numerical approximation

In the first half of this course we looked into how approcimate solutions for ODE’s
are obtained at a set of discrete time points. For PDEs, we just extend the idea
of approximating the solution at discrete time points to cater for both time and
space discrete points. Indexing becomes more cumbersome as the number of space
dimensions increases, we will adopt the notation that a superscript index relates to
time stepping and subscript indices relate to space variables.

In the case where there is only one space dimension, define a mesh x
r

= rh, t
n

= n�t,
h = 1/M and suppose Un

r

⇡ u(rh, n�t). The mesh structure is illustrated in Figure
14.

t

x

x = 0 x = 1

�t

h

Figure 14: A mesh for the numerical solution.

The mesh can be viewed as a collection of nodes, with indicies r, n where r =
0, 1, . . . ,M , and n = 0, 1, 2, . . ., each node corresponding to a physical point (rh, n�t).

The simplest form of approximation gives an explicit formula for the function values
at a new time step, given all the values at the previous time step. We approximate
derivatives with

✓

@u

@t

◆

n

r

⇡ Un+1

r

� Un

r

�t
(11.52)

✓

@2u

@x2

◆

n

r

⇡ Un

r+1

� 2Un

r

+ Un

r�1

h2

. (11.53)

73

This can also be ilustrated by the finite di↵erence stencil shown in Figure 15. The
stencil is just a convenient way of showing which nodes are involved in the discreti-
sation, in some books you will also see weights associated with the stencil nodes, the
weights corresponding to coe�cients in the finite di↵erence approximations.

(r, n) (r + 1, n)(r � 1, n)

(r, n+ 1)

Figure 15: The finite di↵erence stencil for the heat equation.

We can then proceed with analysis similarly to that for ODEs, the continuous system

N (t, u) =
@u

@t
� @2u

@x2

= 0, (11.54)

can be written as a discrete system by

N(t, U) =
Un+1

r

� Un

r

�t
� Un

r+1

� 2Un

r

+ Un

r�1

h2

= 0. (11.55)

Note that for ease of notation, the second argument ofN is just written U without sub-
or super-scripts. If we define µ = �t/h2 then the algorithm to calculate approximate
values is

Un+1

r

= (1� 2µ)Un

r

+ µ(Un

r�1

+ Un

r+1

), r = 1, . . . ,M � 1, n = 0, 1,(11.56)

Having defined the discrete operator N we can define a truncation error as before,
to be the residual when the true continuous solution is substituted into the discrete
operator,thgat is, set the truncation error to be

T n

r

= N(t, u) =
un+1

r

� un

r

�t
� un

r+1

� 2un

r

+ un

r�1

h2

, r = 1, . . . ,M � 1, n = 1, 2,

The boundary conditions here are Un

0

= 0 and Un

M

= 0; there are inital conditions
U0

r

= u
0

(rh), r = 0, 1, . . . ,M . With the boundary and initial conditions specified,
then we can apply (11.56) for r = 1, . . . ,M � 1 and n = 1, 2, . . . giving a very simple
explicit algorithm:

Algorithm

set U0

r

= u
0

(rh) for r = 0, . . . ,M

74

while t
n

= n�t < T
max

Un+1

0

= Un+1

M

= 0

apply (11.56) to calculate Un+1

r

for r = 1, . . . ,M � 1

increment n

end while

75

Lecture 12

Analysis of an explicit scheme

As we have noted, just as in the case of ODEs, in addition to stability, an important
property of an approximation scheme is how well the scheme approximates the original
continuous system and this means determining the truncation error of the scheme.
Now we need to consider Taylor expansions in two or more variables, the time variable
and however many space dimensions are involved. Having determined the truncation
error, we next consider convergence, where we derive a criterion on the numerical
parameters to guarantee convergence in the limit of time and space step vanishing,
and, here we will complete the anlysis for conditions for which the scheme will be
stable.

(i) Tuncation error: Explicit Scheme

Un+1

r

� Un

r

�t
� Un

r+1

� 2Un

r

+ Un

r�1

h2

= 0 (12.1)

T n

r

=
un+1

r

� un

r

�t
� un

r+1

� 2un

r

+ un

r�1

h2

. (12.2)

We have

un+1

r

= u(rh, (n+ 1)�t) = un

r

+�t

✓

@u

@t

◆

n

r

+
1

2
�t2

✓

@2u

@t2

◆

n

r

+ . . . (12.3)

un

r+1

= u((r + 1)h, n�t) = un

r

+ h

✓

@u

@x

◆

n

r

+
1

2
h2

✓

@2u

@x2

◆

n

r

+ . . . (12.4)

so that using @u

@t

= @

2

u

@x

2

either

T n

r

=
1

2
�t

@2u

@t2

�

�

�

�

n

r

+O(�t2)� 1

12
h2

@4u

@x4

�

�

�

�

n

r

+O(h4) (12.5)

or if we terminate the Taylor series,

T n

r

=
1

2
�t

@2u

@t2
(rh, ⌘

n

)� 1

12
h2

@4u

@x4

(⇠
r

, t
n

) (12.6)

for ⌘
n

2 (t
n

, t
n+1

) and ⇠
r

2 (x
r�1

, x
r+1

). So the scheme is first order in time and
second order in space.

76

Since T n

r

! 0 as �t ! 0, h ! 0 we call the scheme unconditionally consistent.

We can use the PDE to write u
tt

= u
xxxx

, so that we can write T n

r

= 1

2

�tu
xxxx

(1 �
1/(6µ))+O(�t2) with µ = �t/h2, although this ordering only works provided h and
�t to go to zero on a refinement path with µ =constant (i.e. µ 9 0), otherwise the
two leading terms will have di↵erent asymptotic order (but T will still go to zero as
both �t and h go to zero).

(ii) Convergence: Explicit Scheme

Lemma. The explicit scheme for u
t

= u
xx

converges if µ = �t/h2  1/2.

Proof. Let en
j

= un

j

� Un

j

, subtracting (12.1) from (12.2) gives

en+1

r

� en
r

�t
� en

r+1

� 2en
r

+ en
r�1

h2

= T n

r

(12.7)

and so

en+1

r

= (1� 2µ)en
r

+ µen
r+1

+ µen
r�1

��tT n

r

. (12.8)

Let En = max
r

|en
r

|, then provided 1� 2µ � 0

|en+1

r

|  (1� 2µ)En + µEn + µEn +�t|T n

r

| (12.9)

or

|en+1

r

|  En +�t|T n

r

| (12.10)

and provided E0 = 0, then with T = max
r,n

|T n

r

|  C�t we have

|en+1

r

|  (n+ 1)�tT = t
n+1

C�t (12.11)

and if t
n

! t as �t ! 0, n ! 1
|en+1

r

|  tC�t ! 0. (12.12)

Hence |en
r

| ! 0 as �t ! 0, n ! 1, n�t ! t.

We now need one further step to prove convergence, if we write

|u(x
r

, t)� Un

r

| = |u(x
r

, t)� u(x
r

, t
n

) + u(x
r

, t
n

)� Un

r

|, (12.13)

 |u(x
r

, t)� un

r

|+ |un

r

� Un

r

|, (12.14)

since u is continuous in time the first term will vanish in the limit t
n

! t and we have
shown that the second term likewise vanishes in this limit so the scheme converges.

77

(iii) Stability: Explicit Scheme

We have noted two ways to approach stability, one is by using semi-discrete Fourier
transforms, the other is by a modal analysis, both assume a whole space domains, or a
finite domain extended to the whole space. Analysis using a semi-descrete transform
proceeds as in (12.32)-(12.36) to obtain

Ûn+1(k) = [1� 4µ sin2(kh/2)] = �(k)Ûn(k). (12.15)

Alternately, in a modal analysis, substitute into the discrete scheme

Un+1

r

= Un

r

+ µ(Un

r+1

� 2Un

r

+ Un

r�1

). (12.16)

the mode

Un

r

⇠ �neikrh (12.17)

and cancel common factors to obtain

� = 1 + µ(eikh � 2 + e�ikh) (12.18)

= 1 + µ(2 cos(kh)� 2) (12.19)

and so

� = 1� 4µ sin2

kh

2
. (12.20)

Hence both methods give exactly the same amplitude factor � for the numerical
scheme.

If we let p = sin2 kh

2

, with 0  p  1

�(k) = 1� 4µp, (12.21)

for stability we will need �1  1 � 4µ or µ  1/2 so that |�|  1 for all k as shown
in Figure 16.

We can also observe the extent to which �(k) = 1�4µ sin2 kh

2

matches ⇤(k) = e�µ(kh)

2

.
The Taylor series for each are

�(k) ⇠ 1� 4µ[
kh

2
� 1

6
(
kh

2
)3 + · · ·]2 (12.22)

= 1� µ(kh)2 + 4 · µ · 2
6
(
kh

2
)4 + · · · (12.23)

= 1� µ(kh)2 +
1

12
µ(kh)4 + · · · , (12.24)

and

⇤(k) ⇠ 1� µ(kh)2 +
1

2
µ2(kh)4 + · · · ., (12.25)

so the match is only for the first two terms. This is also illustrated in figure 17.

