
Preprint
RAL-P-2014-012R

A Nonmonotone Filter SQP Method:

Local Convergence and Numerical Results

N I M Gould Y Loh D P Robinson

December 2014, Revised July 2015

c©2015 Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional copies of this report should
be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: libraryral@stfc.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.stfc.ac.uk/

ISSN 1361- 4762(Revised)

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

Preprint RAL-P-2014-012R

A Nonmonotone Filter SQP Method:

Local Convergence and Numerical Results

Nicholas I. M. Gould,1,2 Yueling Loh3 and Daniel P. Robinson3,4

ABSTRACT

The work by Gould, Loh, and Robinson [A filter method with unified step computation for nonlinear

optimization, SIAM J. Optim., 24 (2014), pp. 175–209] established global convergence of a new filter

line search method for finding local first-order solutions to nonlinear and nonconvex constrained opti-

mization problems. A key contribution of that work was that the search direction was computed using

the same procedure during every iteration from subproblems that were always feasible and computation-

ally tractable. This contrasts previous filter methods that require a separate restoration phase based on

subproblems solely designed to reduce infeasibility. In this paper, we present a nonmonotone variant of

our previous algorithm that inherits the previously established global convergence property. In addition,

we establish local superlinear convergence of the iterates and provide the results of numerical experi-

ments. The numerical tests validate our method and highlight an interesting numerical trade-off between

accepting more (on average lower quality) steps versus fewer (on average higher quality) steps.

1 Scientific Computing Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, EU. Email: nick.gould@stfc.ac.uk .

Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.shtml”.

2 This work was supported by the EPSRC grant EP/I013067/1.

3 Department of Applied Mathematics and Statistics, Johns Hopkins University,

100 Whitehead Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.

Email : yloh4@jhu.edu , daniel.p.robinson@jhu.edu , daniel.p.robinson@gmail.com .

4 This work was supported by the National Science Foundation grant DMS-1217153.

Scientific Computing Department

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

December 2014, Revised July 2015

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 1

1 Introduction

In this paper, we present a new algorithm for finding local solutions of nonconvex optimization problems

of the form

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (1.1)

where the objective function f : Rn → R and the constraint function c : Rn → R
m are assumed to be

twice continuously differentiable. Many algorithms have been developed for this task and include interior-

point [13, 44, 45, 41, 46], augmented Lagrangian [1, 6, 7, 10, 33], primal-dual penalty [15, 23, 47], and

sequential quadratic optimization (SQO) methods [2, 9, 11, 17, 18, 19, 22, 27, 28, 29, 37, 38] (commonly

called sequential quadratic programming (SQP) methods). Each class of methods has advantages and

disadvantages. Interior-point methods may be used to solve very-large-scale sparse problems since the

predominate cost per iteration is a single symmetric indefinite matrix factorization. However, interior-

point methods are currently ineffective at utilizing a good initial estimate of a solution, i.e., at being warm-

started. Augmented Lagrangian methods may be warm-started and implemented matrix-free, and thus

may be applied to extreme-scale problems. Unfortunately, too frequently they are ineffective/inefficient

at identifying those inequality constraints satisfied as equalities at a local solution, i.e., an optimal active-

set. SQO methods are celebrated for their optimal active-set identification and warm-start abilities, but

are practical only on medium- to large-scale problems. In summary, each class of algorithms serves a

distinct and vital role in solving real-life optimization problems.

Each class of methods discussed in the previous paragraph contains a variety of algorithms that may

be distinguished by their details. For example, some of these variations include whether a line search or

trust region is used, or whether globalization is attained via the use of a merit function, a filter, or a step

classification scheme. It is no surprise that each of these variants has advantages and disadvantages and

serves a vital role in optimization. In this paper, we address some of the weaknesses of previously designed

filter methods, which will be presented in the context of a new filter line search SQO algorithm. We note,

however, that the ideas and philosophies presented in this paper may be used (to various degrees) by all

future filter-based algorithms.

The new SQO algorithm is a nonmonotone variant of the method that we presented in [26]. (Non-

monotone strategies are commonly used by SQO-like algorithms to avoid the Maratos effect [36] and

ultimately for proving superlinear convergence of the iterates.) The motivation for that work was to

overcome the dissatisfying fact that previous filter methods require a special restoration phase to handle

various scenarios that would otherwise lead to failure. For example, some methods formulate subproblems

that may be infeasible [18, 19, 45], while others may failure as a result of an ineffective line search [45]. In

all of these cases, the restoration phase temporarily ignores the object function and iterates toward the

feasible region until the issue that triggered the restoration phase is resolved. Since the objective function

is ignored during these iterations, a significant decrease in performance is often observed on problems

for which restoration plays a notable role. In contrast, the filter line search method developed in [26]

computes a search direction from the same procedure during every iteration, uses a practical penalty

phase in lieu of a traditional restoration phase, incorporates an improved definition for the filter margin,

and is globally convergent.

Here, we present a nonmonotone variant (Section 2) of our previously introduced algorithm [26]

that inherits the global convergence property (Section 3) previously established. We also show that

no additional mechanism, e.g., a shadow/nonmonotone filter [30, 39, 40], is needed to establish local

superlinear convergence (Section 4) of the iterates. Finally, we provide numerical results (Section 5) on

problems from the CUTEst [25] test set.

Before proceeding, we briefly describe aspects of some closely related algorithms. The nonmonotone

(sometimes called watchdog) approach that we use is a common way for exact penalty and filter methods

to address the Maratos effect (e.g., see [30], [40], [39]), and thereby establish superlinear convergence under

2 N. I. M. Gould, Y. Loh and D. P. Robinson

standard assumptions. Interestingly, the second of two consecutive steps in a nonmonotone approach is

an example of a second-order correction step. Second-order correction steps, such as those used by Biegler

and Wächter [43], are computed from systems of linear equations defined from quantities that the user

is free to choose, subject to satisfying certain conditions. Consequently, the sum of two consecutive trial

steps in our nonmontone approach is equivalent to the sum of their trial and second-order correction step,

for one particular choice of the correction step. In terms of the definition of the filter, we use the same

one although in our case acceptability is based on weaker conditions. In [39], Shen, Leyffer, and Fletcher

used a nonmonotone filter to establish local convergence, while a standard filter is used to prove global

convergence. In particle, they show that a point acceptable to the local filter is obtained after a constant

number of nonmonotone steps. Another approach for establishing local convergence and avoiding the

Maratos effect is to use the Lagrangian as an element of the filter in place of the objective function [42].

We note that all of these related methods require a traditional restoration phase.

1.1 Notation and preliminaries

We use R+ to denote the set of nonnegative real numbers. Given vectors a and b with the same dimension,

the vector with ith component aibi is denoted by a · b. Similarly, min(a, b) is a vector with components

min(ai, bi), and [a]− is a vector with components max(−a, 0) with the maximum taken component-wise.

The ith component of a vector labeled with a subscript will be denoted by [·]i, e.g., [v]i is the ith

component of the vector v. The subvector of components with indices in the index set S is denoted

by [·]S , e.g., [v]S is the vector with components vi for i ∈ S. The vector g(x) is used to denote

∇f(x), the gradient of f(x). The matrix J(x) denotes the m × n constraint Jacobian, which has ith

row ∇ci(x)T , the gradient of the ith constraint function ci(x). The Lagrangian function associated with

problem (1.1) is L(x, y) := f(x) − c(x)Ty, where y is an m-vector of dual variables associated with

the inequality constraints. The Hessian of the Lagrangian with respect to x is denoted by H(x, y) :=

∇2
xxf(x)−

∑m
i=1 yi∇

2
xxci(x). The vector pair (xk, yk) denotes the kth primal-dual estimate of a solution

to (1.1). For convenience, we use fk := f(xk), gk := g(xk), ck := c(xk), and Jk := J(xk). Finally, for

any ǫ > 0 and vector v ∈ R
n, we let Bǫ(v) := {x ∈ R

n : ‖x− v‖2 < ǫ} denote the open ball of radius

ǫ centered at v. We say that x is a KKT point for problem (1.1) with associated Lagrange multiplier

vector y if and only if

FKKT(x, y) :=

(
g(x)− J(x)Ty

min
(
c(x), y

)
)

=

(
0

0

)
, (1.2)

and we say that (x, y) is a KKT pair. The primary goal of most optimization algorithms is to find a

KKT pair. Our trial step computation is based on the ℓ1-penalty function

φ(x;σ) := f(x) + σv(x), with v(x) :=
∥∥[c(x)]−

∥∥
1
and σ > 0, (1.3)

where σ is called the penalty parameter.

2 A Nonmonotone Filter SQO Method

In this section we present our nonmonotone line search filter SQO method. We begin with an overview

of the algorithm in Section 2.1, give details of the search direction in Section 2.2, discuss step acceptance

in Section 2.3, and formally state the complete algorithm in Section 2.4.

2.1 Algorithm overview

Our method is a line search algorithm. During the kth iteration a search direction sk is computed and

used within a backtracking line search procedure. Although the direction sk is sufficient to guarantee

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 3

global convergence, we also allow for the computation of an additional search direction sak that promotes

faster convergence; in fact, we establish (under common assumptions) the local superlinear convergence

of the iterates. Our algorithm is not typical since we perform a backtracking line search along both sk
and sak (in parallel) with preference given to sak.

Every line search algorithm terminates when some specified set of conditions is satisfied. In our case,

the precise conditions used depends on the current mode of our algorithm; we utilize a filter mode and

a penalty mode. The filter mode is similar to that used by previous filter methods, although some new

enhancements will be introduced. The penalty mode is based on the penalty function (1.3) and used in

lieu of a traditional restoration phase, which we find appealing from a practical perspective. Importantly,

the calculations performed to obtain the search directions sk and sak are exactly the same for both modes.

In filter mode, there are three sets of conditions that can trigger the line search to terminate. De-

pending on which of these sets of conditions are satisfied determines whether we call that iterate an o-,

a v-, or a b-iterate; the precise conditions will be given in Section 2.3. The conditions that define o- and

v-iterates are similar in spirit to previous filter methods, but with some enhancements. By contrast, the

conditions that define a b-iterate indicate progress toward solving (1.1) and, in addition, that a penalty

mode should be entered. Roughly, the properties of a b-iterate are that (i) the conditions that define

a v- and an o-iterate are not satisfied, (ii) the constraint violation is decreased, and (iii) the penalty

function is decreased. This is a situation that commonly occurs when the entries that define the filter (to

be discussed in Section 2.3) are blocking additional progress, and would typically trigger a restoration

phase. Therefore, one may view our penalty mode as a replacement for a traditional restoration phase

that is triggered by intuitive conditions.

In penalty mode, a single set of conditions is used to terminate the line search. The iterates computed

to satisfy those conditions are called p-iterates since they obtain sufficient decrease in the penalty function.

We choose to return to filter mode as soon as any iterate is computed that is acceptable to the filter

(see Section 2.3 for additional details). Again, the calculations of each trial step in the penalty mode are

precisely the same as those performed in the filter mode.

The search direction sk is computed from subproblems that are always feasible and promote conver-

gence to the feasible region in an efficient manner. When xk is infeasible, the direction sk is constructed

to be a descent direction for v at xk. Moreover, the penalty parameter is adjusted to make sk a descent

direction for φ at xk. These key properties associated with sk ensure that the line search will termi-

nate finitely with a point that decreases both the constraint violation and penalty function, i.e., with a

b-iterate, when xk is infeasible. If xk is feasible, finite termination of the line search will be guaranteed

by the conditions that define an o-iterate. Importantly, unlike some algorithms [45], we do not use a

heuristic for recognizing failure of the line search as a trigger to enter restoration (or penalty) mode.

The second search direction sak has been previously used [27, 28, 29, 37]. In short, it accelerates

convergence by using an active set estimation to form an equality constrained QP subproblem defined

with exact second derivatives. Other acceleration steps are possible [27], but will not be considered here.

We also suspect that a superlinear rate of convergence could be established based on the steps sk (i.e.,

without computing and using accelerator steps sak) if the matrices Bk were chosen to satisfy the Dennis-

More [14] condition. However, since it is difficult to construct such a sequence (especially in the large

scale case), we prefer to use the accelerator step sak to achieve the same fast convergence. Also, in our

experience, the step sak often improves global performance, even though no such result can be proved.

Finally, to ensure superlinear convergence we must incorporate either a second-order correction step [8,

Section 10.4.2] or a nonmonotone strategy [8, Section 10.1.1]. Here, we choose to use a nonmonotone

strategy in which we temporarily accept the acceleration step sak even when it does not satisfy the

conditions normally required to terminate the line search. In fact, we allow this to continue for a pre-

specified number of iterations in what is called a nonmonotone phase. If, unfortunately, appropriate

conditions are not satisfied within the pre-specified number of iterations, we return to the first iterate of

4 N. I. M. Gould, Y. Loh and D. P. Robinson

the nonmonotone phase and perform a backtracking line search as outlined earlier. Technically, we are

not using a nonmonotone strategy since our step acceptance is driven by a filter in which monotonicity

is not typical. Thus, it is more accurately categorized as a watchdog strategy [5, 31].

2.2 Search direction computation

In this section we provide a compact description of the calculations for computing the search directions

sk and sak, which are the same as in [26, Section 2].

Let xk be the current iterate. The search direction sk is defined as a convex combination of a steering

step ssk and a predictor step spk. The steering step ssk is defined as a solution (not necessarily unique) to

the convex piecewise linear steering subproblem

minimize
s∈Rn

ℓv(s;xk) :=
∥∥[ck + Jks]

−
∥∥
1

subject to ‖s‖∞ ≤ δk, (2.4)

or the equivalent linear program

minimize
(s,r)∈Rn+m

eTr subject to ck + Jks+ r ≥ 0, r ≥ 0, ‖s‖∞ ≤ δk, (2.5)

where ck := c(xk), Jk := J(xk), δk ∈ [δmin, δmax], and 0 < δmin ≤ δmax <∞. Once the steering step ssk has

been computed, we calculate the change in the linearized constraint violation given by

∆ℓv(ssk;xk) := ℓv(0;xk)− ℓv(ssk;xk) =
∥∥[ck]−

∥∥
1
−
∥∥[ck + Jks

s
k]

−
∥∥
1
, (2.6)

which provides a prediction of the decrease in infeasibility that one might expect from the step ssk.