78

�(p)

p

stability region

�1

0
1

1

1� 4µ

Figure 16: Stability region for the explicit scheme.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1

A
m

p
li

fi
ca

ti
o
n
:

λ

kh/π

Figure 17: Comparison of amplification factors ⇤ (continuous di↵usion equation)
and � (explicit Euler method) as the wave number kh varies in [�⇡, ⇡] for the case
µ = 0.25. (—-): ⇤, (- - -) �.

Further analysis of discrete schemes for PDEs

We have used that the solution for a linear system will be composed of modes of the
form (11.15), that is Un

r

⇠ �neikrh but we need to develop a more formal methodology
to handle di↵erences between solutions when we have space variation. For ODEs we
considered stability solely by the behaviour of � as �t ! 0. Now we have to allow
that � = �(k, h,�t) [although we will normally just write � = �(k)]. One way of
considering di↵erences between solutions when the space domain is the whole real
line (or plane etc in higher space dimensions) is to use a use a semi-discrete Fourier
transform for analysis. Suppose U

r

, r = 0,±1,±2, . . . is a set of data (in our context,
the space discretisation of a function at some point in time). First note that we
cannot distinguish modes of the form eikrh when |k| > ⇡/h from those of lower k
value (this is the phenomenon of aliasing) so for our numerical mesh we have to

79

restrict k 2 [�⇡/h, ⇡/h] and we can define a semi-discrete Fourier transform

Û(k) = h
1
X

r=�1
U
r

e�ikrh k 2
h

�⇡

h
,
⇡

h

i

, (12.26)

with inverse

U
r

=
1

2⇡

Z ⇡

h

�⇡

h

Û(k)eikrh dk. (12.27)

There is an associated Parseval’s Identity (class exercise)

kUk
`

2

=
1p
2⇡

kÛk
L

2

, (12.28)

where we distinguish the norm of discrete data and a continuous function by

kUnk
`

2

=

"

h
1
X

r=�1
|Un

r

|2
#

1/2

. (12.29)

and

kÛk
L

2

=

Z ⇡

h

�⇡

h

|Û(k)|2 dk
!

1/2

. (12.30)

Having set up these norms, we can use them to measure di↵erences between functions
and between discrete data sets.

Definition. A finite di↵erence scheme is practically stable in the `
2

norm if

kUnk
`

2

 kU0k
`

2

(12.31)

If we take the explicit scheme for our model problem, written as

Un+1

r

= Un

r

+ µ
�

Un

r+1

� 2Un

r

+ Un

r�1

�

(12.32)

multiply each term by heıkrk and sum we obtain the semi-discrete Fourier transform,
so

h
1
X

r=�1
Un+1

r

eikrh = h
1
X

r=�1
Un

r

eikrh

+ µ

h
1
X

r=�1
eikrh

�

Un

r+1

� 2Un

r

+ Un

r�1

�

!

(12.33)

80

gives when we re-index two terms on the RHS (and use the sum being over an infinite
range, clearly this would not work if the range of the index r were bounded)

Ûn+1(k) = Ûn(k) + µ
�

e�ikh � 2 + eikh
�

Ûn(k) (12.34)

so that

Ûn+1(k) = Ûn(k)� 4µ sin2

kh

2
Ûn(k) (12.35)

or with �(k) = 1� 4µ sin2(kh/2), we have

Ûn+1(k) = �(k)Ûn(k). (12.36)

Hence using Parseval’s Identity

kUn+1k
`

2

=
1p
2⇡

kÛn+1k
L

2

=
1p
2⇡

k�Ûnk
L

2

(12.37)

or

kUn+1k
`

2

 max
k

|�| kUnk
`

2

. (12.38)

Hence max
k

|�(k)|  1 (with k 2 [�⇡/h, ⇡/h]) is su�cient for practical stability, so
that,

�1  1� 4µ sin2

kh

2
 1 (12.39)

gives practical stability (and as we shall show shortly, this is satisfied when µ  1/2).

For most linear discrete schemes on the whole real line, analysis for stability proceeds
by deriving

Ûn+1(k) = �(k)Ûn(k) (12.40)

and then determining conditions for which

max
k2(�⇡/h,⇡/h)

|�(k)|  1, (12.41)

and the general experience is that even if the problem is not defined on the whole real
line, ignoring the boundaries and extending the domain to the whole line and using
a mode

Un

r

⇠ �neikrh (12.42)

and then applying (12.41) [or using a smi-discrete transform] can still give useful
practical stability conditions.

Definition. A finite di↵erence scheme is von Neumann stable for 0  t  T
max

if
there exists C > 0 such that

kUnk
`

2

 CkU0k
`

2

. (12.43)

81

This is a little less restrictive than practical stability (practical stability) von Neu-
mann stability.)

Lemma. If Ûn+1(k) = �(k)Ûn(k) and |�(k)|  1 +K�t 8k 2 [�⇡/h, ⇡/h] then the
scheme is von Neumann stable.

Proof. Using Parseval’s Identity

kUn+1k
`

2

 (1 +K�t)kUnk
`

2

(12.44)

so

kUnk
`

2

 (1 +K�t)nkU0k
`

2

(12.45)

 enK�tkU0k
`

2

(12.46)

but for 0  n�t < T
max

, the exponential is bounded and so

kUnk
`

2

 eKT

maxkU0k
`

2

(12.47)

and the scheme is von Neumann stable.

Theorem: Lax Equivalence Theorem. (without proof) For a consistent di↵erence
approximation to a well posed linear evolutionary problem, stability as �t ! 0 is
necessary and su�cient for convergence.

This is the equivalent statement for PDEs to Dahlquist’s theorem for linear multistep
methods.

82

Lecture 13

Analysis of a Fully Implicit Scheme

The scheme just considered is an explicit scheme, we can derive an implicit scheme
from

✓

@u

@t

◆

n+1

r

⇡ Un+1

r

� Un

r

�t
(13.1)

✓

@2u

@x2

◆

n+1

r

⇡ Un+1

r+1

� 2Un+1

r

+ Un+1

r�1

h2

(13.2)

with a finite di↵erence stencil as shown in Figure 18.

(r, n)

(r � 1, n+ 1) (r, n+ 1) (r + 1, n+ 1)

Figure 18: A finite di↵erence stencil for the heat equation using an implicit scheme.

So now, letting µ = �/h2

�µUn+1

r�1

+ (1 + 2µ)Un+1

r

� µUn+1

r+1

= Un

r

. (13.3)

If we write this out for, say, h = 1/4

Un+1

0

= 0
�µUn+1

0

+ (1 + 2µ)Un+1

1

� µUn+1

2

= Un

1

� µUn+1

1

+ (1 + 2µ)Un+1

2

� µUn+1

3

= Un

2

� µUn+1

2

+ (1 + 2µ)Un+1

3

� µUn+1

4

= Un

3

Un+1

4

= 0.

(13.4)

In matrix terms
2

6

6

6

6

4

1 0 0 0 0
�µ 1 + 2µ �µ 0 0
0 �µ 1 + 2µ �µ 0
0 0 �µ 1 + 2µ �µ
0 0 0 0 1

3

7

7

7

7

5

2

6

6

6

6

4

Un+1

0

Un+1

1

Un+1

2

Un+1

3

Un+1

4

3

7

7

7

7

5

=

2

6

6

6

6

4

0
Un

1

Un

2

Un

3

0

3

7

7

7

7

5

(13.5)

83

This is a tridiagonal coe�cient matrix, and for general M , gives a system that can
be e�ciently solved by the Thomas Algorithm.

We can in this model problem trivially eliminate boundary values and define

K =

0

B

B

B

B

B

B

B

@

+2 �1 0 0
�1 +2 �1 0
0 �1 +2 �1 0 . . .

.
. 0 �1 +2 �1
0 0 �1 +2

1

C

C

C

C

C

C

C

A

(M�1)⇥(M�1)

(13.6)

then we have:

Explicit Scheme

Un+1 =

2

6

4

Un+1

1

...
Un+1

M�1

3

7

5

= (I � µK)

2

6

4

Un

1

...
Un

M�1

3

7

5

= (I � µK)Un. (13.7)

Implicit Scheme

(I + µK)Un+1 = Un. (13.8)

The implicit scheme could be modified by using a combination of space derivatives at
level n and n+ 1. Let 0  ✓  1 and approximate the space deivative by a weighted
sum of the values at time level n and level n+ 1:

@2u

@x2

⇡ ✓

✓

@2u

@x2

◆

n+1

+ (1� ✓)

✓

@2u

@x2

◆

n

(13.9)

or

Un+1

r

� Un

r

�t
= ✓

Un+1

r+1

� 2Un+1

r

+ Un+1

r�1

h2

+ (1� ✓)
Un

r+1

� 2Un

r

+ Un

r�1

h2

(13.10)

or in matrix terms

(I + µ✓K)Un+1 = (I � µ(1� ✓)K)Un, (13.11)

and is a form of theta method.