Moreover, this quantity allows us to determine whether xk is an infeasible stationary point, i.e., an

infeasible first-order minimizer of v. Specifically, if

vk := v(xk) > 0 and ∆ℓv(ssk;xk) = 0, (2.7)

then xk is an infeasible stationary point for v.

The computation of the predictor step spk involves the quadratic model of the objective function

qf (s;x,M) := f(x) + g(x)T s+ 1
2s

TMs

for any symmetric matrix M , and the piecewise quadratic model of φ given by

qφ(s;x,M, σ) := qf (s;x,M) + σℓv(s;x) ≡ f(x) + g(x)T s+ 1
2s

TMs+ σ
∥∥[c(x) + J(x)s]−

∥∥
1
.

The predictor step is computed as the unique solution to one of the following strictly convex subproblems:

spk =

{ argmin
s∈Rn

qf (s;xk, Bk) subject to ck + Jks ≥ 0, if ∆ℓv(ssk;xk) = vk, (2.8a)

argmin
s∈Rn

qφ(s;xk, Bk, σk), otherwise, (2.8b)

where σk > 0 is the kth penalty parameter value andBk a positive-definite approximation of∇2
xxL(xk, yk).

The search direction sk is then defined as

sk := (1− τk)s
s
k + τks

p
k, (2.9)

where τk is the largest number on [0, 1] such that

∆ℓv(sk;xk) ≥ ηv∆ℓv(ssk;xk) ≥ 0 for some ηv ∈ (0, 1). (2.10)

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 5

This ensures that sk is a descent direction for v whenever ∆ℓv(ssk;xk) > 0 (see [26, Lemma 2.6]).

Next, the penalty parameter σk+1 is updated so that sk is also a decent direction for the penalty

function φ (see [26, Lemma 2.10]) at xk. Specifically, we set

σk+1 ←

σk if ∆ℓφ(sk;xk, σk) ≥ σkησ∆ℓv(ssk;xk),

max
{
σk + σinc,

−∆ℓf (sk;xk)
∆ℓv(sk;xk)−ησ∆ℓv(ss

k
;xk)

}
otherwise,

(2.11)

for some σinc > 0 and 0 < ησ < ηv < 1 with ηv defined in (2.10), and where

∆ℓf(sk;xk) := −g
T
k sk and ∆ℓφ(sk;xk, σk) := ∆ℓf (sk;xk) + σk∆ℓv(sk;xk)

with gk := g(xk).

Given the search direction sk, the penalty parameter σk+1, the kth Lagrange multiplier estimate ypk
from the predictor step problem (2.8), and Hk := ∇2

xxL(xk, y
p
k) we compute the Cauchy-f step

scfk := αf
ksk with αf

k := argmin
0≤α≤1

qf (αsk;xk, Hk), (2.12)

and the Cauchy-φ step

scφk := αφ
ksk with αφ

k := argmin
0≤α≤1

qφ(αsk;xk, Hk, σk+1). (2.13)

These Cauchy steps measure the predicted decrease in the objective function f and penalty function φ,

respectively, along the search direction sk using the quadratic models qf and qφ defined with the exact

Hessian matrix Hk. To be precise, we define a predicted change in the objective function given by

∆qf (scfk ;xk, Hk) := qf (0;xk, Hk)− qf (scfk ;xk, Hk) = −g
T
k s

cf
k −

1
2s

cf
k

T
Hks

cf
k (2.14)

and a predicted change in the merit function given by

∆qφ(scφk ;xk, Hk, σk+1) := qφ(0;xk, Hk, σk+1)− qφ(scφk ;xk, Hk, σk+1)

= −gTk s
cφ
k −

1
2s

cφ
k

T
Hks

cφ
k + σk+1

(∥∥[ck]−
∥∥
1
−
∥∥[ck + Jks

cφ
k]−

∥∥
1

)
. (2.15)

Finally, to accelerate convergence, we compute an accelerator step as

sak := spk + sa
′

k , (2.16)

where sa
′

k is computed as

sa
′

k := argmin
s∈Rn

qf (spk + s;xk, Hk) subject to [Jks]Ak
= 0, ‖s‖2 ≤ δa, (2.17)

the set

Ak := A(spk) := {i : [ck + Jks
p
k]i = 0} (2.18)

gives a prediction of those constraints active at a solution to (1.1), and δa > 0 is a trust-region radius.

2.3 Step acceptance

The iterations of our algorithm consist of the disjoint union of two types of iterations. The first type,

denoted by S and called the set of successful iterations, are those iterations for which at least one of

four sets of conditions are satisfied (we also always include iteration zero). These sets of conditions are

described later in this section, but were already outlined in Section 2.1.

6 N. I. M. Gould, Y. Loh and D. P. Robinson

The second type, denoted by U and called the set of unsuccessful iterations, is the complementary set

consisting of the nonmonotone iterations, i.e, those iterations during which the full trial step is accepted

even though none of the sets of conditions described below are satisfied. Note that S ∩ U = ∅ and that

every iteration belongs in either S or U .

To handle the nonmonotone nature of our algorithm, it is convenient to define R(k) as the last

successful iteration (which may in fact be k), i.e.,

R(k) := max{i : k ≥ i ∈ S}.

Consequently, if R(k) < j ≤ k, then j ∈ U and iteration j is part of a nonmonotone sequence of iterations.

We now begin to describe the sets of conditions that determine when an iteration is included in the

set of successful iterations S. Central to this task is the concept of a filter, which is formally defined as

any finite set of points in R
+×R. In our case, we initialize the filter as F0 = ∅ and then update it so that

at each iteration k the filter satisfies Fk ⊆ {(vj , fj) : 0 ≤ j < k}. Whether an ordered pair is added to

the filter at the end of each iteration depends in part on whether the iterate is acceptable to the current

filter as defined next.

Definition 2.1 (acceptable to Fk) The point x is acceptable to Fk if its associated ordered pair(
v(x), f(x)

)
satisfies

v(x) ≤ max
{
vi − αiηv∆ℓv(ssi ;xi), βvi

}
or f(x) ≤ fi − γmin

{
vi − αiηv∆ℓv(ssi ;xi), βvi

}
(2.19)

for all 0 ≤ i < k satisfying (vi, fi) ∈ Fk, where αi ∈ (0, 1] is the ith step length, and {ηv, β, γ} ⊂ (0, 1)

are some constants.

Note that the two inequalities in (2.19) provide a margin around the elements of the filter in (v, f)-

space, ensuring that the constraint violation or the objective function at x is sufficiently smaller than at

points xi whose ordered pair is in the current filter Fk.

In certain situations, we need to know that a trial iterate is acceptable to the filter defined by the

union of Fk with an ordered pair (vj , fj) associated with some xj that is not in the filter. This leads to

the definition of being acceptable to the augmented filter.

Definition 2.2 (acceptable to Fk augmented by xj) The point x is acceptable to Fk augmented by

xj if x is acceptable to Fk as given by Definition 2.1 and (2.19) holds with i = j.

Acceptability to the filter is only one aspect used to define the four sets of conditions that are checked

during each iteration. Which sets of conditions are checked depends on the current mode, i.e., filter or

penalty mode; an overview of these two modes was discussed in Section 2.1. At this point, the reader

only needs to know that step acceptance in filter mode (Section 2.3.1) is driven by acceptability to the

filter, whereas step acceptance in penalty mode (Section 2.3.2) is driven by reducing the penalty function.

In the following two sections, the names used to denote various pairs of the form (α, s) for some step

length α and search direction s (e.g., see Definition 2.3) are the same as in [26]. This decision emphasizes

that the definitions in this paper are generalizations of the former that account for nonmonotonicity.

2.3.1 Step acceptance in filter mode

In filter mode, we seek to obtain a v-(violation)-pair, an o-(objective)-pair, or a b-(blocking)-pair. The

pair (αk, ŝk) for some ŝk ∈ {sak, sk} is deemed to be a v-pair based on the following.

Definition 2.3 (v-pair) The pair (α, s) constitutes a v-pair if xk +αs is acceptable to FR(k) augmented

by xR(k) and

∆ℓf (sR(k);xR(k)) < γv∆ℓv(sR(k);xR(k)) for some γv ∈ (0, 1). (2.20)

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 7

If (αk, ŝk) is a v-pair, we say that xR(k) is a v-iterate and set xk+1 ← xk + αkŝk. In this case, we add

k + 1 to the set of successful iterates S and (vR(k), fR(k)) to the filter FR(k). We remain in filter mode.

The pair (αk, ŝk) for some ŝk ∈ {sak, sk} is determined to be an o-pair based on the following.

Definition 2.4 (o-pair) The pair (α, s) constitutes an o-pair if xk + αs is acceptable to FR(k),

∆ℓf (sR(k);xR(k)) ≥ γv∆ℓv(sR(k);xR(k)), and (2.21a)

f(xk + αs) ≤ f(xR(k))− γfαρ
f
R(k), (2.21b)

where γv ∈ (0, 1) is the same constant used to define a v-pair, γf ∈ (0, 1), and

ρfR(k) := min
{
∆ℓf(sR(k);xR(k)), ∆qf (scfR(k);xR(k), HR(k))

}
. (2.22)

If (αk, ŝk) is an o-pair, we say that xR(k) is an o-iterate and set xk+1 ← xk + αkŝk. In this case, we add

k+1 to the set of successful iterates S, but do not modify the filter. We remain in filter mode. For these

types of pairs, the value of the objective function at xk+1 is significantly smaller than the value at xR(k).

Finally, the following definition is used to determine whether the pair (αk, sk) is a b-pair.

Definition 2.5 (b-pair) The pair (α, s) constitutes a b-pair if

v(xk + αs) < v(xR(k)) (2.23)

and

φ(xk + αs;σk+1) ≤ φ(xR(k);σR(k)+1)− γφαρ
φ
R(k) for some γφ ∈ (0, 1), (2.24)

where

ρφR(k) := min
{
∆ℓφ(sR(k);xR(k), σR(k)+1), ∆qφ(scφR(k);xR(k), HR(k), σR(k)+1)

}
. (2.25)

If (αk, sk) is a b-pair, we say that xR(k) is a b-iterate and set xk+1 ← xk + αksk. In this case, we add

k + 1 to the set of successful iterates S, add (vR(k), fR(k)) to the filter Fk, and then enter penalty mode.

For these pairs, the constraint violation and penalty function at xk+1 are smaller than at xR(k). Since

b-pairs will only be checked for after the conditions of a v- and an o-pair are checked, it indicates that

the current filter entries may be blocking productive steps. Therefore, we respond by accepting the step

xk+1 and entering penalty mode. We note that this is the only scenario in which we enter penalty mode.

2.3.2 Step acceptance in penalty mode

If penalty mode is entered, we have reason to believe that the current filter entries are blocking productive

steps. Thus, in penalty mode we seek steps that decrease the penalty function, but return to filter mode

as soon as is deemed appropriate. The following definition is used to determine when the pair (αk, ŝk)

for some ŝk ∈ {sak, sk} is a p-(penalty)-pair.

Definition 2.6 (p-pair) The pair (α, s) constitutes a p-pair if (2.24) is satisfied.

If (αk, ŝk) is a p-pair, we say that xR(k) is a p-iterate, set xk+1 ← xk + αkŝk, and add k + 1 to the set

of successful iterations S. Also, if xk + αkŝk is acceptable to the filter FR(k), we return to filter mode,

but otherwise remain in penalty mode. It is clear that in this case the value of the penalty function at

iterate xk+1 is significantly less than the value at xR(k).

8 N. I. M. Gould, Y. Loh and D. P. Robinson

2.4 The formal statement of the algorithm

Our method is stated as Algorithm 1. The logical flow during each iteration depends on the value of several

parameters: fails holds the number of consecutive unsuccessful iterations that have been performed,

max fails holds the value of the maximum allowed consecutive unsuccessful iterations, and P-mode is a

flag that indicates whether the current mode is penalty or filter mode. Although the parametermax fails

is only required to be nonnegative, for the rest of this section we assume that max fails > 0 so that the

algorithm is nonmonotone.

To explain the flow of logic, let us first examine the algorithm when fails ≤ max fails. In this case,

the condition in Step 6 tests false so that the search directions sk and sak are computed in Lines 9–

17 as described in Section 2.2. We now consider two possible scenarios. First, suppose that P-mode

has the value false in Line 19, i.e., the algorithm is in filter mode (the default mode). Then, since

fails ≤ max fails and max fails > 0, we only check whether the pair (1, sak) is a v-pair, an o-pair, or

a b-pair, i.e., we only consider the full accelerator step. If (1, sak) does satisfy the conditions that define

the various pairs, we set xk+1 ← xk + sak and add iteration k + 1 to the set of successful iterations S.

Otherwise, our nonmonotone strategy still chooses to set xk+1 ← xk + sak, to stay in filter mode, and

to increase the fails counter. Second, suppose that P-mode has the value true in Line 19. Then, since

fails ≤ max fails and max fails > 0, we only check whether the pair (1, sak) is a p-pair. If (1, sak) is a

valid p-pair, we set xk+1 ← xk+sak and add iteration k+1 to the set of successful iterations S. Otherwise,

our nonmonotone strategy still chooses to set xk+1 ← xk + sak, to stay in penalty mode and to increase

the fails counter.

If the counter fails is ever incremented to a value larger than max fails, then the flow of logic changes.

In short, we return to the last successful iterate (see Line 7) and then perform a backtracking line search.

To give more details, first suppose that P-mode has the value false in Line 19. Then, the backtracking

loop starts in Line 31 and proceeds until either a valid v-, o-, or b-pair is found. Note that in Line 33,

the phase ŝk ∈ {sak, sk} should be interpreted as first setting ŝk to the value sak and second setting it to

the value sk. Also note that we check whether (αk, s
a
k) or (αk, sk) are acceptable as v- or o-pairs before

checking if (αk, sk) is a valid b-pair; this gives preference to filter mode since b-pairs trigger entrance into

penalty mode. Second, suppose that P-mode has the value true in Line 19. Then, the backtracking loop

starts in Line 20 and proceeds until a valid p-pair is found. Once a valid p-pair (αk, ŝk) is obtained, we

immediately go to Line 27 to test whether the next iterate xk + αkŝk is acceptable to the filter Fk; if it

is acceptable, we return to filter mode by setting P-mode to false.

Finally, at the end of every iteration and regardless of the current mode, we choose to increase the

penalty parameter if

∆qφ(sk;xk, Bk, σk+1) < ηφ∆qφ(spk;xk, Bk, σk+1) for some ηφ ∈ (0, 1). (2.26)

The satisfaction of (2.26) indicates that the contribution of spk to the definition of sk in (2.9) is dwarfed

by the contribution of the steering step ssk. This typically results when the value of τk used in the

definition of sk is very small, which is a sign (see (2.9) and (2.10)) that the predictor step spk did not

make significant progress toward linearized feasibility. Thus, the natural course of action is to increase

the penalty parameter (see Line 48) to promote linearized feasibility of the predictor step during the next

iteration.

3 Global Convergence

In this section we establish the same global convergence result as in [26] under the same assumptions,

which we restate here for convenience.

Assumption 3.1 The iterates {xk} lie in an open, bounded, and convex set X .

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 9

Algorithm 1 A nonmonotone filter SQO algorithm.

1: Input an initial primal-dual pair (x0, y0).

2: Choose parameters {ηv, ησ, ηφ, σinc, β, γ, γv, γf , γφ, ξ} ⊂ (0, 1) and 0 < δmin ≤ δmax ≤ δa <∞.

3: Choose nonmonotone parameter 0 ≤ max fails ∈ N, and set fails ← 0, S ← {0}, and U ← ∅.

4: Set k ← 0, F0 ← ∅, P-mode ← false, and then choose σ0 > 0 and δ0 ∈ [δmin, δmax].

5: loop

6: if fails > max fails then

7: Set xk ← xR(k), sk ← sR(k), s
a
k ← sa

R(k), y
p
k ← ypR(k), σk+1 ← σR(k)+1, and Hk ← HR(k).

8: else

9: Compute ssk as a solution of (2.5), and then calculate ∆ℓv(ssk;xk) from (2.6).

10: if (2.7) holds then

11: return with the infeasible stationary point xk for problem (1.1).

12: Choose Bk ≻ 0 and then compute spk as the unique solution of (2.8) with multiplier ypk.

13: if ∆qφ(spk;xk, σk) = v(xk) = 0, then

14: return with the KKT point (xk, y
p
k) for problem (1.1).

15: Compute sk = (1− τk)s
s
k + τks

p
k from (2.9) such that (2.10) is satisfied.

16: Compute the new weight σk+1 from (2.11).

17: Evaluate Hk = ∇2
xxL(xk, y

p
k) and compute sak from (2.16) and (2.17) with multipliers yak .

18: Compute scφk from (2.13) and then calculate ∆qφ(scφk ;xk, Hk, σk+1) from (2.15).

19: if P-mode then

20: for j = 0, 1, 2, . . . do

21: Set αk ← ξj .

22: for ŝk ∈ {sak, sk} do

23: if (αk, ŝk) is a p-pair then

24: Set Fk+1 ← Fk and go to Line 27. ⊲ k + 1 ∈ S

25: if fails ≤ max fails and max fails > 0 then

26: Set fails← fails + 1, Fk+1 ← Fk, and go to Line 47. ⊲ k + 1 ∈ U

27: if xk + αkŝk is acceptable to Fk then

28: Set P-mode ← false.

29: else

30: Compute scfk from (2.12) and then calculate ∆qf (scfk ;xk, Hk) from (2.14).

31: for j = 0, 1, 2, . . . do

32: Set αk ← ξj .

33: for ŝk ∈ {s
a
k, sk} do

34: if (αk, ŝk) is a v-pair then

35: Set Fk+1 ← Fk ∪ {(vR(k), fR(k))} and go to Line 46. ⊲ k + 1 ∈ S

36: if (αk, ŝk) is an o-pair then

37: Set Fk+1 ← Fk and go to Line 46. ⊲ k + 1 ∈ S

38: if fails ≤ max fails and max fails > 0 then

39: if (αk, ŝk) is a b-pair then

40: Set P-mode ← true. ⊲ k + 1 ∈ S

41: Set Fk+1 ← Fk ∪ {(vR(k), fR(k))} and go to Line 46.

42: else

43: Set fails ← fails + 1, Fk+1 ← Fk, and go to Line 47. ⊲ k + 1 ∈ U

44: if (αk, sk) is a b-pair then

45: Set Fk+1 ← Fk ∪ {(vR(k), fR(k))}, P-mode ← true, and go to Line 46. ⊲ k + 1 ∈ S

46: Set fails ← 0 and S ← S ∪ {k + 1}.

47: if (2.26) is satisfied then

48: Set σk+1 ← σk+1 + σinc.

49: Set xk+1 ← xk + αkŝk, yk+1 ← yak , δk+1 ∈ [δmin, δmax], and k ← k + 1.

10 N. I. M. Gould, Y. Loh and D. P. Robinson

Assumption 3.2 The problem functions f(x) and c(x) are twice continuously differentiable on X .

Assumption 3.3 The matrices Bk are uniformly positive definite and bounded, i.e., there exist values

0 < λmin < λmax <∞ such that λmin ‖s‖
2
2 ≤ sTBks ≤ λmax ‖s‖

2
2 for all s ∈ R

n and all Bk.

Assumption 3.4 The matrices Hk are uniformly bounded, i.e., ‖Hk‖2 ≤ µmax for some µmax ≥ 1.

Using these assumptions we may state our global convergence result, which is identical to [26, Theorem 4.1]

and uses the Mangasarian-Fromovitz constraint qualification (MFCQ) [35]. Since the proof is essentially

the same, here we only describe the differences that result from the nonmonotonicity of Algorithm 1.

Theorem 3.1 If Assumptions 3.1–3.4 hold, then one of the following must occur.

(i) Algorithm 1 terminates finitely with either a first-order KKT point or an infeasible stationary point

in Lines 14 or 11, respectively, for problem (1.1).

(ii) Algorithm 1 generates infinitely many iterations {xk}, σk = σ̄ <∞ for all k sufficiently large, and

there exists a limit point x∗ of {xk} that is either a first-order KKT point or an infeasible stationary

point for problem (1.1).

(iii) Algorithm 1 generates infinitely many iterations {xk}, limk→∞ σk = ∞, and there exists a limit

point x∗ of {xk} that is either an infeasible stationary point or a feasible point at which the MFCQ

fails.

Proof. The proof for the monotone variant [26, Algorithm 1] hinges on guaranteeing sufficient progress

during every iteration as measured by conditions placed on the (α, s) pairs. In this paper, we have

formulated conditions on (α, s) pairs (see Section 2.3) that generalize the conditions used in [26]. The

key difference is that the conditions in this paper are defined with respect to the last successful iteration

R(k), as opposed to the current iterate k. In this way, the sequence of successful iterates inherits the

properties of the sequence of iterates generated by the monotone algorithm. Thus, from a theoretical

perspective, we can essentially ignore the unsuccessful iterations and focus our attention on the successful

ones. We also note that if we set max fails to the value zero in Algorithm 1, our method reduces to the

monotone variant analyzed in [26].

We establish global convergence of Algorithm 1 by walking the reader through the analysis of [26] and

highlighting the differences that surface.

First, note that outcome (i) can occur since it is possible to locate either an infeasible stationary point

(see (2.7)) or a KKT point in a finite number of iterations (see Lines 11 and 14 of Algorithm 1).

If outcome (i) does not happen, then it is possible that outcome (iii) occurs so that the penalty

parameter converges to infinity. For this case we can follow the proofs in [26] since they only depend

on Assumptions 3.1–3.4, the manner in which the trial steps are computed and the properties of their

associated subproblems. Since these aspects have not changed from the monotone algorithm in [26], we

may again deduce that [26, Lemmas 4.19 and 4.20, Theorem 4.21] still hold, which proves outcome (iii).

Finally, suppose that outcomes (i) and (iii) do not occur so that infinitely many iterations are per-

formed and the penalty parameter is fixed for all k sufficiently large. We may then establish that outcome

(ii) holds by using the proofs in [26] with minor modifications that we now describe.

The first difference is related to the definition of v-iterates and the associated v-pairs. The conditions

that define them are stated as [26, Definition 2.14], but are restated here for convenience: xk + αs is

acceptable to the filter Fk augmented by xk, and ∆ℓf(sk;xk) < γv∆ℓv(sk;xk). In our nonmonotone

Algorithm 1, there is no guarantee that xk is acceptable to the filter, let alone that it satisfies any

additional conditions. Therefore, to handle the nonmonotonicity, we use in place of xk the last successful

iterate xR(k) since we know that it satisfies the same conditions required in the monotone algorithm. It

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 11

is then natural to use Definition 2.3 to define a v-pair in the nonmonotone setting. The v-iterates are

also used to update the filter. In the monotone algorithm, after a v-pair was found, the pair (vk, fk) was

added to the filter. In our nonmonotone Algorithm 1, we add the pair (vR(k), fR(k)), which maintains the

same properties of the filter. For instance, using the filter inequalities in (2.19), it can be shown that

if infinitely many entries are added to the filter, then some subsequence of the iterates converges to a

first-order minimizer of the constraint violation (see [26, Lemma 4.16]).

The second difference arises in the definition of o-iterates and the associated o-pairs. In the monotone

algorithm [26], a pair (α, s) constituted an o-pair at iteration k if the following conditions (see [26,

Definition 2.15]) were satisfied: xk + αs is acceptable to the filter Fk; ∆ℓf (sk;xk) ≥ γv∆ℓv(sk;xk); and

f(xk + αs) ≤ f(xk) − γfαρ
f
k , where {γv, γf} ⊂ (0, 1) and ρfk = min

[
∆ℓf(sk;xk), ∆qf (scfk ;xk, Hk)

]
.

In this case for the monotone algorithm, the trial point xk + αs has sufficiently reduced the objective

function from the current point xk. For the nonmonotone Algorithm 1 we again use the last successful

iterate xR(k), which leads to our Definition 2.4. Now, the trial point xk + αs associated with an o-pair

(α, s) sufficiently reduces the objective function when compared to the iterate xR(k). This is the key

property needed to show that if all sufficiently large successful iterates are o-iterates, then the sequence

of successful iterates converges to a first-order minimizer of the constraint violation [26, Lemma 4.12] and

the penalty function [26, Lemma 4.13].

The third difference is the definition of b-pairs. In the monotone algorithm, the conditions that define

a b-pair (see [26, Definition 2.16]) are that v(xk+αs) < v(xk) and φ(xk+αs;σk+1) ≤ φ(xk;σk+1)−γφαρ
φ
k ,

where γφ ∈ (0, 1) and ρφk = min
[
∆ℓφ(sk;xk, σk+1), ∆qφ(scφk ;xk, Hk, σk+1)

]
. A b-pair (α, s) therefore

defined an iterate xk + αs that reduced the constraint violation and sufficiently reduced the penalty

function. Again, we adjust our conditions to be based on the last successful iterate R(k) as given by

Definition 2.5. When a b-pair is found, we add the entry (vR(k), fR(k)) to the filter to preserve the required

relationships between the filter entries as used in the monotone algorithm. In particular, if infinitely

many b-iterates are found so that infinitely many entries are added to the filter, then a subsequence of

the iterates converges to a first-order minimizer of the penalty function [26, Lemma 4.17(ii)].

The fourth difference is the definition of a p-pair. In the monotone algorithm, the condition that defines

a p-pair (see [26, Definition 2.17]) is that φ(xk + αs;σk+1) ≤ φ(xk;σk+1)− γφαρ
φ
k , where γφ ∈ (0, 1) and

ρφk = min
[
∆ℓφ(sk;xk, σk+1), ∆qφ(scφk ;xk, Hk, σk+1)

]
. This condition ensured that the penalty function

was sufficiently reduced. In the nonmonotone Algorithm 1 we have again adjusted our conditions to

be based on the last successful iterate R(k) as given by Definition 2.6. This condition maintains the

important property that the penalty function is sufficiently reduced, but this time between consecutive

successful iterations. Using this property, it now follows as in [26, Lemma 4.10 and Theorem 4.11] that

if all sufficiently large successful iterates are p-iterates, then there exists a limit point of the sequence of

iterates that is an infeasible stationary point (see (2.7)).

A fifth difference is that the monotone algorithm only searches along the direction sk for a b-pair,

whereas our nonmonotone Algorithm 1 additionally checks whether (1, sak) is a b-pair in Line 39. This

impacts the proof of [26, Lemma 4.8(iii)], which is described only for the step sk. In turn, [26, Lemma

4.8(iii)] is used in the proofs of [26, Lemmas 4.13 and 4.17(ii)] to show that αk is uniformly bounded away

from zero along a certain subsequence. Since αk = 1 when a b-pair is found in Line 39 of Algorithm 1,

the lower bound on αk remains intact.

The final difference also involves the step length calculation. Specifically, in our nonmonotone algo-

rithm, αk is either equal to one (the unit step) during a nonmonotone phase or obtained through a line

search procedure, the latter of which is the computation used during every iteration of the monotone

algorithm. It is clear, however, that this difference has no effect on the lower bounds derived for the step

lengths (e.g., [26, Lemma 4.8]).

12 N. I. M. Gould, Y. Loh and D. P. Robinson

4 Local Convergence

In this section we show that Algorithm 1 is Q-quadratically convergent by making use of the following

additional assumption.