Thomas Algorithm

Many numerical schemes which use three point stencils give tridiagonal matrix prob-
lems, for example, we have just seen that the implicit scheme

Un+1

r

� Un

r

�t
=

Un+1

r+1

� 2Un+1

r

+ Un+1

r�1

h2

, (13.12)

84

results in the matrix problem:

(I + µK)Un+1 = Un. (13.13)

This has the matrix (with boundary values eliminated) of the general form

b
1

Un+1

1

� c
1

Un+1

2

= Un

1

�a
2

Un+1

1

+ b
2

Un+1

2

� c
2

Un+1

3

= Un

2

.
� a

M�1

Un+1

M�2

+ b
M�1

Un+1

M�1

= Un

M�1

(13.14)

So we can state a fairly common matrix representation

b
1

U
1

� c
1

U
2

= d
1

�a
2

U
1

+ b
2

U
2

� c
2

U
3

= d
2

� a
3

U
2

+ b
3

U
3

� c
3

U
4

= d
3

. . .
� a

M�1

U
M�2

+ b
M�1

U
M�1

= d
M�1

(13.15)

If we normalise the first row and eliminate the a
2

term in the second row

U
1

� c

1

b

1

U
2

= d

1

b

1

0 �
⇣

b
2

� a

2

b

1

c
1

⌘

U
2

� c
3

U
3

= d
2

+ a

2

b

1

d
1

0 � a
3

U
2

+ b
3

U
3

� c
3

U
4

= d
3

(13.16)

etc. It is a class exercise to show that

U
1

� e
1

U
2

= f
1

U
2

� e
2

U
3

= f
2

. . .
U
M�2

� e
M�2

U
M

= f
M�2

U
M�1

= f
M�1

(13.17)

where e
0

= 0 and f
0

= 0 and

e
r

=
c
r

b
r

� a
r

e
r�1

, r = 1, . . . ,M � 2 (13.18)

f
r

=
d
r

+ a
r

f
r�1

b
r

� a
r

e
r�1

, r = 1, . . . ,M � 1. (13.19)

Then with U
M�1

= f
M�1

U
M�2

= f
M�2

+ e
M�2

U
M�1

(13.20)

or

U
r

= f
r

+ e
r

U
r+1

for r = M � 2,M � 3, . . . , 1. (13.21)

From an implementaiton point of view, note that the Thomas algorithm does not
require the full matrix to be stored, only four vectors a, b, c, d, so it is perfectly
feasible to handle problems where M is very large and where the full M � 1⇥M � 1
coe�cient matrix could not possibly be stored.

85

(i) Truncation error: Implicit Scheme

If we turn to the fully implicit scheme

�µUn+1

r�1

+ (1 + 2µ)Un+1

r

� µUn+1

r+1

= Un

r

, (13.22)

and evaluate the truncation error by expanding about (rh, (n+ 1)�t)

T n+1

r

=
1

2
�t

@2u

@t2
(rh, ⌘̂

n+1

) +
1

12
h2

@4u

@x4

(⇠̂
r+1

, t
n+1

), (13.23)

where ⌘̂
n+1

2 (t
n

, t
n+1

) and ⇠̂
r+1

2 (x
r�1

, x
r+1

). Hence the order of the scheme is the
same as for the explicit scheme, that is first order in time and second order in space.

(ii) Convergence: Implicit Scheme

As before, let en
j

= un

j

� Un

j

to obtain

en+1

r

� en
r

�t
� en+1

r+1

� 2en+1

r

+ en+1

r�1

h2

= T n+1

r

(13.24)

so that

(1 + 2µ)en+1

r

= en
r

+ µen+1

r+1

+ µen+1

r�1

��tT n

r

. (13.25)

Let En = max
r

|en
r

|, then
(1 + 2µ)|en+1

r

|  En + µEn+1 + µEn+1 +�t|T n+1

r

| (13.26)

for all r, so that we must also have

(1 + 2µ)En+1  En + µEn+1 + µEn+1 +�t|T n+1| (13.27)

where T n+1 = max
r

T n+1

r

, and hence

En+1  En +�t|T n+1|. (13.28)

Provided E0 = 0, then with T = max
r,n

|T n

r

|  C�t we have

|En+1|  (n+ 1)�tT = t
n+1

C�t (13.29)

and if t
n

! t as �t ! 0, n ! 1
|En+1|  tC�t ! 0. (13.30)

However, by definition |en+1

r

|  En+1 so we must have |en+1

r

| ! 0 as �t ! 0, n ! 1,
(n + 1)�t ! t, and so as for the explicit scheme, we deduce convergence, only now
the scheme converges unconditionally.

86

(iii) Stability: Implicit Scheme

As for the explicit scheme, we can either ise a semi-discrete transform, multiply the
discrete equation by heıkrk and sum, reindex, to obtain

[1 + µ(2� eıkh � e�ıkh)]Ûn+1(k) = Ûn(k), (13.31)

or

(1 + 4 sin2

1

2
kh)Ûn+1(k) = Ûn(k), (13.32)

so that

� =
1

1 + 4µ sin2 kh

2

, (13.33)

or we can take a mode, Un

r

⇠ �neikrh, substitute into the discretisation as before,
cancel common factors, to obtain

�
�

1 + 2µ� µeikh � µe�ikh

�

= 1 (13.34)

so giving exactly the same result.

The structure of � = 1/(1 + non� negative) means that |�|  1 for all k and the
scheme is unconditionally stable.

As for the explicit method, we can see that the numerical amplification factor �(k)
approximates the continuous amplification factor ⇤(k)very well for small values of k
but much less well for large values (but of course, the mode aplictude of the solutons
decreases rapidly as k increases so the failure of � to match ⇤ for large k may have very
little e↵ect on the computed solution. The comparison between the tow amplification
factors is shown in figure 19.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

A
m

p
li

fi
ca

ti
o
n
:

λ

kh/π

Figure 19: Comparison of amplification factors ⇤ (continuous di↵usion equation)
and � (implicit Euler method) as the wave number kh varies in [�⇡, ⇡] for the case
µ = 0.25. (—-): ⇤, (- - -) �.

87

Lecture 14

Analysis of a Theta-method

As before, let µ = �t/h2 and assume 0  ✓  1, then a theta method will relate
values at level n and n+ 1 according to

Un+1

r

� Un

r

�t
= (1� ✓)

Un

r+1

� 2Un

r

+ Un

r�1

h2

+ ✓
Un+1

r+1

� 2Un+1

r

+ Un+1

r�1

h2

(14.1)

so that

�✓µUn+1

r�1

+ (1 + 2✓µ)Un+1

r

� ✓µUn+1

r+1

=

(1� ✓)µUn

r�1

+ (1� 2(1� ✓)µ)Un

r

+ (1� ✓)µUn

r+1

, (14.2)

.

(i)Truncation Error of ✓-method

While Taylor series expansion can be about a number of di↵erent points, the simplest
expansion for a theta method is about the mid point (x

r

, t
n+1/2

) since symmetry helps
with cancelation of some terms.

Un+1

r

Un

r

x
r�1

x
r+1

x
r

t
n+1

t
n

Un+1

r�1

Un+1

r+1

Un

r�1

Un

r+1

(x
r

, t
n+1/2

)
*

Figure 20: Grid points for the theta method.

We expand terms in the truncation error about (x
r

, t
n+1/2

) (see Figure 20):

un+1

r

=

"

u+
1

2
�tu

t

+
1

2

✓

1

2
�t

◆

2

u
tt

+
1

6

✓

1

2
�t

◆

3

u
ttt

+ . . .

#

n+1/2

r

(14.3)

un

r

=

"

u� 1

2
�tu

t

+
1

2

✓

1

2
�t

◆

2

u
tt

� 1

6

✓

1

2
�t

◆

3

u
ttt

+ . . .

#

n+1/2

r

(14.4)

88

so that

un+1

r

� un

r

�t
=



u
t

+
1

24
�t2u

ttt

+ . . .

�

n+1/2

r

. (14.5)

We also know that

A =
un+1

r+1

� 2un+1

r

+ un+1

r�1

h2

=



u
xx

+
1

12
h2u

xxxx

+ . . .

�

n+1

r

(14.6)

B =
un

r+1

� 2un

r

+ un

r�1

h2

=



u
xx

+
1

12
h2u

xxxx

+ . . .

�

n

r

(14.7)

and we expand each of these about (x
r

, t
n+1/2

) to get

A =

"

u
xx

+
1

2
�tu

xxt

+
1

2

✓

1

2
�t

◆

2

u
xxtt

+ . . .

#

n+1/2

r

(14.8)

+
1

12
h2



u
xxxx

+
1

2
�tu

xxxxt

+ . . .

�

n+1/2

r

+ . . . (14.9)

B =

"

u
xx

� 1

2
�tu

xxt

+
1

2

✓

1

2
�t

◆

2

u
xxtt

+ . . .

#

n+1/2

r

(14.10)

+
1

12
h2



u
xxxx

� 1

2
�tu

xxxxt

+ . . .

�

n+1/2

r

+ . . . (14.11)

so that

✓A+ (1� ✓)B = u
xx

+
1

12
h2u

xxxx

+
2

6!
h4u

xxxxxx

+ . . . (14.12)

+
1

2
(✓ � (1� ✓))�t



u
xxt

+
1

12
h2u

xxxxt

+ . . .