Assumption 4.1 Algorithm 1 generates an infinite sequence of iterates {xk} that converges to a KKT-

point x∗ for problem (1.1) with an associated Lagrange multiplier vector y∗ such that (x∗, y∗) satisfies the

following strong second-order sufficient optimality conditions:

(i) there exists λmin > 0 such that sTH∗s ≥ λmin ‖s‖
2
2 for all s satisfying JA∗s = 0, where H∗ :=

H(x∗, y∗), A∗ := {i : c(x∗) = 0}, and JA∗ := [J(x∗)]A∗ denotes the active rows of the Jacobian;

(ii) strict complementarity holds, i.e., [y∗]A∗ > 0; and

(iii) the linear independent constraint qualification (LICQ) holds, i.e., JA∗ has full row rank.

Note that λmin is, without loss of generality, the same value used in Assumption 3.3.

To show that the iterates {xk} converge to x∗ at a Q-superlinear rate, we first show that under the

above assumptions and for penalty parameter sufficiently large, the accelerator step sak is equivalent to

the traditional SQP step. We then show that for all sufficiently large k ∈ S, either xk+1 = xk + sak or

xk+2 = xk + sak + sak+1 is accepted by Algorithm 1, by considering the filter and penalty mode separately.

In particular, if P-mode = false during iteration k, we show that at least one of the above two points is

acceptable to the augmented filter. We then show that it must also satisfy conditions that make it either

a v-iterate, an o-iterate, or a b-iterate. On the other hand, if P-mode = true during iteration k, we show

that one of the two points must be a p-iterate. Theorem 4.7 ties all of these facts together.

We begin by first showing that under Assumption 4.1, the penalty parameter is bounded and that

infinitely many iterations occur in filter mode.

Lemma 4.1 If Assumption 4.1 holds, then (i) the penalty parameter σk = σ̄ < ∞ for all k sufficiently

large, and (ii) P-mode = false along an infinite subsequence of iterates.

Proof. Since (x∗, y∗) is a KKT pair and the LICQ holds at x∗ (which implies that the MFCQ holds),

it follows from [26, Theorem 4.21] that σk = σ̄ < ∞ for all k sufficiently large, which proves part (i).

Moreover, since (i) has been established, it follows as in [26, Lemma 4.10 and Theorem 4.11] that if all

sufficiently large successful iterations are p-iterates, then x∗ is an infeasible stationary point (see (2.7)).

This contradicts the fact that x∗ is a KKT point (in particular that it is feasible), and therefore we must

conclude that there exists an infinite number of successful v-, o-, or b-iterates. This completes the proof

of part (ii) since v-, o-, and b-iterates only occur in filter mode, i.e., when P-mode has the value false.

We next show that the penalty parameter is eventually at least as large as the infinity norm of the

Lagrange multiplier vector y∗. To understand the relevance of this result, see [8, Theorem 14.5.1].

Lemma 4.2 If Assumptions 3.3 and 4.1 hold, then σk ≡ σ̄ ≥ ‖y∗‖∞ for all sufficiently large k.

Proof. By Lemma 4.1, we know that σk ≡ σ̄ for all sufficiently large k. To reach a contradiction,

let us suppose that σ̄ < ‖y∗‖∞. It then follows from [8, Theorem 14.5.2] and the fact that (x∗, y∗) is a

first-order KKT pair for problem (1.1) that x∗ is not a local minimizer of φ(x; σ̄).

Since x∗ is a KKT-point, we know from [26, Theorem 4.11] that not all iterations are p-iterates

for sufficiently large k. It then follows from [26, Theorem 4.9] that either all iterates are o-iterates for

sufficiently large k, there are infinitely many v- iterates, or there are infinitely many b-iterates. In the first

case, let K1 be the subsequence of o-iterates; in the second case, let K1 be the subsequence of v-iterates;

and in the third case, let K1 be the subsequence of b-iterates. We may now use Assumption 3.3 to declare

the existence of a subsequence K ⊆ K1 ⊆ N and positive-definite matrix B∗ such that limk∈K Bk = B∗.

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 13

We next establish that the predictor step is computed from (2.8a) for all k sufficiently large. Since

limk→∞ xk = x∗ and x∗ is a KKT-point, we know that there exists a constant ε > 0 such that [ck]i ≥ ε

for all i /∈ A∗ and sufficiently large k. On the other hand, we have from Assumption 4.1(iii) that

[ck + Jks]A∗ = 0 is feasible for all k sufficiently large, and that the least-length solution converges to zero

since limk→∞[ck]A∗ = 0. Combining these observations shows that the linear inequality ck +Jks ≥ 0 will

have a solution with ‖s‖∞ ≤ δmin ≤ δk (see (2.4)) for all k sufficiently large; therefore ∆ℓv(ssk;xk) = vk
and the predictor step is computed from (2.8a) as claimed.

Define sp∗ as the unique minimizer of qf (s;x∗, B∗) subject to c∗ + J∗s ≥ 0. Since x∗ is not a local

minimizer of φ(x; σ̄), it follows from [4, Theorem 3.2(a)] that sp∗ 6= 0 . We then use this fact, the fact

that spk is computed from (2.8a) for all sufficiently large k, and Assumptions 3.2 and 4.1 to conclude that

limk∈K spk = sp∗ 6= 0, and therefore that limk∈K ∆qφ(spk;xk, Bk, σ̄) 6= 0. In the first case above, i.e., when

all iterates are o-iterates for sufficiently large k, this contradicts [26, Lemmas 4.13]; in the second case,

this contradicts [26, Lemmas 4.17(i)]; and in the third case, this contradicts [26, Lemmas 4.17(ii)].

While we have shown that necessarily σk ≡ σ̄ ≥ ‖y∗‖∞ for all sufficiently large k, our local analysis

requires that this holds as a strict inequality. We state this as a formal assumption.

Assumption 4.2 The penalty parameter satisfies σk ≡ σ̄ > ‖y∗‖∞ for all sufficiently large k.

Next, we present some key results from [28].

Lemma 4.3 Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies Assumption 4.1, let

Assumptions 3.3 and 4.2 hold, and let γcφ ∈
(
max{γf , γφ}, 1

)
with γf and γφ defined in Definitions 2.4

and 2.5. Then, there exists positive number δ > 0 such that if k ∈ S and wk = (xk, yk) ∈ Bδ(w∗), then

(i) Ak(s
p
k) = A∗ (see (2.18) and Assumption 4.1);

(ii) sak is the minimum norm solution to

minimize
s∈Rn

gTks+
1
2s

THks subject to ck + Jks ≥ 0, (4.27)

which is the traditional SQP subproblem; and

(iii) ∆qφ(sak;xk, Hk, σ̄) ≥ γcφ∆qφ(scφk ;xk, Hk, σ̄).

Proof. Many results from [28] directly apply here since the step computation is the same. In particular,

part (i) is equivalent to [28, Lemma 3.7(ii)], part (ii) is established by [28, proof of Theorem 3.12], and

part (iii) follows from [28, proof of Theorem 3.12, equation (2.7), and equation (2.9)].

We now give an asymptotic property of the accelerator steps associated with successful iterates.

Lemma 4.4 Let Assumptions 3.3, 4.1, and 4.2 hold and define

S2 = {k ∈ S : xk+1 = xk + sak and k + 1 /∈ S}.

Then, either the set S2 is finite or

lim
k∈S2→∞

φ(xk; σ̄)− φ(xk + sak + sak+1; σ̄)

∆qφ(sak;xk, Hk, σ̄)
= 1, (4.28)

with ∆qφ(sak;xk, Hk, σ̄) > 0 for all k ∈ S sufficiently large.

Proof. The limit in (4.28) follows from [8, Theorem 15.3.7], and the fact ∆qφ(sak;xk, Hk, σ̄) > 0 for

all k ∈ S sufficiently large can be found in the first line of the proof of [8, Theorem 15.3.7].

The next result gives some properties of the iteration following a specific feasible successful iteration.

14 N. I. M. Gould, Y. Loh and D. P. Robinson

Lemma 4.5 Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies Assumption 4.1. Also,

let Assumptions 3.3 and 4.2 hold, and γcφ and δ > 0 be as defined in Lemma 4.3. It follows that if

max fails > 0, P-mode = false at the beginning of iteration k, k ∈ S is sufficiently large, k + 1 /∈ S,

wk = (xk, yk) ∈ Bδ(w∗), and v(xk) = 0, then xk+1 = xk + sak and both (2.21a) and (2.21b) are satisfied,

with k replaced by k + 1, by the pair (1, sak+1).

Proof. Since k ∈ S, Algorithm 1 starts iteration k + 1 with fails = 0, and thus xk+1 = xk + sak as

max fails > 0, which is the first result. We also note that since k + 1 /∈ S that R(k + 1) = k.

It follows from (2.10), v(xk) = 0, and the definition of ssk that 0 = v(xk) = ∆ℓv(ssk;xk) = ∆ℓv(sk;xk).

We also have from [26, Lemma 2.7(ii)] that ∆ℓφ(sk;xk, σ̄) ≥
1
2s

p
k

T
Bks

p
k ≥ 0, which combined show that

∆ℓf (sk;xk) = ∆ℓφ(sk;xk, σ̄) ≥ 0 = γv∆ℓv(sk;xk),

where we used ∆ℓv(sk;xk) = 0 to obtain the first equation. This shows that (2.21a) is satisfied with k

replaced by k + 1 since R(k + 1) = k.

Next, note that v(xk) = ∆ℓv(ssk;xk) = 0 implies that problem (2.8a) is solved during iteration k and

therefore ck+Jks
p
k ≥ 0. Using this and ck ≥ 0 allows us to conclude that ck+αJks

p
k ≥ 0 for all α ∈ [0, 1].

Combining this fact with sk = spk (since τk = 1 in (2.9)) shows that scfk and scφk are also linearly feasible,

i.e., ck + Jks
cf
k ≥ 0 and ck + Jks

cφ
k ≥ 0.

Pick κ ∈ (γf/γcφ, 1), which is always possible since 0 < γf < γcφ < 1 by definition of γcφ (see

Lemma 4.3). Then, it follows from definition of φ, xk+1 = xk + sak, v(xk) = 0, v(xk+1 + sak+1) ≥ 0,

Lemma 4.4, Lemma 4.3(iii), the definitions of scφk and scfk , the definition of ∆qφ, the fact that scfk is

linearly feasible, and our selection of κ that

f(xk)− f(xk+1 + sak+1) = φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)− σ̄
(
v(xk)− v(xk+1 + sak+1)

)

≥ φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)

≥ κ∆qφ(sak;xk, Hk, σ̄) ≥ κγcφ∆qφ(scφk ;xk, Hk, σ̄) ≥ κγcφ∆qφ(scfk ;xk, Hk, σ̄)

= κγcφ∆qf (scfk ;xk, Hk) + κγcφσ̄
(
v(xk)−

∥∥[ck + Jks
cf
k

]−∥∥
1

)

≥ γf∆qf (scfk ;xk, Hk)

≥ γf min
(
∆ℓf (sk, xk),∆qf (scfk ;xk, Hk)

)
for k sufficiently large.

This is equivalent to (2.21b), with k replaced by k + 1, since R(k + 1) = k.

By contrast, we now consider properties of the pair of iterations following a specific infeasible successful

iteration.

Lemma 4.6 Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies Assumption 4.1. Also,

let Assumptions 3.3 and 4.2 hold, and γcφ and δ > 0 be defined as in Lemma 4.5. Furthermore, suppose

that max fails > 0, P-mode = false at the beginning of iteration k, k ∈ S is sufficiently large, k+1 /∈ S,

wk = (xk, yk) ∈ Bδ(w∗), and v(xk) > 0. It follow that if (2.21a) is satisfied and (2.21b) is violated (both

with k replaced by k+ 1) by the pair (1, sak+1), then xk+1 = xk + sak, (1, s
a
k+1) is a b-pair during iteration

k + 1, k + 2 ∈ S, and xk+2 = xk + sak + sak+1.

Proof. The first result follows, just as in the previous proof, as Algorithm 1 sets xk+1 = xk + sak
because k ∈ S and max fails > 0, and once again R(k + 1) = k since k + 1 /∈ S.

We first show that (2.24) is satisfied, with k replaced by k + 1, by the pair (1, sak+1). It follows from

Lemma 4.4, Lemma 4.3(iii), the choice of κ, and (2.25) that

φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄) ≥ κ∆qφ(sak;xk, Hk, σ̄)

≥ κγcφ∆qφ(scφk ;xk, Hk, σ̄) ≥ γφρ
φ
k for sufficiently large k, (4.29)

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 15

which shows that (2.24), with k replaced by k + 1, is satisfied by (1, sak+1).

We next show that (2.23) is satisfied, with k replaced by k + 1, by the pair (1, sak+1). Define G =

{i : ci(xk) < 0} and H = {i : ci(xk) ≥ 0} and observe that Lemma 4.3(i)–(ii) and the definition

of sak (see (2.16) and (2.17)) imply that ck + Jks
p
k ≥ 0. We also know that sk = spk since τk = 1

(see (2.9)) so that ck + Jksk ≥ 0. It then follows that ci(xk) + α∇ci(xk)
Tsk ≥ 0 for all i ∈ H and

α ∈ [0, 1], and that ∇ci(xk)
Tsk ≥ −ci(xk) > 0 for all i ∈ G. Combining these conditions together shows

that [ci(xk)]
− −

[
ci(xk) + α∇ci(xk)

Tsk
]−
≥ 0 for all i and α ∈ [0, 1], and after summing over all the

constraints and using the definition of scfk , leads to

∆ℓv(scfk ;xk) =
∥∥ [ck]−

∥∥
1
−
∥∥[ck + Jks

cf
k

]−∥∥
1
≥ 0. (4.30)

Now, choose any κ ∈ (max{γf , γφ}/γcφ, 1), which is possible since max{γf , γφ} < γcφ < 1 by the

definition of γcφ in Lemma 4.3. Note that ∆qf (scfk ;xk, Hk) ≥ 0 by construction, We consider two cases.