�

+
1

8
�t2u

xxtt

+ . . .(14.13)

so that

T n+1/2

r

=
1

2
(1� 2✓)�tu

xxt

� 1

12
h2u

xxxx

+�t2


1

24
u
ttt

� 1

8
u
xxtt

�

+(14.14)

If we use u
t

= u
xx

, u
tt

= u
xxxx

etc then

T n+1/2

r

=
1

2
(1� 2✓)�tu

xxxx

� 1

12
h2u

xxxx

� 1

12
�t2u

xxxxxx

+ (14.15)

The case ✓ = 1/2 is special in that the first term is zero and so the scheme is second
order in space and time. This is called the Crank-Nicholson scheme.

89

(ii) Convergence: Theta-method

For convergence of the ✓ method, let 1� ✓ � 0 and 1� 2(1� ✓) � 0.

Combining the definition of the scheme and the truncation error then the errors for
the scheme much satisfy

(1 + 2µ✓)en+1

r

= µ✓(en+1

r�1

+ en+1

r+1

)

+ µ(1� ✓)(en
r�1

+ en
r+1

) + (1� 2µ(1� ✓))en
r

��tT n+1/2

r

, (14.16)

and letting En = max |en
r

| and T n+1/2 = max |T n+1/2

r

| and since 1 � ✓ � 0 and
1� 2(1� ✓) � 0 we have

(1 + 2µ✓)En+1  2µ✓En+1 + 2µ(1� ✓)En + (1� 2µ(1� ✓))En +�tT n+1/2.(14.17)

and thus

En+1  En +�tT n+1/2. (14.18)

Starting with exact initial data, E0 = 0,

En  �t
n�1

X

p=0

T p+1/2  n�tmaxT n+1/2 (14.19)

and n�t  t
max

so that En ! 0 as T n+1/2 ! 0 with �t ! 0 and the scheme is
convergent.

(iii) Stability: Theta-method

As in the two previous examples, we obtain exactly the same result using either a
semi-discrete transofrom or by substituting a Fourier mode and you should be able
to do both if asked in an examination. Here, we apply analysis using a Fourier mode

Un

r

⇠ �neıkrh,

which gives after cancellation of common factors
✓

1 + 4✓µ sin2

kh

2

◆

� = 1� 4(1� ✓)µ sin2

kh

2
(14.20)

so that

� =
1� 4(1� ✓)µ sin2 kh

2

1 + 4✓µ sin2 kh

2

(14.21)

90

or, with p = sin2(kh/2)

� =
1� 4(1� ✓)µp

1 + 4✓µp
(14.22)

where µ > 0 and ✓ 2 [0, 1]. This is a monotonically decreasing function of p and our
interest is for 0  p  1. If p ! 1 then � ! (✓�1)/✓ so we have two cases as shown
in Figure 21 depending on the relation of this limit to minus one.

θ<1/2

p

p=0 p=1

1

−1

λ(p=1)

−(1−θ)/θ ≥ −1 or θ ≥ 1/2

Stability
region

Figure 21: Stability region for the theta method.

Provided the large p limit of � is greater than or equal to �1, the scheme is guaranteed
to be stable since the value of � must be between ±1. This case corresponds to
✓ � 1/2.

In the case ✓ < 1/2 we need to check that �(p = 1) � �1 for the scheme to be stable.
We need

�(p = 1) =
1� 4(1� ✓)µ

1 + 4✓µ
� �1 (14.23)

or

µ(1� 2✓)  1

2
, ✓ <

1

2
. (14.24)

So for stability when ✓ < 1/2, we must have

µ  1

2(1� 2✓)
. (14.25)

As for explict and fuly implicit Euler methods, we can calculate values of the amplifi-
cation factor lambda and compare with ⇤; the case ✓ = 1/2 is known as Crank–
Nicholson and values are shown in figure 22 for the same mesh ratio as before,

91

µ = 0.25. As with the previous methods the agreement for small k is excellent,
agreement for larger k is less good but as observed, this has little impact on the cal-
culated solution as the Fourier transform of the original distirbution of u at the start
is highly likely to have very small coe�cients at large k.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.5

1
A

m
p
li

fi
ca

ti
o
n
:

λ

kh/π

Figure 22: Comparison of amplification factors ⇤ (continuous di↵usion equation) and
� (Crank Nicholson, ✓ = 1/2) as the wave number kh varies in [�⇡, ⇡] for the case
µ = 0.25. (—-): ⇤, (- - -) �.

We can see the e↵ect of the amplification values if the solution of di↵usion problem
is computed. One simple model problem is that already anlysed, that of a delta
function distribution in space as initial value with exact solution given by (11.22). It
is not practical to start this calculation at t = 0, however, the exact solution can be
specified at t = �t and the evolution computed to some later time. All three methods
give nearly identical computed values at later times, see figure 23 where the initial
spike is partially shown and all three methods overlay the exact solution very closely.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

U

Figure 23: Comparison of computed solutions for a delta function initial distribution,
calculated for µ = 0.25, h = 0.05 starting from the exact solution at t = �t and
computing until t = 1 for explicit Euler, implicit Euler and Crank–Nicholson. On
this visible resolution all three computed solutions are identical.

The error between the computed solutions and the exact solution are not apparent in
figure 23, they are show in a semi-log plot in figure 24, all three methods give errors
of similar magnitude (even though Crank-Nicholson has higher order convergence in
h the errors are much the same and dominated by all three methods being first order
in �t.

92

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

x

lo
g

|u
−

U
|

Figure 24: Comparison of errors at t = 1 for µ = 0.25, h = 0.05 for (i) (—-) Explicit
Euler, (ii) (- - -) Fully Implicit Euler, (iii) (- . -) Crank–Nicholson.

You should appreciate that any limit on µ is a severe practical constraint and for the
explicit scheme we have in terms of time and space step

�t  1

2
h2, (14.26)

so, for example, if we were to reduce the space step by a factor of two, not only would
we have twices as many space computations each time step, we would also need to
reduce the time step by a factor of four; halving the mesh size leads to eight time as
many computations. If, on the other hand, we used an implicit scheme so as to avoid
a stablity constraint, halving the mesh to increase accuracy would lead to a matrix
problem where the coe�cient matrix has doubled in size, and inversion of this matrix
requires a similar increase in number of computations (that is, roughly a factor of
eight) although very e�cient matrix solvers can have a big e↵ect here.

The Leapfrog Method

The methods we have looked at so far are all first order in time. One possibility to
increase temporal accuracy is to use central di↵erences in time as well as in space.
This adds a level of complexity since data has to be stored for two previous time
steps, giving the three level leapfrog method (see Figure 25 for the finite di↵erence

93

stencil):
✓

@u

@t

◆

n

r

⇡ Un+1

r

� Un�1

r

2�t
(14.27)

✓

@2u

@x2

◆

n

r

⇡ Un

r+1

� 2Un

r

+ Un

r�1

h2

(14.28)

Un+1

r

= Un�1

r

+ 2µ
�

Un

r+1

� 2Un

r

+ Un

r�1

�

. (14.29)

It is a simple exercise to show that T n

r

⇠ O(�t2, h2).

r + 1

t
n�1

t
n

t
n+1

@

2

u

@x

2

r � 1 r

@u

@t

Figure 25: The finite di↵erence stencil for the leapfrog method

If we look at Fourier modes Un

r

⇠ �neikrh then

� =
1

�
+ 2µ(2 cos(kh)� 2) (14.30)

=
1

�
� 8µ sin2

kh

2
. (14.31)

Let p = sin2(kh/2) then

�2 + 8µp�� 1 = 0 (14.32)

with 0  p  1. The roots are

�
1,2

= �4µp±
p

16µ2p2 + 1 (14.33)

so while

�
1

=
p

16µ2p2 + 1� 4µp < 1 (14.34)

the other root

�
2

= �
p

16µ2p2 + 1� 4µp < �1 (14.35)

so the scheme will always be unstable.

94

Lecture 15

Eigenvalue analysis

The use of individual Fourier modes Un

r

⇠ �neikrh or the discrete Fourier transform,
Ûn is based on an infinite x domain. If the domain is finite, analysis is more di�cult. It
may be that the domain can be extended to an infinite domain by making the solution
periodic in space. It is also sometimes possible to apply an eigenvalue analysis of the
finite domain approximation. We give one example here.

If we take the domain 0  x  1 with u(0, t) = u(1, t) = 0 and apply an explicit
method we saw that the matrix

K =

0

B

B

B

B

B

B

B

@

2 �1 0 0
�1 2 �1 0
0 �1 2 �1 0 . . .

.
. 0 �1 2 �1
0 0 �1 2

1

C

C

C

C

C

C

C

A

(M�1)⇥(M�1)

(15.1)

was central to the scheme with

Un+1 = (I � µK)Un. (15.2)

K is an (M � 1)⇥ (M � 1) matrix.