Case 1: ∆qf (scfk ;xk, Hk) > 0. We may use the definition of φ, Lemma 4.4, the supposition that (2.21b)

is violated (with k replaced by k + 1) by the pair (1, sak+1), R(k+ 1) = k, Lemma 4.3(iii), the definitions

of ρfk , s
cφ
k , scfk , and ∆qφ, (4.30), the selection of κ, and ∆qf (scfk ;xk, Hk) > 0 to conclude that

σ̄
(
v(xk)− v(xk+1 + sak+1)

)
= φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)−

(
f(xk)− f(xk+1 + sak+1)

)

≥ κ∆qφ(sak;xk, Hk, σ̄)− γfρ
f
k

≥ κγcφ∆qφ(scφk ;xk, Hk, σ̄)− γf∆qf (scfk ;xk, Hk)

≥ κγcφ∆qφ(scfk ;xk, Hk, σ̄)− γf∆qf (scfk ;xk, Hk)

≥ κγcφ

(
∆qf (scfk ;xk, Hk) + σ̄∆ℓv(scfk ;xk)

)
− γf∆qf (scfk ;xk, Hk)

≥ (κγcφ − γf)∆qf (scfk ;xk, Hk) > 0 for all sufficiently large k,

so that (2.23) is satisfied, with k replaced by k + 1, by the pair (1, sak+1).

Case 2: ∆qf (scfk ;xk, Hk) = 0. Since v(xk) > 0 by assumption, we know that ∆ℓv(ssk;xk) > 0 because

otherwise Algorithm 1 would have exited in Line 11. It then follows from the definition of φ, the fact that

we have already shown that (2.24) (with k replaced by k + 1) is satisfied by (1, sak+1), R(k + 1) = k, the

assumption that (2.21b) is violated (with k replaced by k+1) by the pair (1, sak+1), ∆qf (scfk ;xk, Hk) = 0,

the definition of ρφk , [26, Lemma 2.8], ∆ℓv(ssk;xk) > 0, and (2.13) that

σ̄
(
v(xk)− v(xk+1 + sak+1)

)
= φ(xk; σ̄)− φ(xk+1 + sak+1; σ̄)−

(
f(xk)− f(xk+1 + sak+1)

)

≥ γφρ
φ
k − γfρ

f
k ≥ γφρ

φ
k

= γφ min
{
∆ℓφ(sk;xk, σ̄), ∆qφ(scφk ;xk, Hk, σ̄)

}
> 0

so that (2.23) is again satisfied, with k replaced by k + 1, by the pair (1, sak+1).

Since we have shown that (2.23) and (2.24) (with k replaced by k + 1) are satisfied by (1, sak+1), and

we know from assumption that (2.21a) is satisfied and (2.21b) is violated (both with k replaced by k+1)

by the pair (1, sak+1), we may conclude that (1, sak+1) is a b-pair during iteration k+1, as claimed. It then

follows immediately from the construction of Algorithm 1 that k + 2 ∈ S and that xk+2 = xk+1 + sak+1,

which completes the proof since xk+1 = xk + sak.

We may now state our local convergence result.

Theorem 4.7 Let w∗ = (x∗, y∗) be the minimizer for problem (1.1) that satisfies Assumption 4.1. Fur-

thermore, let Assumptions 3.3 and 4.2 hold, δ > 0 be given as in Lemma 4.5, and max fails > 0. Then,

the iterates {xk} and {yk} converge to x∗ and y∗ at a Q-superlinear and R-superlinear rate, respectively.

Moreover, if ∇2
xxL(x, y) is Lipschitz continuous in a neighborhood of (x∗, y∗), then they converge at a

Q-quadratic and R-quadratic rate, respectively.

16 N. I. M. Gould, Y. Loh and D. P. Robinson

Proof. We first show that for all sufficiently large k ∈ S such that P-mode = false during iteration

k, we have xk+1 = xk + sak and either (i) k+1 ∈ S or (ii) k+2 ∈ S and xk+2 = xk + sak + sak+1. The fact

that xk+1 = xk + sak follows from k ∈ S, fails = 0, max fails > 0, and the structure of Algorithm 1. To

prove the rest, we suppose that (i) does not hold and proceed to prove that (ii) holds.

So, suppose that (i) does not hold, i.e., that k + 1 /∈ S. Our first goal is to use [43, Lemmas 4.5 and

4.6, Theorem 4.7] to establish that xk + sak + sak+1 is acceptable to the augmented filter. We may use

these results since the conditions that define our filter are weaker in comparison to the conditions that

define the filter in [43]. Specifically, if a point is acceptable to the filter given by [43, equation (10)],

then it is also acceptable to our filter given by Definition 2.1. This is easy to see since the inequalities in

Definition 2.1 use max/min terms based on quantities derived from the steering subproblem to formulate

weaker, and more practical, conditions that define the filter. With this observation, one may now follow

the proofs of [43, Lemmas 4.5 and 4.6, Theorem 4.7] to show that xk + sak + sak+1 is acceptable to the

augmented filter under the current assumptions.

We now consider three cases.

Case 1: condition (2.21a) is not satisfied at iteration k + 1. Since (2.20) holds and we already proved

that xk + sak + sak+1 is acceptable to the augmented filter, we may conclude that (1, sak+1) is a v-pair

during iteration k + 1, k + 2 ∈ S, and xk+2 = xk+1 + sak + sak+1, as claimed.

Case 2: conditions (2.21a) and (2.21b) are both satisfied at iteration k + 1. Combining this with the

fact that we already proved that xk + sak + sak+1 is acceptable to the augmented filter, we may conclude

that (1, sak+1) is an o-pair during iteration k + 1, k + 2 ∈ S, and xk+2 = xk+1 + sak + sak+1, as claimed.

Case 3: condition (2.21a) holds but condition (2.21b) is violated at iteration k + 1. Under the current

assumptions, it follows from Lemma 4.5 that v(xk) > 0, or else there would be a contradiction. We

may now use Lemma 4.6 to conclude that (1, sak+1) is a b-pair during iteration k + 1, k + 2 ∈ S, and

xk+2 = xk+1 + sak + sak+1, as claimed.

Since one of the above three cases must occur, we have established that part (ii) holds. To summarize,

we have shown that for all sufficiently large k ∈ S such that P-mode = false at the beginning of iteration

k, we have xk+1 = xk + sak and either (i) k + 1 ∈ S or (ii) k + 2 ∈ S and xk+2 = xk + sak + sak+1.

Next, we show a similar result holds when P-mode = true at the beginning of iteration k. Specifically,

we show that for all sufficiently large k ∈ S such that P-mode = true at the beginning of iteration k, we

have xk+1 = xk + sak and either (i) k + 1 ∈ S or (ii) k + 2 ∈ S and xk+2 = xk + sak + sak+1. The fact that

xk+1 = xk + sak follows from k ∈ S, max fails > 0, and the structure of Algorithm 1. To prove the rest,

we suppose that (i) does not hold and proceed to prove that (ii) holds. When (i) does not held, then the

same argument that lead to (4.29) may again be used to show that (1, sak+1) is a p-pair during iteration

k + 1 and therefore k + 2 ∈ S and xk+2 = xk+1 + sak + sak+1, as claimed.

We have shown that xk+1 = xk + sak for all k sufficiently large. In light of (4.27), this means that

Algorithm 1 accepts the traditional SQP step at (xk, yk) for all k sufficiently large. Since this was

the precise condition required to establish [28, Theorem 3.12], we have the same conclusions as in that

theorem, which completes the proof of Theorem 4.7.

5 Numerical Results

In this section we present numerical experiments performed with a basic Matlab implementation of

Algorithm 1 (henceforth called FiSQO) on the set of low-dimensional CUTEst [25] problems. We comment

up front that we do not compare FiSQO to methods that use a feasibility restoration phase. This

decision was made for a variety of reasons. First, different filter methods use different formulations of

the restoration phase, which makes it difficult, if not impossible, to make any general statements about

them. Second, the implementation of a restoration phase often, if not always, includes heuristics that

are designed to improve the general performance. Finally, a key motivation for our work is the design

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 17

of a filter method that does not use a restoration phase since it is generally accepted that it is the most

dissatisfying aspect of such filter-based methods.

With the previous remarks in mind, we now mention that the purpose of our numerical experiments

is to validate the general effectiveness of FiSQO and to investigate any numerical anomalies associated

with b-pairs. We focus on such pairs since, roughly, they serve as our alternative to feasibility restoration.

With respect to both goals, we find it instructive to compare FiSQO to our own implementation of a

penalty SQO line search method (henceforth referred to as PenSQO). Since we have complete control

over both algorithms, we are able to isolate any aspect of interest (e.g., the influence of b-pairs), design

and perform revealing numerical tests, and confidently present the numerical results. As described in the

next section, the only difference between the two methods is in the step acceptance criteria.

5.1 Implementation details

During each iteration, FiSQO requires the solution of a linear and a quadratic subproblem in order to

obtain the steering step ssk and the predictor step spk in lines 9 and 12, respectively. In our implementation,

they were obtained by using the primal simplex active-set solver in Cplex [32], which we generally found

to be reliable. The formulation of the predictor subproblem (2.8) required a positive-definite matrix

Bk, which we obtained by a modified Newton strategy as follows. First, we computed the spectral

decomposition of Hk, i.e., Hk = VkDkV
T
k , where Vk is an orthogonal set of eigenvectors and Dk is a

diagonal matrix of eigenvalues for Hk. Second, we set ε = 1 if Hk = 0, and ε = ‖Hk‖2 /10
8 otherwise.

We then obtained the desired positive-definite matrix as Bk = VkD̂kV
T
k , where the diagonal entries of

the diagonal matrix D̂k were given as

[D̂k]ii =

[Dk]ii if [Dk]ii ≥ ε,

−[Dk]ii if [Dk]ii ≤ −ε,

ε otherwise.

It is not difficult to see that the matrix Bk is positive definite with a condition number bounded by 108.

We note that this strategy was chosen for simplicity and that it is not suitable for large-scale problems. In

the large-scale setting, choosing Bk based on limited-memory quasi-Newton updates, e.g., L-BFGS [34],

would be appropriate. Nonetheless, we remain satisfied with this simple choice since it was used by both

FiSQO and PenSQO in our experiments.

The value of τk needed in line 15 was obtained by performing backtracking (starting with an initial

guess of τk = 1) until condition (2.10) was satisfied. We note that although Algorithm 1 states that τk
should be computed as the largest value on [0, 1] that satisfies (2.10), this is not necessary. The simple

backtracking procedure that we implemented ensures that the sequence {τk} possesses the properties

required to obtain the global and local convergence results established in this paper (e.g., using an initial

guess of τk = 1). The final aspect of the search direction was the computation of an accelerator step sak
in line 17. We defined sak via (2.16), where sa

′

k was computed from subproblem (2.17) in the following

way. We first used the backslash operator in Matlab in an attempt to solve the linear system

(
Hk [Jk]

T
Ak

[Jk]Ak
0

)(
sa

′

k

−[yk]Ak

)
= −

(
gk +H(xk, y

p
k)s

p
k

0

)
, (5.31)

where Ak is defined by (2.18). The motivation for considering this particular linear system is that if

[Jk]Ak
has full row rank, Hk is positive definite when restricted to the null space of [Jk]Ak

, and δa is

sufficiently large, then sa
′

k will, in fact, be the unique minimizer to (2.17). Of course, a solution to (5.31)

may not exist, and even when it does exist, it is a solution to (2.17) only when Hk is positive definite

when restricted to the null space of [Jk]Ak
and δa is sufficiently large. Therefore, if Matlab returned a

18 N. I. M. Gould, Y. Loh and D. P. Robinson

“NaN” in any component of sa
′

k or [yk]Ak
, we reset both of them to zero, and continued with the iteration.

Otherwise, we proceeded to perform a scaling of sa
′

k to make it have norm bounded by δa, i.e., to make

it satisfy the trust-region constraint in (2.17), but we did not scale the associated Lagrange multiplier

estimate [yk]Ak
. This procedure may result in a step sa

′

k that does not solve (2.17), but nonetheless is a

reasonable strategy for calculating an approximate solution in a cost-efficient manner. We also comment

that, since the purpose of the accelerator step is to accelerate local convergence, this change has no effect

on the global convergence properties of FiSQO. Moreover, since the predictor step ultimately predicts

via Ak the constraints that are active at a local minimizer (under Assumption 4.1), our procedure for

computing sa
′

k will asymptotically give the unique minimizer to problem (2.17). In particular, this means

that our local convergence theory remains valid.

The computations just described, as well as most of the other steps in FiSQO, use control parameters

and require the choice of initial values; we used the values in Table 5.1. These choices were made based on

our experience of developing other nonlinear optimization algorithms, and no fine-tuning of our choices

was attempted for this basic implementation. Although not stated in Algorithm 1, in our implementation

we imposed an iteration limit of 10000 iterations and a CPU time limit of 10 minutes.

Table 5.1: Control parameters and initial values required by FiSQO and PenSQO.

Parameter Value Parameter Value Parameter Value Parameter Value

ηv 10−3 ησ 10−6 ηφ 10−3 σinc 5

γ 10
−3 γv 10

−3 γf 10
−4 γφ 10

−4

β 0.99 ξ 0.5 δmin 1 δmax 10+4

δa 10
+2 σ0 10 δ0 10

+2 τstop 10
−5

Finally, we discuss the termination tests used by both FiSQO and PenSQO. First, we declared xk to

be an infeasible stationary point, as predicated by line 11 of Algorithm 1, if it satisfied

vk ≥ 100 τstop and ∆ℓv(ssk;xk) ≤ 10−12, (5.32)

where the value of the termination tolerance τstop is given in Table 5.1. It is clear that these conditions

were motivated by (2.7), but designed to account for numerical error. Finally, we concluded that xk is a

solution to (1.1) in line 14 if

vk ≤ τstop and ∆qφ(spk;xk, σk) ≤ 10−12 (5.33)

were satisfied, or if the primal-dual pair (xk, yk) satisfied the approximate Karush-Kuhn-Tucker condition

‖FKKT(xk, yk)‖∞ ≤ τstop. (5.34)

In our implementation, we set yk ← ypk if ‖FKKT(xk, y
p
k)‖∞ < ‖FKKT(xk, y

a
k)‖∞, and yk ← yak otherwise.

Also, although we did not explicitly check for unboundedness, it did not seem to affect our numerical

results. Nonetheless, production quality software should include such a check since it is a possible outcome.

Our penalty-SQO algorithm PenSQO was obtained by making two simple modifications to FiSQO.

First, P-mode was initialized to the value true. Second, anytime the condition in line 27 tested true, the

setting of P-mode to the value false was not performed. In short, our modification forced P-mode to

always have the value true. Consequently, the only difference between FiSQO and PenSQO is in the step

acceptance criteria.

5.2 Collection of CUTEst test problems

We tested our Matlab implementations of FiSQO and PenSQO on two subsets of problems from the

CUTEst [25] collection. The first subset was obtained by first identifying those CUTEst problems with

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 19

at least one general constraint (i.e., m ≥ 1) and at most 100 variables and constraints (i.e., max{m,n} ≤

100). From this set, we removed problems deconvc, discs, hs99exp, lakes, tr04x4, tr06x2, truspyr1, and

truspyr2 since the Cplex solver “hung” and prevented the algorithms from continuing, which left us with

a total of 301 test problems. A detailed presentation of the results on a problem-by-problem basis may be

found in Tables 1.3 and 1.4. The column headings in Tables 1.3–1.7 have the following meaning: “prob” is

the name of the problem, “m” and “n” denote the number of constraints and variables, “status” is a flag

indicating the outcome of the solution process, “f” and “v” give the final values of the objection function

and constraint violation, “iters” and “fevals” denote the number of iterations and function evaluations

performed, “σ” is the final value of the penalty parameter, and “#o”, “#v”, “#b”, and “#p” hold the

number of o-, v-, b-, and p-pairs computed, respectively. The possible values and associated meaning for

the flag “status” are given in Table 5.2.

Table 5.2: Possible values and their interpretation for the flag “status” in Tables 1.3–1.7.

status meaning

0 an approximate solution satisfying the KKT condition (5.34) was found

−1 an approximate infeasible stationary point satisfying (5.32) was found

−2 an approximate solution satisfying the optimality condition (5.33) was found

−5 Cplex was unable to find a verifiably optimal solution to a steering subproblem

−6 Cplex was unable to find a verifiably optimal solution to a predictor subproblem

−7 Cplex crashed while solving either a steering or predictor subproblem

−8 a steering step was computed that increased the feasibility model

−9 the computed step was too small to make additional progress

−10 a NaN was encountered while evaluating a problem function

1 the maximum number of 10000 iterations was reached before a solution was found

2 the maximum CPU limit of 10 minutes was reached before a solution was found

Here, to illustrate the performance of our software, we use performance profiles as introduced by Dolan

and Moré [16] to give visual comparisons of numerical performance. Consider a performance profile that

measures performance in terms of the number of iterations until successful termination. In this case, if

the graph associated with an algorithm passes through the point (α, 0.β), then it means that on β% of

the problems, the number of iterations required by the algorithm was less than α times the number of

iterations required by the algorithm that required the fewest. Therefore, an algorithm with a higher value

on the vertical axis may be considered more efficient, whereas an algorithm on top at the far right may

be considered more reliable. We note that for every profile, a problem was considered to be successfully

solve if an approximate infeasible stationary point satisfying (5.32) or an approximate KKT pair (xk, yk)

satisfying either (5.33) or (5.34) was found (i.e., “status” had the value 0, −1, or −2).

Figures 5.1 and 5.2 show the results for the two line search algorithms FiSQO and PenSQO. We note,

however, that these profiles were created after we removed additional problems from the test set. Specif-

ically, we removed all (two in this case) problems for which at least one of FiSQO or PenSQO returned a

value for “status” in the set {−5,−6,−7} since these more so indicated failure of the subproblem solver,

or a value of −10 since function evaluation errors do not necessarily give any useful information about the

algorithms. This left us with a total of 299 test problems used in the performance profiles. By inspecting

the right-hand-side of the graphs, we can see that FiSQO and PenSQO are similar in terms of robustness,

with a slight edge going to FiSQO. Taken in tandem, the two graphs indicate that the number of function

evaluations are significantly less for FiSQO than for PenSQO, while the difference in the number of itera-

tions (equivalently, the number of gradient evaluations) is less significant. This phenomenon makes sense

20 N. I. M. Gould, Y. Loh and D. P. Robinson

because acceptance based on the combination of v-, o-, b-, and p-pairs is more relaxed when compared

to acceptance based on the penalty function alone, which translates into substantially fewer (overall)

function evaluations during the line search. However, since the difference in the number of iterations is

less significant, we may conclude that, although more trial steps are accepted by FiSQO, many of them

make less (overall) progress toward a solution when compared to PenSQO.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Figure 5.1: Iterations: CUTEst problems with

m ≥ 1 and max{m,n} ≤ 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Figure 5.2: Function evaluations: CUTEst prob-

lems with m ≥ 1 and max{m,n} ≤ 100.

A few additional comments concerning these results are in order. First, we believe it is interesting

to see the numerical trade-off between accepting more (on average lower quality) steps versus fewer (on

average higher quality) steps; perhaps, this should not have been a surprise. Second, these results indicate

that our implementation of FiSQO appears to be fairly robust and at least as efficient as PenSQO. Third,

we could probably further improve the FiSQO results by using (when P-mode has the value of true) a

flexible penalty approach [12, 20, 21, 24], which would require a modification to the definition of a p-pair.

It is important to emphasize that we are not claiming that FiSQO is better than a flexible penalty-SQO

approach, but rather that FiSQO appears to be better than a standard penalty-SQO approach.

Our second subset of test problems was obtained by first identifying the CUTEst problems with m ≥ 1

and 100 < max{m,n} ≤ 1000. As with the previous test set, we then removed problems for which Cplex

“hung”, which included a4x12, mss2, steenbrd tr011x3 tr05x5, and yorknet. This resulted in a subset

of 68 CUTEst test problems. (See Tables 1.5 and 1.6 for a detailed presentation of the results on a

problem-by-problem basis.)

Figures 5.3 and 5.4 show the results for algorithms FiSQO and PenSQO. As with the previous profiles,

they were created after removing all (in this case 11) problems for which at least one of FiSQO or PenSQO

returned a value for “status” in the set {−5,−6,−7,−10}, which left us with a total of 57 problems.

Viewed together, they lead us to the same conclusion as for the previous test set, which was comprised

of smaller problems: FiSQO needed significantly fewer function evaluations compared to PenSQO, but

the difference in the number of iterations (equivalently, the number of gradient evaluations) was less

significant.

To summarize, we believe that the numerical results presented in this section validate the effectiveness

of FiSQO. Its ability to accept more steps significantly reduces the number of function evaluations needed

by the line search procedure, while the decrease in the number of iterations/gradient evaluations is mild.

5.3 Gauging the influence of b- and p-pairs

Most filter algorithms have multiple sets of conditions that trigger feasibility restoration. For example,

most (if not all) filter trust-region methods enter feasibility restoration if the trust-region subproblem

is infeasible. Since our research has focused on avoiding such traditional restoration phases, we were

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Figure 5.3: Iterations: CUTEst problems with

m ≥ 1 and 100 < max{m,n} ≤ 1000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

FiSQP
PenSQP

Figure 5.4: Function evaluations: CUTEst prob-

lems with m ≥ 1 and 100 < max{m,n} ≤ 1000.

careful about how our trial steps were calculated (e.g., the subproblems used in FiSQO are always

feasible). Consequently, one might expect that if our particular trial step computation was used within

a traditional filter method, then the frequency with which feasibility restoration would be needed would

be reduced. (For this discussion, we are ignoring the fact that it is unclear how global convergence of this

fictitious algorithm would be established.) Thus, it is natural to wonder how important b- and p-pairs

(essentially, our replacement for feasibility restoration) are to the overall success of FiSQO; that is the

topic of this section.

We first consider the frequency with which b- and p-pairs occur. We may observe from Tables 1.3

and 1.5 that for (32 + 11)/(301 + 66) ≈ 12% of the problems, b-pairs (consequently, also p-pairs) were

computed. For these problems (i.e., those for which at least one b-pair was computed), it is also clear from

Tables 1.3 and 1.5 that the number of p-pairs is typically very small; notable exceptions are problems

allinita, hatfldf, mss1, and table7, none of which were successfully solved.

We have now seen that the number of problems for which FiSQO used at least one b-pair is significant.

To investigate their importance, we first identified the problems in Tables 1.3 and 1.5 for which FiSQO

required at least one b-pair during the solution process. We then modified our Matlab implementation

of FiSQO so that it never allowed the acceptance of a b-pair, which, as a consequence, meant that p-

pairs were never accepted (i.e., we only accepted v- and o-pairs). We stress that this modified algorithm

(henceforth referred to as modFiSQO) does not enjoy the global convergence results established for

FiSQO. Nonetheless, we are interested in the outcome of this experiment as it gives us additional insight

into the potential importance of b-pairs.

We ran modFiSQO on the problems identified in the previous paragraph and the results are presented

in Table 1.7. (We included only those problems for which a solution was successfully obtained by at least

one of FiSQO or modFiSQO, which left us with a total of 32 out of the 43 originally identified problems.)

The values under “status”, “iters”, “fevals”, and “σ” are given in the format a/b with a the value

for FiSQO and b the value for modFiSQO. The column “status” shows that the modified algorithm

modFiSQO solved the problems with the exception of haldmads. The two measures of efficiency (number

of iterations and function evaluations), however, tell a different story. FiSQO required more iterations

on only 4/32 of the problems, three of which (himmelp2, hs111lnp, and hs27) required a single extra

iteration and one (hs92) required 5 additional iterations. We also note that for those 4 problems, FiSQO

did not require more function evaluations compared to modFiSQO. Over the entire set of problems,

FiSQO required more function evaluations on 5/32 instances; acopp14 (42/11), bt7 (106/77), qpcboei1

(17/16), qpcstair (28/12), and qpnboei2 (45/39). (Interestingly, for all 5 problems, FiSQO still required

fewer iterations.) So, although FiSQO is occasionally less efficient in terms of the number of function

evaluations, the difference was not dramatic. In contrast, among the 27/32 problems for which FiSQO

22 N. I. M. Gould, Y. Loh and D. P. Robinson

was at least as efficient as modFiSQO in terms of the number of function evaluations, the difference was

sometimes dramatic, e.g., hs101 (72/1879), tenbars1 (76/525), and acopr57 (16/101), to name a few.

Overall, we believe that these results clearly establish the practical importance of b-pairs. On the

other hand, these results do not provide any clear evidence of their theoretical significance. With that

said, it is difficult to imagine how any global convergence theory for modFiSQO could be established,

unless additional modifications were introduced.

6 Conclusions and Discussion

This paper considered the local convergence properties and numerical performance of FiSQO: a non-

monotone variant of the filter line search algorithm proposed in [26] for which (in contrast to most filter

methods) every subproblem is feasible. We proved, under standard assumptions, that the iterates com-

puted by FiSQO converge superlinearly to a local minimizer. To accompany the theoretical results, we

presented numerical results on subsets of the CUTEst problems. These results showed that FiSQO was

more efficient than a penalty-SQO algorithm that used exactly the same step calculation procedure. In

this manner, we were able to isolate the influence that our new step acceptance criteria had on numerical

performance. The results were quite clear. First, our acceptance criteria based on o-, v-, b-, and p-pairs

typically accepted more trial steps, which had the effect of significantly reducing (overall) the number

of required function evaluations. Second, the number of iterations (equivalently, the number of gradient

evaluations) was also reduced, but the difference was not as dramatic. We found it interesting to see

the numerical trade-off between accepting more (on average lower quality) steps versus fewer (on average

higher quality) steps. To further understand the importance of b- and p-pairs (essentially, our substitute

for feasibility restoration), we performed the following experiment. We first identified the test problems

for which FiSQO used at least one b-pair during the solution process. Next, we solved those problems

with a modified variant of FiSQO, called modFiSQO, that differed by not allowing b-pairs to be accepted

during the line search. The results clearly showed that modFiSQO performed substantially worse (in

general), which validated the numerical importance of b-pairs. Since modFiSQO solved all except one

of the problems, there was no clear numerical evidence to suggest a theoretical advantage (in terms of

convergence guarantees) for FiSQO.

We did not compare FiSQO to methods that use a feasibility restoration phase. This decision was

made for a variety of reasons. First, different filter methods use different formulations of the restoration

phase, which makes it difficult to make any general statements about them. Second, the implementation

of a restoration phase often includes heuristics that are designed to improve the general performance.

Third, a key motivation for our work is the design of a filter method that does not use a restoration phase

since it is generally considered to be the most dissatisfying aspect of such filter-based methods.

It is interesting to note that there was little numerical difference between our monotone and non-

monotone algorithms. This contrasts the typical difference between monotone and nonmonotone penalty

function methods, for which nonmonotone variants routinely outperform their monotone counterparts.

Our monotone method appears to be less susceptible to the Maratos effect because of our carefully in-

tegrated filter and penalty function acceptance tests. Of course, the Maratos effect can still affect our

monotone variant, but in this paper we have established that this is not a concern for our nonmonotone

algorithm under common assumptions.

This work showed that, by pairing carefully constructed trial steps with b- and p-pairs, it is possible

to define a convergent filter method that does not require feasibility restoration. We suspect that a

disadvantage of our approach is that methods, such as filter-SQP [18], would typically perform better

on infeasible problems, a feature directly attributed to feasibility restoration. We believe, however, that

recent advances in feasibility detection [3] could be used within our framework and perhaps reduce, if not

entirely mitigate, this disadvantage.