Suppose the eigenvalues ofK are denoted �
1

, . . . ,�
M�1

and eigenvectors z1, . . . , zM�1.
Consider

zp =

0

B

B

B

B

B

B

B

@

sin(p⇡h)
sin(2p⇡h)

...
sin(rp⇡h)

...
sin((M � 1)p⇡h)

1

C

C

C

C

C

C

C

A

(15.3)

Note also that as M = 1/h then sin(Mp⇡h) = sin(p⇡) = 0. Now evaluate Kzp

Kzp =

0

B

B

B

B

B

B

B

@

0 + 2 sin(p⇡h) � sin(2p⇡h)
� sin(p⇡h) + 2 sin(2p⇡h) � sin(3p⇡h)

...
� sin((r � 1)p⇡h) + 2 sin(rp⇡h) � sin((r + 1)p⇡h)

...
� sin((M � 2)p⇡h) + 2 sin((M � 1)p⇡h) � sin(Mp⇡h)

1

C

C

C

C

C

C

C

A

(15.4)

95

but

sin((r � 1)p⇡h) = sin(rp⇡h) cos(p⇡h)� cos(rp⇡h) sin(p⇡h) (15.5)

sin((r + 1)p⇡h) = sin(rp⇡h) cos(p⇡h) + cos(rp⇡h) sin(p⇡h) (15.6)

and so

� sin((r � 1)p⇡h) + 2 sin(rp⇡h) � sin((r + 1)p⇡h)

= (2� 2 cos(p⇡h))
| {z }

factor same for each r

sin(rp⇡h). (15.7)

Hence

Kzp = (2� 2 cos(p⇡h))zp = 4 sin2

p⇡h

2
zp (15.8)

and the eigenvalues of K are �
p

= 4 sin2(p⇡h/2). Hence the eigenvalue of I �µK are
1� 4µ sin2(p⇡h/2) and if the eigenvalues of I �µK are all to have modulus less than
or equal to 1, we need µ  1/2 as before.

Maximum principle analysis

In some situations it is not possible to apply any Fourier type analysis, often becasue
the domain shape does not allow either Fourier modes or matrix eigenvalue analysis.
It may still be possible bound how the the solution can evolve by showing that there
is a maximum principle that constrains any calculation in the numerical solution to
be between maximum and minimum values on the boundary of the computational
region..

We first look at a relatively trivial result from linear interpolation, this is worth doing
as the undelying argument is at the heart of proof of maximum principles. The lemma
is just that for linear interpolation, the interpolated value will always lay between the
smaller and the larger of the two values being interpolated.

Lemma. Let U = ↵V + (1� ↵)W for 0  ↵  1 then U  max {V,W}.

Proof. Let M = max {V,W} and write V = M � ✏
1

, W = M � ✏
2

for some ✏
1

, ✏
2

� 0
and

U = ↵(M � ✏
1

) + (1� ↵)(M � ✏
2

) (15.9)

= M � ↵✏
1

� (1� ↵)✏
2

(15.10)

 M. (15.11)

96

Lemma. Extension

For data {V
1

, . . . , V
k

}, let
U =

k

X

r=1

↵
r

V
r

, (15.12)

where ↵
1

, . . . ,↵
k

satisfy

1. ↵
r

� 0 for r = 1, . . . , k,

2.
P

k

r=1

↵
r

= 1,

then

min
r

{V
r

}  U =
k

X

r=1

↵
r

V
r

 max
r

{V
r

} . (15.13)

In the case of the finite di↵erence schemes we develop, if we can write

�Un+1

r

=
X

s2adjacent nodes

↵
s

Un,n+1

s

(15.14)

where

1. ↵
r

� 0,

2. � > 0,

3. � =
P

↵
r

,

then
min {adjacent nodes}  Un+1

r

 max {adjacent nodes} . (15.15)

Maximum Principle for ✓-method for Di↵usion Equation. Suppose on the
boundaries

t = 0, 0  x  1; x = 0, t > 0; x = 1, t > 0,

Dirichlet data is given by:

Un

0

, Un

M

, n = 1, 2 . . . N =
T
max

�t
(15.16)

U0

r

r = 0, . . . ,M, with h =
1

M
. (15.17)

97

Let

@U
max

= max
�

Un

0

, Un

M

, n = 1, . . . , N ;U0

r

, r = 0, . . . ,M

, (15.18)

@U
min

= min
�

Un

0

, Un

M

, n = 1, . . . , N ;U0

r

, r = 0, . . . ,M

, (15.19)

then the ✓ method for 0  ✓  1 satisfies

@U
min

 Un

r

 @U
max

, (15.20)

provided
µ(1� ✓)  1/2. (15.21)

Proof. Let M = max
r,n

Un

r

and suppose M is achieved at the location (r, n + 1) in
the interior of the computation region.

Suppose Un+1

r�1

= M � ✏
1

, Un+1

r+1

= M � ✏
2

, Un

r�1

= M � ✏
3

, Un

r

= M � ✏
4

, and
Un

r+1

= M � ✏
5

, where ✏
1

, . . . , ✏
5

� 0

The ✓ scheme is

(1 + 2µ✓)Un+1

r

=

µ✓(Un+1

r�1

+ Un+1

r+1

) + µ(1� ✓)(Un

r�1

+ Un

r+1

) + (1� 2µ(1� ✓))Un

r

(15.22)

and we have 1� ✓ � 0 and 1� 2(1� ✓)µ � 0. Thus

(1 + 2µ✓)M = (1 + 2µ✓)M

+ µ✓(✏
1

+ ✏
2

) + µ(1� ✓)(✏
3

+ ✏
5

) + (1� 2µ(1� ✓))✏
4

(15.23)

or

µ✓(✏
1

+ ✏
2

) + µ(1� ✓)(✏
3

+ ✏
5

) + (1� 2µ(1� ✓))✏
4

= 0. (15.24)

This is only possible if ✏
1

= ✏
2

= ✏
3

= ✏
4

= ✏
5

= 0 and hence all points at (n+1, r�1),
(n+ 1, r+ 1), (n, r� 1), (n, r), and (n, r+ 1) must also have value M . Continue this
process at neighbouring x-locations, r� 1, r+1 or at time step n until the boundary
(either the boundaries at x = 0, 1 or the initial value boundary at t = 0) is reached
so M must occur on the boundary (and indeed M cannot be achieved in the interior
unless Un

r

= M everywhere).

A similar argument for M̄ = min
r,n

Un

r

, assume minimum in the interior, let adjacent
points be M̄ + ✏

i

with ✏
i

� 0 and deduce ✏
i

= 0.

Lemma. Provided 2µ(1 � ✓)  1, then ✓-method for our model di↵usion equation
(defined on the whole real line) satisfies

kUnk
`1  kU0k

`1 , n = 1, 2, . . . ,

where the infinity norm of a discrete set of data {U
r

: r 2 Z} is

kUk
`1 = max

r2Z|Ur

|.

98

Proof. This result follows from the previous theorem, alternately this can be proved
in two steps, first establish that

kUn+1k
`1  kUnk

`1 , n = 0, 1, . . . , (15.25)

from which it follows that

kUnk
`1  kU0k

`1 , n = 1, 2,

The proof of (15.25) may be from the same argument as for the maximum principle
(that is by contradiction) or by taking a norm and using a triangle inequality to
obtain

(1 + 2µ✓)kUn+1k1 
µ✓(kUn+1k1 + kUn+1k1) + µ(1� ✓)(kUnk1 + kUnk1) + (1� 2µ(1� ✓))kUnk1

provided 1� ✓ � 0 and 1� 2(1� ✓)µ � 0, so that

kUn+1k
`1  kUnk

`1 .

An advantage of using a maximum principle is that the method can be applied both
for a finite domain or in the context of our original problem on the whole real line
where the solutions has to decay to zero when |x| ! 1, and so we can prove stability
in the `1 norm (which is a much stronger norm than the `

2

norm).

The condition µ(1�✓)  1/2 or �t  h2/2(1�✓) is more restrictive than the stability
condition µ  1/2(1� 2✓). This is illustrated in Figure 26.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

µ

θ

Figure 26: Stability limits on µ = �t/h2 from `
2

analysis, (—-), and from `1 analysis
or a maximum principle, (- - -). In each case, the numerical scheme is stable for µ
values up to and below the relevant bounding curve.

It is worth being clear about how figure 26 should be interpreted. The limits show
where we can prove stability of the numerical scheme for our model problem using

99

either, for the whole real line, a semi-discrete or modal analysis and the `
2

norm,
or for a finite or infinite space domain, a maximum principle and the `1 norm. In
the case of semi-discrete transform or modal analysis, if the stability condition on µ
is exceeded, then there will be growing modes and the nuerical solution will become
unbounded. In the case where a maximum principle is used for a finite interval, we
only claim stability in the `1 norm for µ values below a critical value but we do not
say anything about what should happen for µ values above this stability value.