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 23

References

[1] E. G. Birgin, R. Castillo, and J. M. Mart́ınez, Numerical comparison of augmented La-

grangian algorithms for nonconvex problems, Computational Optimization and Applications, 31

(2005), pp. 31–55.

[2] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1995), pp. 1–

51.

[3] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for non-

linear optimization, SIAM Journal on Optimization, 20 (2010), pp. 2281–2299.

[4] R. H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using steering

rules, Mathematical Programming, 133 (2012), pp. 39–73.

[5] R. Chamberlain, M. Powell, C. Lemarechal, and H. Pedersen, The watchdog technique

for forcing convergence in algorithms for constrained optimization, in Algorithms for Constrained

Minimization of Smooth Nonlinear Functions, Springer, 1982, pp. 1–17.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, A globally convergent augmented Lagrangian

algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28

(1991), pp. 545–572.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Numerical experiments with the LANCELOT

package (Release A) for large-scale nonlinear optimization, Math. Program. A., 73 (1996), pp. 73–

110.

[8] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-Region Methods, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[9] F. E. Curtis, N. I. M. Gould, D. P. Robinson, and Ph. L. Toint, An interior-point trust-

funnel algorithm for nonlinear optimization, submitted for publication, (2013).

[10] F. E. Curtis, H. Jiang, and D. P. Robinson, Adaptive augmented Lagrangian methods for

large-scale constrained optimization, Submitted for Publication, (2012).

[11] F. E. Curtis, T. C. Johnson, D. P. Robinson, and A. Wächter, An inexact sequential

quadratic optimization algorithm for large-scale nonlinear optimization, tech. rep., Technical Report

13T-001, COR@ L Laboratory, Department of ISE, Lehigh University, 2013.

[12] F. E. Curtis and J. Nocedal, Flexible penalty functions for nonlinear constrained optimization,

IMA J. Numer. Anal., 28 (2008), pp. 749–769.

[13] F. E. Curtis, O. Schenk, and A. Wächter, An interior-point algorithm for large-scale nonlinear

optimization with inexact step computations, SIAM Journal on Scientific Computing, 32 (2010),

pp. 3447–3475.

[14] J. Dennis and J. J. Moré, A characterization of superlinear convergence and its application to

quasi-newton methods, Mathematics of computation, 28 (1974), pp. 549–560.

[15] G. Di Pillo and L. Grippo, Exact penalty functions in constrained optimization, SIAM Journal

on control and optimization, 27 (1989), pp. 1333–1360.

[16] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,

Math. Program., 91 (2002), pp. 201–213.

24 N. I. M. Gould, Y. Loh and D. P. Robinson

[17] R. Fletcher, An ℓ1 penalty method for nonlinear constraints, in Numerical Optimization 1984,

P. T. Boggs, R. H. Byrd, and R. B. Schnabel, eds., Philadelphia, 1985, SIAM, pp. 26–40.

[18] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math. Pro-

gram., 91 (2002), pp. 239–269.

[19] R. Fletcher, S. Leyffer, and Ph. L. Toint, On the global convergence of a filter-SQP algorithm,

SIAM J. Optim., 13 (2002), pp. 44–59.

[20] P. E. Gill, V. Kungurtsev, and D. P. Robinson, A stabilized SQP method: Global convergence,

Center for Computational Mathematics Report CCoM 13-04, University of California, San Diego,

2013.

[21] , A stabilized SQP method: Superlinear convergence, Center for Computational Mathematics

Report CCoM 14-01, University of California, San Diego, 2014.

[22] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale

constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[23] P. E. Gill and D. P. Robinson, A primal-dual augmented lagrangian, Computational Optimiza-

tion and Applications, 51 (2012), pp. 1–25.

[24] P. E. Gill and D. P. Robinson, A globally convergent stabilized SQP method, SIAM J. Optim.,

23 (2013), pp. 1983–2010.

[25] N. I. M. Gould, , D. Orban, and Ph. L. Toint, CUTEst : a constrained and unconstrained

testing environment with safe threads for mathematical optimization, Computational Optimization

and Applications, DOI 10.1007/s10589-014-9687-3 (2014).

[26] N. I. M. Gould, Y. Loh, and D. P. Robinson, A filter method with unified step computation

for nonlinear optimization, SIAM J. Optim., 24 (2014), pp. 175–209.

[27] N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Global convergence,

SIAM J. Optim., 20 (2010), pp. 2023–2048.

[28] , A second derivative SQP method: Local convergence and practical issues, SIAM J. Optim., 20

(2010), pp. 2049–2079.

[29] , A second derivative SQP method with a ”trust-region-free” predictor step, IMA J. Numer.

Anal., 32 (2012), pp. 580–601.

[30] N. I. M. Gould and Ph. L. Toint, Global convergence of a non-monotone trust-region SQP-

filter algorithm for nonlinear programming, in Multiscale Optimization Methods and Applications,

W. Hager and O. A. Prokopyev, eds., ”Dordrecht, The Netherlands, 2005, Kluwer Academic Pub-

lishers.

[31] L. Grippo, F. Lampariello, and S. Lucidi, A class of nonmonotone stabilization methods in

unconstrained optimization, Numerische Mathematik, 59 (1991), pp. 779–805.

[32] IBM, ILOG CPLEX: High-performance software for mathematical programming and optimization,

2006.

[33] M. Kočvara and M. Stingl, PENNON: a generalized augmented Lagrangian method for semidef-

inite programming, in High performance algorithms and software for nonlinear optimization (Erice,

2001), vol. 82 of Appl. Optim., Kluwer Acad. Publ., Norwell, MA, 2003, pp. 303–321.

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 25

[34] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,

Math. Program., 45 (1989), pp. 503–528.

[35] O. L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions in the

presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967), pp. 37–47.

[36] N. Maratos, Exact Penalty Function Algorithms for Finite-Dimensional and Control Optimization

Problems, PhD thesis, Department of Computing and Control, University of London, 1978.

[37] J. Morales, J. Nocedal, and Y. Wu, A sequential quadratic programming algorithm

with an additional equality constrained phase, IMA Journal of Numerical Analysis, DOI:

10.1093/imanum/drq037 (2011).

[38] M. J. D. Powell and Y.-X. Yuan, A recursive quadratic programming algorithm that uses dif-

ferentiable exact penalty functions, Math. Program., 35 (1986), pp. 265–278.

[39] C. Shen, S. Leyffer, and R. Fletcher, A nonmonotone filter method for nonlinear optimization,

Computational Optimization and Applications, 52 (2012), pp. 583–607.

[40] K. Su and D. Pu, A nonmonotone filter trust region method for nonlinear constrained optimization,

Journal of Computational and Applied Mathematics, 223 (2009), pp. 230–239.

[41] M. Ulbrich, S. Ulbrich, and L. Vicente, A globally convergent primal-dual interior-point filter

method for nonlinear programming, Mathematical Programming, 100 (2004), pp. 379–410.

[42] S. Ulbrich, On the superlinear local convergence of a filter-sqp method, Mathematical Programming,

100 (2004), pp. 217–245.

[43] A. Wachter and L. T. Biegler, Line search filter methods for nonlinear programming: Local

convergence, SIAM Journal on Optimization, 16 (2005), pp. 32–48.

[44] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming, Math. Program. A., 106 (2006), pp. 25–57.

[45] A. Wächter, L. T. Biegler, Y.-D. Lang, and A. Raghunathan, IPOPT: An interior point

algorithm for large-scale nonlinear optimization. http://www.coin-or.org, 2002.

[46] R. Waltz, J. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear opti-

mization that combines line search and trust region steps, Mathematical Programming, 107 (2006),

pp. 391–408.

[47] V. M. Zavala and M. Anitescu, Scalable nonlinear programming via exact differentiable penalty

functions and trust-region newton methods, SIAM Journal on Optimization, 24 (2014), pp. 528–558.

26 N. I. M. Gould, Y. Loh and D. P. Robinson

A Detailed output from the numerical experiments

Table 1.3: Results for FiSQO on the CUTEst problems of size m ≥ 1 and max{m,n} ≤ 100.