Boundary conditions

On the boundaries of the interval 0  x  1, we have so far considered only zero
Dirichlet conditions u(0, t) = u(1, t) = 0. Suppose there were Neumann or mixed
Robin boundary conditions, for example,

Neumann
@u

@x
(0, t) = f(t) (15.26)

Robin ↵u(0, t) + �
@u

@x
(0, t) = g(t) � 6= 0. (15.27)

These can be handled best by applying an implicit discrete boundary condition. Sup-
pose we temporarily assume that a value U�1

exists, the second derivative u
xx

at the
boundary has discrete approximation

@2u

@x2

�

�

�

�

n

0

+ Un

1

� 2Un

0

+ Un

�1

h2

(15.28)

and the boundary condition can be discretised by

↵u+ �
@u

@x

�

�

�

�

n

0

= ↵Un

0

+ �
Un

1

� Un

�1

2h
= gn. (15.29)

Rearranging the boundary condition (15.29) we have

Un

�1

=
2↵hUn

0

+ �Un

1

� 2hgn

�
(15.30)

and substituting this into (15.28) gives

@2u

@x2

�

�

�

�

n

0

⇡ Un

1

� 2Un

0

+ Un

1

+ 2↵h

�

Un

0

� 2hg

n

�

h2

. (15.31)

Thus the ficticious point Un

�1

can be eliminated algebraically and we have a dis-
cretisation that implicitly applies the mixed boundary condition and the di↵erential
equation at the boundary point

Un+1

0

� Un

0

�t
=

2Un

1

� 2(1� ↵h

�

)Un

0

h2

� 2gn

h�
. (15.32)

100

Finite Element Approximation

All the finite di↵erence methods we have considered attempt to approximate a con-
tinuous function at a discrete set of points. An alternative way of looking at the
problem of approximating the continuous system is to try to represent the solution
using a finite set of continuous functions. One method that uses this idea is called fi-
nite elements. While the origins of the method were in analysis of elastic deformation
of engineering structures, the mathematical theory has been developed and extended
and is the subject of whole courses: here we only will get a brief taste for the method.

We can look at a specific problem: the di↵erential equation

u
t

= u
xx

, 0 < x < 1, t > 0, (15.33)

with initial condition u(x, 0) = u
0

(x) and boundary conditions u
x

(0, t) = u
x

(1, t) = 0.
We suppose that for the inner product

(u, v) =

Z

1

0

u(x)v(x)dx, (15.34)

that we require u to be the solution of

(u
t

, v) + (u
x

, v
x

) = 0, (15.35)

subject to the initial condition, also in inner product form,

(u(·, 0), v) = (u
0

, v) (15.36)

where v ranges over a space of functions. This is called a weak form of the equation.

In order to determine an appropriate space of functions {�
r

},we retain the same
mesh we might use for finite di↵erence approximation, x

r

= rh, r = 0, 1, . . .M , with
h = 1/M , and consider a finite set of continuous functions, here denoted �

r

(x), r =
0, 1, . . .M .

Thus we define the space of functions

V
h

= span{�
0

, . . . ,�
M

}, (15.37)

and assume both that the numerical solution will come from the space V
h

and that
the weak form will use the space V

h

as a test space. Hence Un is given by a linear
combination of these functions and at time t

n

the weight for each of these functions
is denoted Un

r

, so that

Un(x) =
M

X

r=0

Un

r

�
r

(x), (15.38)

101

is the approximation to the continuous solution un(x) = u(x, t
n

). The solution is then
determined by choosing the approximating function U to satisfy the weak form equa-
tion for each function that generates V

h

(and so will satisfy the weak form equation
for any linear combination of these functions), that is

(U
t

,�
r

)� (U
x

,�0
r

), r = 1, . . . ,M � 1. (15.39)

The time derivative can be discretised using a forward di↵erence,

(
Un+1(x)� Un(x)

�t
,�

r

) = �(Un

x

,�0
r

), r = 1, . . . ,M � 1. (15.40)

Finally using the representation of the solution in terms of the functions �
r

,

M

X

s=0

Un+1

s

(�
s

,�
r

) =
M

X

s=0

Un

r

(�
s

,�
r

)��t
M

X

s=0

Un

s

(�0
s

,�0
r

), r = 1, . . . ,M � 1. (15.41)

Without it being obvious, the weak formulation has made a great simplification. If
we retained the orginal di↵erential equation, we would have had to require that the
functions �

r

were twice di↵erentiable (at least piecewise so), now we only need them
to be once di↵erentiable (again, in a piecewise sense). The practical consequence is
that we can use piecewise linear functions with compact support so that the sums in
this equation range only over a few index values.

If we define

�(x) =

8

<

:

0, |x| > h,
1 + x/h, �h  x  0,
1� x/h, 0 < x  h,

(15.42)

and then let
�
r

(x) = �(x� x
r

), (15.43)

then we never have more than three successive functions overlap so that

(�
r�1

,�
r

) ⌘
Z

0

�h

�x

h
(1 +

x

h
)dx =

1

6
h,

(�
r

,�
r

) ⌘ 2

Z

h

0

(1� x

h
)2dx =

2

3
h,

(�0
r�1

,�0
r

) ⌘
Z

0

�h

�1

h
· 1
h
dx = �1

h
,

and

(�0
r

,�0
r

) ⌘ 2

Z

h

0

(�1

h
)2dx =

2

h
,

with all inner products zero when indices di↵er by more than one.

102

Using these in (15.41), for each r = 1, . . . ,M � 1,

h

6
(Un+1

r�1

+4Un+1

r

+Un+1

r+1

) =
h

6
(Un

r�1

+4Un

r

+Un

r+1

)+
�t

h
(Un

r�1

�2Un

r

+Un

r+1

). (15.44)

To these equations have to be added the two boundary conditions at x = 0, x = 1
and then the coe�cients at time step n+ 1 will be given by solution of a tridiagonal
system. Using the basis functions �

r

above, the values Un

r

have a dual interpretation,
being both the coe�cient or weight of the basis function �

r

at time t
n

, and also the
predicted value for u at the mesh point (x

r

, t
n

).

This brief introduction only begins the theory for finite element approximation which
is covered much more fully in other courses. Particularly when working in multiple
space dimensions, finite element methods o↵er great flexibility in covering irregular or
odd shaped domains and a range of basis functions (for example, piecewise quadratic
or higher order functions �

r

) also adds to flexibility. There are finite di↵erence meth-
ods that can cover such domains (finite volume methods fall in this category) but
often finite element methods are the prime choice for such problems.

103

Lecture 16

Two dimensional problems

Only a few real problems can be reduced to one space dimension, more usually in-
terest will be in situations involving surfaces (2D) or volumes (3D). We have time
only to look briefly at how the ideas from 1D extend to higher space dimensions,
as a general rule, for explicit methods, stability restrictions become more severe, for
implicit methods, the matrix inversion step becomes much more di�cult.

Suppose u = u(x, y, t) on 0  x  1, 0  y  1, t � 0 with

@u

@t
=

@2u

@x2

+
@2u

@y2
(16.1)

u = 0 on x = 0, x = 1, y = 0, y = 1 (16.2)

u = u
0

(x, y) on t = 0. (16.3)

In the unbounded domain, fundamental solutions are of the form

u(x, y, t) ⇠ e�(k

2

+`

2

)teikxei`y (16.4)

and defining a 2D Fourier Transform for functions v(x, y)

v̂(k, `) =

Z 1

�1

Z 1

�1
v(x, y)e�ikxe�i`y dx dy (16.5)

gives transform solutions

û(k, `, t) = û
0

(k, `)e�(k

2

+`

2

)t. (16.6)

The inverse transform for u can be manipulated into a convolution integral as before.

There are many methods to solve the continous 2D problem using discrete meshes.
Here we will look only briefly at rectangular meshes, as illustrated in figure 27(b) but
many other mesh shapes can be used, for example a mesh if equliateral triangles is
shown in figure 27(a) and there are methods which do not rely on any mesh over the
domain. This is particularly important for real domains which are rarely rectangular
in shape.

Now return to the problem as formulated on the unit square and let �x = 1/M
x

,
�y = 1/M

y

, t
n

= n�t, x
r

= r�x, y
s

= s�y and

Un

r,s

⇡ u(r�x, s�y, n�t).

Define two space di↵erence operators by

�2
x

Un

r,s

= Un

r+1,s

� 2Un

r,s

+ Un

r�1,s

, (16.7)

�2
y

Un

r,s

= Un

r,s+1

� 2Un

r,s

+ Un

r,s�1

. (16.8)

104

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y
(a) (b)

Figure 27: Two example 2D meshes: (a) equilateral triangles, (b) square mesh.

(a) Explicit method

We approximate the equation by an explicit method

Un+1

r,s

� Un

r,s

�t
=

1

�x2

�2
x

Un

r,s

+
1

�y2
�2
y

Un

r,s

(16.9)

for r = 1, . . . ,M
x

� 1, s = 1, . . . ,M
y

� 1 and n = 1, . . . , N = T
max

/�t.

Thus the algorithm is that given all valules Un

r,s

at time level n, we explicitly calculate
Un+1

r,s

at the next time level as shown in the stencil in Figure 28.

(b) Fully Implicit scheme

The fully implicit method will evaluate all the space derivatives at the n + 1 time
level

Un+1

r,s

� Un

r,s

�t
=

1

�x2

�2
x

Un+1

r,s

+
1

�y2
�2
y

Un+1

r,s

. (16.10)

Here, even though Un+1

r,s

, Un

r,s

look like arrays, we have to treat all the values as part
of a vector by

(Un)T =
⇥

U
1,1

, U
1,2

. . . , U
1,M

y

�1

, U
2,1

, . . . , U
2,M

y

�1

, , . . . , U
M

x

�1,1

, . . . , U
M

x

�1,M

y

�1

⇤

(16.11)
so that Un is a vector with (M

x

� 1)(M
y

� 1) elements.

105

x

y

t
n

t

t
n+1

Figure 28: The finite di↵erence stencil for the explicit method in 2D.

For simplicity let M
x

= M
y

= M , �x = �y = 1/M , µ = �t/�x2. Then equation
(16.10) is

�µUn+1

r,s�1

� µUn+1

r�1,s

+ (1 + 4µ)Un+1

r,s

� µUn+1

r+1,s

� µUn+1

r,s+1

= Un

r,s

. (16.12)

Define a (M � 1)⇥ (M � 1) matrix

B =

0

B

B

B

B

B

B

B

@

1 + 4µ �µ 0 0
�µ 1 + 4µ �µ 0
0 �µ 1 + 4µ �µ 0 . . .

.
. 0 �µ 1 + 4µ �µ
0 0 �µ 1 + 4µ

1

C

C

C

C

C

C

C

A

(M�1)⇥(M�1)

(16.13)

and let

A =

0

B

B

B

B

B

B

@

B �µI 0 0 . . . 0
�µI B �µI 0
0 �µI B �µI 0
.
. 0 �µI B �µI

�µI B

1

C

C

C

C

C

C

A

(M�1)

2⇥(M�1)

2

. (16.14)

Then

AUn+1 = Un (16.15)

106

or

Un+1 = A�1Un. (16.16)

The matrix A is very large (e.g. with h = 0.01, the vector U has 104 elements and A
is a 104⇥ 104 matrix). Special methods are needed to solve the system AUn+1 = Un.
Next term the course looks at methods to solve such systems. For the present we just
have to recognise that A is very large (in 3D with h = 0.01 on the unit cube, A would
be 106 ⇥ 106, i.e. 1012 entries, nearly all of which are zero).

(c) Theta-method

It is straightforward to set out a ✓ method:

Un+1

r,s

� Un

r,s

�t
= ✓

1

�x2

�2
x

Un+1

r,s

+ (1� ✓)
1

�x2

�2
x

Un

r,s

(16.17)

+ ✓
1

�y2
�2
y

Un+1

r,s

+ (1� ✓)
1

�y2
�2
y

Un

r,s

. (16.18)

As with the fully implicit method (which is obviously also the case here when ✓ = 1),
this requires a matrix problem to be solved at each time step when ✓ > 0 and reduces
to an explicit method when ✓ = 0.

Stability

For a modal analysis of stability, we neglect the boundary and suppose the scheme is
applied over a plane and look at modes Un

r,s

⇠ �neikr�xei`s�y so that we have

�2
x

Un

r,s

= (�2 + 2 cos(k�x))Un

r,s

= �4 sin2

k�x

2
Un

r,s

, (16.19)

�2
y

Un

r,s

= (�2 + 2 cos(`�y))Un

r,s

= �4 sin2

`�y

2
Un

r,s

. (16.20)

(a) Stability: Explicit method Substituion of the mode into the discrete scheme
gives

� = 1� 4µ
x

sin2

k�x

2
� 4µ

y

sin2

`�y

2
(16.21)

with µ
x

= �t/�x2, µ
y

= �t/�y2 and stability requires

µ
x

+ µ
y

 1

2
(16.22)

107

or

�t

✓

1

�x2

+
1

�y2

◆

 1

2
(16.23)

which is more restrictive than the 1D result.

(b) Stability: Implicit Method In this case, the modal analysis gives

� =
1

1 + 4µ
x

sin2 k�x

2

+ 4µ
y

sin2

`�y

2

(16.24)

so the method is unconditionally stable.

(c) Stability: Theta-method The algebra is a little more involved than for 1D
but essentially the same, we find

� =
1� 4(1� ✓)

�

µ
x

sin2 k�x

2

+ µ
y

sin2

`�y

2

�

1 + 4✓
�

µ
x

sin2 k�x

2

+ µ
y

sin2

`�y

2

� (16.25)

and we need 2(1� 2✓)(µ
x

+ µ
y

)  1 for stability when ✓ < 1/2 and there is uncondi-
tional stability for ✓ � 1/2.

Truncation error

We now need to use Taylor expansions in three dimensions, x, y and t.

We have u(x, y, t) with un

r,s

= u(r�x, s�y, n�t)

�2
x

un

r,s

= un

r+1,s

� 2un

r,s

+ un

r�1,s

(16.26)

=



u+�x
@u

@x
+

�x2

2!

@2u

@x2

+
�x3

3!

@3u

@x3

+
�x4

4!

@4u

@x4

+ . . .

�

n

r,s

(16.27)

�2un

r,s

(16.28)

+



u��x
@u

@x
+

�x2

2!

@2u

@x2

� �x3

3!

@3u

@x3

+
�x4

4!

@4u

@x4

+ . . .

�

n

r,s

(16.29)

= �x2

@2u

@x2

�

�

�

�

n

r,s

+
�x4

12

@4u

@x4

�

�

�

�

n

r,s

. (16.30)

Similarly

�2
y

un

r,s

= �y2
@2u

@y2

�

�

�

�

n

r,s

+
�y4

12

@4u

@y4

�

�

�

�

n

r,s

, (16.31)

108

with similar expressions at time level n+ 1.

We also have

un+1

r,s

� un

r,s

=



u+�t
@u

@t
+

�t2

2!

@2u

@t2
+ . . .

�

n

r,s

(16.32)

�un

r,s

(16.33)

= �t
@u

@t

�

�

�

�

n

r,s

+
�t2

2!

@2u

@t2

�

�

�

�

n

r,s

+ . . . (16.34)

As with one dimensional schemes, algebra is easiest if Taylor expansions are careflly
placed with respect to time level.

Explicit expand about (x
r

, y
s

, t
n

), see Figure 29.

Implicit expand about (x
r

, y
s

, t
n+1

), see Figure 30.

Theta-method expand about (x
r

, y
s

, t
n+1/2

), see Figure 31.

(n, r + 1, s)

(n+ 1, r, s)

(n, r, s)

(n, r, s+ 1)(n, r � 1, s)

(n, r, s� 1)

Figure 29: Finite di↵erence stencil for an explicit scheme.

(n+ 1, r, s+ 1)

(n+ 1, r + 1, s)

(n, r, s)

(n+ 1, r, s)
(n+ 1, r � 1, s)

(n+ 1, r, s� 1)

Figure 30: Finite di↵erence stencil for an implicit scheme.

109

(r, s)
t
n

t
n+1

Figure 31: Finite di↵erence stencil for a Theta-method.

(a) Truncation error: explicit method

For the explicit method

T n

r,s

=
un+1

r,s

� un

r,s

�t
� 1

�x2

�2
x

un

r,s

� 1

�y2
�2
y

un

r,s

(16.35)

=

✓

@u

@t
� @2u

@x2

� @2u

@y2

◆

�

�

�

�

n

r,s

| {z }

use di↵erential equation

+
�t

2

@2u

@t2

�

�

�

�

n

r,s

+
�x2

12

@4u

@x4

�

�

�

�

n

r,s

+
�y2

12

@4u

@y4

�

�

�

�

n

r,s

+ . . .(16.36)

so using u
t

= u
xx

+ u
yy

T n

r,s

=
�t

2

@2u

@t2

�

�

�

�

n

r,s

+
�x2

12

@4u

@x4

�

�

�

�

n

r,s

+
�y2

12

@4u

@y4

�

�

�

�

n

r,s

+ . . . (16.37)

and then provided
�

�

�

�

@2u

@t2

�

�

�

�

1
< C

1

,

�

�

�

�

@4u

@x4

�

�

�

�

1
< C

2

,

�

�

�

�

@4u

@y4

�

�

�

�

1
< C

3

, (16.38)

we have

|T n

r,s

|  1

2
�tC

1

+
1

12
�x2C

2

+
1

12
�y2C

3

, (16.39)

and the scheme is first order in time and second order in space.

(b) Truncation Error: fully implicit method

Using Taylor expansions centred at (x
r

, y
s

, t
n+1

) is is straight forward repetition of
the last section to show that

|T n+1

r,s

|  1

2
�tC

1

+
1

12
�x2C

2

+
1

12
�y2C

3

, (16.40)

and as we have seen before, usning an implicit scheme has no accuracy advantage,

110

(c) Truncation Error: Theta-method

Calculation of the truncation error for a theta-method is best approached by expan-
sion about ((x

r

, y
s

, t
n+1/2

) and is very tedious, you should be able to show that

T n+1/2

r,s

=
1� 2✓

2
�t(u

xxt

+u
yyt

)|n+1/2

r,s

+
1

24
�t2u

ttt

|n+1/2

r,s

� 1

12
(�x2u

xxxx

+�y2u
yyyy

)|n+1/2

r,s

+. . . ,

(16.41)
and as in 1D, the case ✓ = 1/2, Crank Nicholson, gives a scheme that is second order
in both space and time.

Stability and Convergence

The ideas developed for one space dimension using a semi-discrete Fourier transform
carry over to multiple space dimensions.

Define a 2D semi-discrete Fourier Transform for un

r,s

with un

r,s

= u(r�x, s�y, n�t) by

ûn(k, `) = �x�y
X

r

X

s

un

r,s

e�ikr�xe�i`s�y, (16.42)

and define norms

kû(k, `)k2
L

2

=

Z ⇡

�x

� ⇡

�x

Z ⇡

�y

� ⇡

�y

|û(k, `)|2 d` dk, (16.43)

and

kunk2
`

2

= �x�y
X

r

X

s

|un

r,s

|2. (16.44)

As in the 1D case with ⌦
x

=
�� ⇡

�x

, ⇡

�x

�

, ⌦
y

=
⇣

� ⇡

�y

, ⇡

�y

⌘

kûk2
L

2

=

Z

⌦

x

dk

Z

⌦

y

d` |û(k, `)|2

= �x2�y2
Z

⌦

x

dk

Z

⌦

y

d`

X

r

X

s

un

r,s

e�ikr�xe�i`s�y

!

X

p

X

q

ūn

p,q

eikp�xei`q�y

!

= �x2�y2
X

r

X

s

X

p

X

q

un

r,s

ūn

p,q

Z

⌦

x

eik(p�r)�x dk

Z

⌦

y

ei`(q�s)�x d`. (16.45)

We need r = p and s = q for the integrals to be non zero, hence

kûk2
L

2

= 4⇡2kunk2
`

2

, (16.46)

111

and so in 2D Parseval’s identity becomes

kunk
`

2

=
1

2⇡
kûk

L

2

(16.47)

in 2D. Thus for the various discrete schemes on unbounded domains we still obtain

Ûn+1(k, `) = �(k, `)Ûn(k, `) (16.48)

where:

1. Explicit:

�(k, `) = 1� 4µ
x

sin2

k�x

2
� 4µ

y

sin2

`�y

2
, (16.49)

2. Implicit:

�(k, `) =

✓

1 + 4µ
x

sin2

k�x

2
+ 4µ

y

sin2

`�y

2

◆�1

, (16.50)

3. ✓ method:

�(k, `) =
1� 4(1� ✓)

�

µ
x

sin2 k�x

2

+ µ
y

sin2

`�y

2

�

1 + 4✓
�

µ
x

sin2 k�x

2

+ µ
y

sin2

`�y

2

� . (16.51)

On a bounded domain we can still apply a maximum principle, for example 0  x  1,
0  y  1 with @U

max

and @U
min

defined as maximum and minimum on boundaries
and initial data, ✓ method is

[1 + 2✓(µ
x

+ µ
y

)]Un+1

r,s

= ✓
⇥

µ
x

�

Un+1

r+1,s

+ Un+1

r�1,s

�

+ µ
y

�

Un+1

r,s+1

+ Un+1

r,s�1

�⇤

+(1� ✓)
⇥

µ
x

�

Un

r+1,s

+ Un

r�1,s

�

+ µ
y

�

Un

r,s+1

+ Un

r,s�1

�⇤

+ [1� 2(1� ✓)(µ
x

+ µ
y

)]Un

r,s

(16.52)

so making all coe�cients on right-hand-side non negative will guarantee a maximum
principle, so we need for 0  ✓  1

1� 2(1� ✓)(µ
x

+ µ
y

) � 0 (16.53)

or

�t  �x2�y2

2(1� ✓)(�x2 +�y2)
. (16.54)

The results we have derived for truncation error, order of convergence, error analysis
are all generalisations of 1D results and derived the same way.

In 2 and 3 dimensions the size of the matrix A grows rapidly as �x and �y become
small so the major problem is solving the system AUn+1 = Un in an implicit method.
Essentially

112

• explicit) very small time steps for stability, many computational steps needed

• implicit) freedom with time steps but matrix inversion hard.

ADI (Alternating Direction Implicit)

A method that has been popular for rectangular domains is called ADI. We start
with Crank Nicholson, and as before, define µ

x

= �t/�x2, µ
y

= �t/�y2

✓

1� 1

2
µ
x

�2
x

� 1

2
µ
y

�2
y

◆

Un+1

r,s

=

✓

1 +
1

2
µ
x

�2
x

+
1

2
µ
y

�2
y

◆

Un

r,s

(16.55)

and observe that

1� 1

2
µ
x

�2
x

� 1

2
µ
y

�2
y

⇡
✓

1� 1

2
µ
x

�2
x

◆✓

1� 1

2
µ
y

�2
y

◆

(16.56)

1 +
1

2
µ
x

�2
x

+
1

2
µ
y

�2
y

⇡
✓

1 +
1

2
µ
x

�2
x

◆✓

1 +
1

2
µ
y

�2
y

◆

(16.57)

so we examine the scheme
✓

1� 1

2
µ
x

�2
x

◆✓

1� 1

2
µ
y

�2
y

◆

Un+1

r,s

=

✓

1 +
1

2
µ
x

�2
x

◆✓

1 +
1

2
µ
y

�2
y

◆

Un

r,s

.(16.58)

We can show that this is a consistent scheme. The truncation error for Crank Nichol-
son is

T n+1/2

r,s

=
1

�t

⇢

un+1

r,s

�
✓

1

2
µ
x

�2
x

+
1

2
µ
y

�2
y

◆

un+1

r,s

� un

r,s

�
✓

1

2
µ
x

�2
x

+
1

2
µ
y

�2
y

◆

un

r,s

�

and so the truncation error of the new scheme is

�

T n+1/2

r,s

�

new

= T n+1/2

r,s

� 1

2
µ
x

µ
y

�2
x

�2
y

✓

un+1

r,s

� un

r,s

�t

◆

. (16.59)

When the additional term is expanded using Taylor series, the leading term in that
expansion will be

�1

2
µ
x

µ
y

�x2�y2u
xxyyt

(16.60)

so that

�

T n+1/2

r,s

�

new

= T n+1/2

r,s

� 1

2
µ
x

µ
y

�x2�y2u
xxyyt

+ . . . , (16.61)

and provided T n+1/2

r,s

! 0 as �t, �x, �y ! 0, so too will
⇣

T n+1/2

r,s

⌘

new

. As Crank

Nicholson is second order in space and time and the additonal term is fourth order

113

in space, the modified scheme will still have good approximation properties and be a
least similar to the original Crank Nicholson scheme in accuracy.

However, the huge advantage advantage of the modified scheme is that 1+ 1

2

�2
x

, 1� 1

2

�2
x

,
1 � 1

2

�2
y

, and 1 + 1

2

�2
y

are all operators which act in one space direction only so their
matrix representation wil be in the form of tri-diagonal matrices and we know both
how to store tridiagonal systems compactly, and, how to invert them e�ciently.

Let Un+1/2

r,s

be defined by

✓

1� 1

2
µ
x

�2
x

◆

Un+1/2

r,s

=

✓

1 +
1

2
µ
y

�2
y

◆

Un

r,s

(16.62)

and then
✓

1� 1

2
µ
y

�2
y

◆

Un+1

r,s

=

✓

1 +
1

2
µ
x

�2
x

◆

Un+1/2

r,s

. (16.63)

As 1 + 1

2

µ
x

�2
x

and 1� 1

2

µ
x

�2
x

commute, multiply (16.62) by 1 + 1

2

µ
x

�2
x

and (16.63) by
1� 1

2

µ
x

�2
x

to get (16.58).

Now the solution of (16.62) for Un+1/2

r,s

is a tridiagonal problem for s = 1, . . . ,M
y

� 1
and similarly the solution of (16.63) is a sequence of tridiagonal problems for r =
1, . . . ,M

x

� 1.

If we look at stability with mode Un

r,s

= �neikr�xei`s�y so that

�2
x

Un

r,s

= �4 sin2

k�x

2
Un

r,s

(16.64)

�2
y

Un

r,s

= �4 sin2

`�y

2
Un

r,s

(16.65)

then we obtain
✓

1 +
4

2
µ
x

sin2

k�x

2

◆✓

1 +
4

2
µ
y

sin2

`�y

2

◆

� =

✓

1� 2µ
x

sin2

k�x

2

◆✓

1� 2µ
y

sin2

`�y

2

◆

or

� =

�

1� 2µ
x

sin2 k�x

2

� �

1� 2µ
y

sin2

`�y

2

�

�

1 + 2µ
x

sin2 k�x

2

� �

1 + 2µ
y

sin2

`�y

2

� (16.66)

and it will always be the case that |�|  1, so the scheme is unconditionally stable.

114

Evolutionary PDEs: Summary

1. Parabolic system

@u

@t
=

@2u

@x2

. (16.67)

Fourier modes, semi discrete Fourier Transform, Parseval’s Identity

Numerical Approximations

continuous scheme N (t, u) = 0

discrete scheme N(t
n

, U) = 0

truncation error T
n

= N(t
n

, u)

Explicit/Implicit schemes: matrix representation of implicit discrete schemes,
Thomas Algorithm

Convergence: Fourier analysis either by modes or semi discrete transforms, ✓
method for di↵usion equations and truncation error

Stability: practical stability, von Neumann stability, Lax equivalence theorem
(without full proof)

Finite domain problems: eigenvalues and maximum principle

Boundary conditions: implicit derivative conditions

Finite elements: basic ideas

Two dimensional problems: explicit, implicit, stability, truncation error, ADI
— splitting into tridiagonal problems.

115