prob m n status f v iters feval σ #o #v #b #p

ACOPP14 68 38 0 8.08e+03 5.45e-09 5 42 1.2e+03 1 2 1 1

ACOPR14 82 38 0 8.08e+03 4.12e-05 7 45 1.4e+02 1 4 1 1

AIRCRFTA 5 8 0 0.00e+00 6.04e-06 2 3 1.0e+01 0 2 0 0

AIRPORT 42 84 0 4.80e+04 5.35e-13 12 13 1.6e+03 0 12 0 0

ALLINITA 4 4 -9 3.33e+01 1.31e-12 10001 789688 Inf 385 569 133 841

ALLINITC 1 4 0 3.05e+01 5.13e-14 23 23 1.2e+08 1 21 0 0

ALSOTAME 1 2 0 8.21e-02 2.92e-13 4 5 1.0e+01 3 1 0 0

ANTWERP 10 27 1 2.44e+04 7.28e-12 10001 10002 1.0e+01 10001 0 0 0

ARGAUSS 15 3 -8 0.00e+00 3.38e-04 2 3 1.0e+01 0 2 0 0

AVGASA 10 8 0 -4.63e+00 2.83e-15 1 2 1.0e+01 0 1 0 0

AVGASB 10 8 0 -4.48e+00 1.11e-16 1 2 1.0e+01 0 1 0 0

AVION2 15 49 -9 9.47e+07 1.60e-12 10001 319723 1.4e+04 9 1 0 0

BATCH 73 48 0 2.59e+05 1.42e-09 7 8 6.0e+01 0 7 0 0

BIGGSC4 7 4 0 -2.44e+01 0.00e+00 3 5 1.0e+01 2 1 0 0

BOOTH 2 2 0 0.00e+00 0.00e+00 1 2 1.0e+01 0 1 0 0

BT1 1 2 0 -1.00e+00 1.93e-08 130 1655 3.8e+02 129 1 0 0

BT10 2 2 0 -1.00e+00 5.57e-09 6 7 1.0e+01 0 6 0 0

BT11 3 5 0 8.25e-01 2.57e-08 7 9 1.0e+01 2 3 1 1

BT12 3 5 0 6.19e+00 5.15e-06 3 4 1.0e+01 0 1 1 1

BT13 1 5 0 0.00e+00 7.82e-06 15 16 1.0e+01 4 11 0 0

BT2 1 3 0 3.26e-02 9.10e-07 11 13 1.0e+01 9 0 1 1

BT3 3 5 0 4.09e+00 1.07e-14 1 2 1.0e+01 1 0 0 0

BT4 2 3 0 -4.55e+01 7.49e-08 11 18 2.0e+01 6 5 0 0

BT5 2 3 0 9.62e+02 3.20e-06 6 7 1.0e+01 1 5 0 0

BT6 2 5 0 2.77e-01 1.18e-07 8 11 1.0e+01 6 2 0 0

BT7 3 5 0 3.06e+02 6.55e-10 26 106 4.7e+02 5 7 7 7

BT8 2 5 0 1.00e+00 7.63e-06 9 10 1.0e+01 9 0 0 0

BT9 2 4 0 -1.00e+00 6.71e-08 8 9 1.0e+01 1 7 0 0

BURKEHAN 1 1 -1 0.00e+00 1.00e+00 0 1 1.0e+01 0 0 0 0

BYRDSPHR 2 3 0 -4.68e+00 5.06e-09 8 9 2.0e+01 1 7 0 0

CANTILVR 1 5 0 1.34e+00 5.94e-07 10 11 1.0e+01 0 10 0 0

CB2 3 3 0 1.95e+00 9.37e-12 6 7 1.0e+01 1 5 0 0

CB3 3 3 0 2.00e+00 1.43e-12 6 7 1.0e+01 1 5 0 0

CHACONN1 3 3 0 1.95e+00 7.33e-08 4 5 1.0e+01 0 4 0 0

CHACONN2 3 3 0 2.00e+00 3.16e-12 6 7 1.0e+01 0 6 0 0

CLUSTER 2 2 0 0.00e+00 7.22e-06 7 8 1.0e+01 0 7 0 0

CONGIGMZ 5 3 0 2.80e+01 2.95e-10 4 5 1.0e+01 0 4 0 0

COOLHANS 9 9 0 0.00e+00 2.35e-08 199 212 1.0e+01 0 199 0 0

CRESC4 8 6 -1 1.59e-08 7.50e-01 19 26 3.2e+02 5 14 0 0

CRESC50 100 6 0 7.86e-01 2.13e-10 40 70 2.6e+03 4 36 0 0

CSFI1 4 5 0 -4.91e+01 9.61e-11 6 9 1.0e+01 3 3 0 0

CSFI2 4 5 0 5.50e+01 8.81e-13 8 9 1.0e+01 3 5 0 0

CUBENE 2 2 0 0.00e+00 0.00e+00 4 15 1.0e+01 0 4 0 0

DALLASS 31 46 0 -3.24e+04 5.37e-13 13 21 1.0e+01 13 0 0 0

DEGENLPA 15 20 0 3.06e+00 6.55e-07 5 5 3.0e+01 4 0 0 0

DEGENLPB 15 20 0 -3.07e+01 8.34e-07 3 4 3.0e+01 2 1 0 0

DEMBO7 20 16 0 1.75e+02 1.36e-13 1618 1620 2.0e+02 1617 1 0 0

DEMYMALO 3 3 0 -3.00e+00 0.00e+00 8 8 2.0e+01 6 1 0 0

DIPIGRI 4 7 0 6.81e+02 8.71e-10 6 23 1.0e+01 3 3 0 0

DISC2 23 29 0 1.56e+00 3.30e-08 10 16 1.0e+01 3 7 0 0

DIXCHLNG 5 10 0 2.47e+03 1.87e-14 9 10 6.8e+02 6 3 0 0

DNIEPER 24 61 0 1.87e+04 2.11e-08 3 4 1.7e+03 0 3 0 0

DUAL1 1 85 0 3.50e-02 1.08e-16 1 2 1.0e+01 0 1 0 0

DUAL2 1 96 0 3.37e-02 2.93e-16 1 2 1.0e+01 0 1 0 0

DUAL4 1 75 0 7.46e-01 4.36e-16 1 2 1.0e+01 0 1 0 0

EQC 3 9 1 -8.28e+02 0.00e+00 10001 19004 1.0e+01 10001 0 0 0

ERRINBAR 9 18 0 2.80e+01 3.58e-12 519 883 1.0e+01 482 37 0 0

EXPFITA 22 5 0 1.14e-03 4.44e-14 14 16 1.0e+01 14 0 0 0

EXTRASIM 1 2 0 1.00e+00 0.00e+00 1 2 1.0e+01 0 1 0 0

FCCU 8 19 0 1.11e+01 1.78e-14 1 2 1.0e+01 1 0 0 0

FLETCHER 4 4 -1 4.00e+00 1.00e+00 1 2 1.0e+01 0 1 0 0

FLT 2 2 -6 0.00e+00 4.86e-05 8 9 1.0e+01 1 7 0 0

GENHS28 8 10 0 9.27e-01 3.89e-15 1 2 1.0e+01 1 0 0 0

GIGOMEZ1 3 3 0 -3.00e+00 4.58e-08 7 8 1.0e+01 2 5 0 0

GIGOMEZ2 3 3 0 1.95e+00 1.63e-07 5 6 1.0e+01 2 3 0 0

GIGOMEZ3 3 3 0 2.00e+00 9.62e-13 6 7 1.0e+01 1 5 0 0

GOFFIN 50 51 0 7.28e-14 0.00e+00 26 26 2.0e+01 24 1 0 0

GOTTFR 2 2 0 0.00e+00 2.24e-10 5 10 1.0e+01 0 5 0 0

GOULDQP1 17 32 0 -3.49e+03 0.00e+00 1 2 1.0e+01 1 0 0 0

GROWTH 12 3 -1 0.00e+00 2.44e+00 20 75 1.0e+01 0 20 0 0

HAIFAS 9 13 0 -4.50e-01 9.22e-10 14 24 1.0e+01 2 12 0 0

HALDMADS 42 6 0 3.33e-02 3.88e-14 215 423 1.0e+01 204 7 2 2

HATFLDF 3 3 1 0.00e+00 9.50e-03 10001 72682 4.0e+01 0 2479 3572 3950

HATFLDG 25 25 0 0.00e+00 4.26e-05 6 31 1.0e+01 0 6 0 0

HATFLDH 7 4 0 -2.44e+01 8.88e-16 1 2 1.0e+01 1 0 0 0

HEART6 6 6 0 0.00e+00 6.80e-07 33 234 5.4e+09 0 32 0 0

HEART8 8 8 0 0.00e+00 5.60e-08 12 49 5.1e+03 1 11 0 0

HIMMELBA 2 2 0 0.00e+00 0.00e+00 1 2 1.0e+01 0 1 0 0

HIMMELBC 2 2 0 0.00e+00 1.72e-08 5 8 1.0e+01 0 5 0 0

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 27

HIMMELBD 2 2 1 0.00e+00 4.67e+01 10001 401002 1.0e+01 0 9977 12 12

HIMMELBE 3 3 0 0.00e+00 2.22e-16 2 3 1.0e+01 0 2 0 0

HIMMELBI 12 100 0 -1.74e+03 8.08e-14 9 10 1.0e+01 9 0 0 0

HIMMELBJ 14 45 -10 -1.91e+03 2.52e-09 154 1566 4.1e+04 142 0 1 0

HIMMELBK 14 24 0 5.18e-02 3.83e-07 5 6 1.0e+01 3 2 0 0

HIMMELP2 1 2 0 -8.20e+00 2.85e-08 15 23 1.0e+01 9 4 1 1

HIMMELP3 2 2 0 -5.90e+01 0.00e+00 3 5 1.0e+01 3 0 0 0

HIMMELP4 3 2 0 -5.90e+01 0.00e+00 3 6 1.0e+01 3 0 0 0

HIMMELP5 3 2 0 -5.90e+01 0.00e+00 7 10 1.0e+01 7 0 0 0

HIMMELP6 5 2 0 -5.90e+01 0.00e+00 6 10 1.0e+01 6 0 0 0

HONG 1 4 0 2.26e+01 1.67e-16 6 7 1.0e+01 6 0 0 0

HS10 1 2 0 -1.00e+00 4.32e-10 9 10 1.0e+01 0 9 0 0

HS100 4 7 0 6.81e+02 8.71e-10 6 23 1.0e+01 3 3 0 0

HS100LNP 2 7 0 6.81e+02 2.31e-06 7 27 1.0e+01 3 4 0 0

HS100MOD 4 7 0 6.79e+02 1.51e-12 7 38 1.0e+01 3 4 0 0

HS101 5 7 0 1.81e+03 1.40e-09 27 72 5.1e+03 8 9 5 5

HS102 5 7 0 9.12e+02 4.90e-13 26 38 1.3e+04 11 7 2 6

HS103 5 7 0 5.44e+02 3.30e-15 18 24 1.3e+03 6 8 2 2

HS104 5 8 0 3.95e+00 3.30e-07 15 17 1.0e+01 4 11 0 0

HS105 1 8 0 1.04e+03 0.00e+00 15 22 1.0e+01 15 0 0 0

HS106 6 8 1 2.12e+03 1.20e+00 10001 349854 3.2e+03 3 9998 0 0

HS107 6 9 0 5.06e+03 8.90e-10 4 5 1.5e+03 1 3 0 0

HS108 13 9 0 -8.66e-01 4.84e-07 7 8 1.0e+01 1 6 0 0

HS109 10 9 0 5.36e+03 7.14e-11 8 9 1.0e+01 2 6 0 0

HS11 1 2 0 -8.50e+00 6.71e-08 5 6 1.0e+01 0 5 0 0

HS111 3 10 0 -4.53e+01 2.86e-06 16 17 2.0e+01 1 15 0 0

HS111LNP 3 10 0 -4.53e+01 1.64e-06 18 21 2.0e+01 1 15 1 1

HS112 3 10 0 -4.78e+01 4.97e-14 11 12 1.0e+01 11 0 0 0

HS113 8 10 0 2.43e+01 2.88e-13 5 6 1.0e+01 1 4 0 0

HS114 11 10 0 -1.77e+03 7.29e-09 11 15 2.0e+02 6 5 0 0

HS116 14 13 0 9.76e+01 1.29e-13 15 19 5.0e+02 7 8 0 0

HS117 5 15 0 3.23e+01 0.00e+00 13 24 1.0e+01 13 0 0 0

HS118 17 15 0 6.65e+02 0.00e+00 1 2 1.0e+01 1 0 0 0

HS119 8 16 0 2.45e+02 6.92e-15 7 8 1.0e+01 7 0 0 0

HS12 1 2 0 -3.00e+01 5.10e-11 8 9 1.0e+01 1 7 0 0

HS13 1 2 0 1.00e+00 0.00e+00 26 26 2.0e+01 25 0 0 0

HS14 2 2 0 1.39e+00 7.67e-13 5 6 1.0e+01 1 4 0 0

HS15 2 2 0 3.06e+02 0.00e+00 5 6 3.3e+03 3 2 0 0

HS16 2 2 0 2.31e+01 0.00e+00 4 5 1.0e+01 4 0 0 0

HS17 2 2 0 1.00e+00 0.00e+00 7 11 1.0e+01 7 0 0 0

HS18 2 2 0 5.00e+00 5.54e-06 5 6 1.0e+01 1 4 0 0

HS19 2 2 0 -6.96e+03 7.26e-09 5 6 2.5e+02 1 4 0 0

HS20 3 2 0 4.02e+01 0.00e+00 3 4 1.0e+01 3 0 0 0

HS21 1 2 0 -1.00e+02 0.00e+00 1 2 1.0e+01 1 0 0 0

HS21MOD 1 7 0 -9.60e+01 0.00e+00 1 2 1.0e+01 1 0 0 0

HS22 2 2 0 1.00e+00 2.10e-09 4 5 1.0e+01 1 3 0 0

HS23 5 2 0 2.00e+00 0.00e+00 5 6 1.0e+01 5 0 0 0

HS24 3 2 0 -1.00e+00 0.00e+00 6 10 2.0e+01 5 0 0 0

HS26 1 3 0 2.14e-10 8.23e-06 15 16 1.0e+01 11 4 0 0

HS268 5 5 0 -2.55e-11 0.00e+00 1 2 1.0e+01 1 0 0 0

HS27 1 3 0 4.00e-02 1.39e-10 22 150 1.0e+01 11 6 3 2

HS28 1 3 0 1.23e-32 4.44e-16 1 2 1.0e+01 1 0 0 0

HS29 1 3 0 -2.26e+01 8.02e-06 6 11 1.0e+01 3 1 1 1

HS30 1 3 0 1.00e+00 0.00e+00 9 10 1.0e+01 9 0 0 0

HS31 1 3 0 6.00e+00 1.64e-08 5 6 1.0e+01 1 4 0 0

HS32 2 3 0 1.00e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS33 2 3 0 -4.00e+00 0.00e+00 4 5 1.0e+01 4 0 0 0

HS34 2 3 0 -8.34e-01 2.98e-07 6 7 1.0e+01 3 3 0 0

HS35 1 3 0 1.11e-01 0.00e+00 1 2 1.0e+01 1 0 0 0

HS35I 1 3 0 1.11e-01 0.00e+00 1 2 1.0e+01 1 0 0 0

HS35MOD 1 3 0 2.50e-01 8.88e-16 1 2 1.0e+01 1 0 0 0

HS36 1 3 0 -3.30e+03 0.00e+00 2 4 1.0e+01 2 0 0 0

HS37 2 3 0 -3.46e+03 1.78e-14 4 5 1.0e+01 4 0 0 0

HS39 2 4 0 -1.00e+00 6.71e-08 8 9 1.0e+01 1 7 0 0

HS40 3 4 0 -2.50e-01 2.18e-06 3 4 1.0e+01 0 3 0 0

HS41 1 4 0 1.93e+00 2.22e-16 5 6 1.0e+01 4 1 0 0

HS42 2 4 0 1.39e+01 2.58e-11 5 6 1.0e+01 2 3 0 0

HS43 3 4 0 -4.40e+01 2.05e-06 6 7 1.0e+01 1 5 0 0

HS44 6 4 0 -3.00e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS44NEW 6 4 0 -1.50e+01 0.00e+00 5 6 1.0e+01 5 0 0 0

HS46 2 5 0 5.30e-10 5.74e-06 15 16 1.0e+01 13 2 0 0

HS47 3 5 0 3.30e-09 3.26e-06 14 16 1.0e+01 14 0 0 0

HS48 2 5 0 0.00e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS49 2 5 0 3.52e-08 1.33e-15 14 15 1.0e+01 14 0 0 0

HS50 3 5 0 6.38e-13 9.33e-15 8 9 1.0e+01 8 0 0 0

HS51 3 5 0 0.00e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS52 3 5 0 5.33e+00 2.22e-15 1 2 1.0e+01 1 0 0 0

HS53 3 5 0 4.09e+00 1.33e-15 1 2 1.0e+01 1 0 0 0

HS54 1 6 0 -8.61e-01 6.37e-12 700 701 1.0e+01 699 1 0 0

HS55 6 6 0 6.67e+00 2.22e-16 1 2 1.0e+01 0 1 0 0

HS56 4 7 0 9.11e-12 2.76e-06 17 24 3.2e+01 13 4 0 0

HS57 1 2 0 3.06e-02 0.00e+00 1 2 1.0e+01 1 0 0 0

HS59 3 2 0 -7.80e+00 2.96e-11 12 15 1.0e+01 8 4 0 0

HS6 1 2 0 0.00e+00 8.88e-15 2 3 1.0e+01 1 1 0 0

HS60 1 3 0 3.26e-02 1.20e-07 6 7 1.0e+01 6 0 0 0

HS61 2 3 0 -1.44e+02 2.85e-12 6 8 1.0e+01 1 3 1 1

28 N. I. M. Gould, Y. Loh and D. P. Robinson

HS62 1 3 0 -2.63e+04 1.32e-16 5 8 1.0e+01 5 0 0 0

HS63 2 3 0 9.62e+02 1.81e-08 7 8 1.0e+01 2 5 0 0

HS64 1 3 0 6.30e+03 2.26e-12 15 16 2.6e+03 10 5 0 0

HS65 1 3 0 9.54e-01 5.05e-07 4 5 1.0e+01 1 3 0 0

HS66 2 3 0 5.18e-01 3.88e-09 4 5 1.0e+01 2 2 0 0

HS68 2 4 0 -9.20e-01 1.04e-10 13 21 1.0e+01 9 4 0 0

HS69 2 4 0 -9.57e+02 6.41e-12 10 21 6.2e+01 5 5 0 0

HS7 1 2 0 -1.73e+00 7.92e-08 14 17 1.0e+01 3 11 0 0

HS70 1 4 0 1.86e-01 0.00e+00 26 35 1.0e+01 26 0 0 0

HS71 2 4 0 1.70e+01 6.70e-10 5 6 1.0e+01 0 5 0 0

HS72 2 4 0 7.28e+02 1.51e-11 12 13 1.6e+04 0 12 0 0

HS73 3 4 0 2.99e+01 5.01e-07 3 4 1.0e+01 2 1 0 0

HS74 5 4 0 5.13e+03 3.60e-07 5 6 1.0e+01 0 5 0 0

HS75 5 4 0 5.17e+03 2.36e-11 6 7 2.0e+01 0 6 0 0

HS76 3 4 0 -4.68e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS76I 3 4 0 -4.68e+00 0.00e+00 1 2 1.0e+01 1 0 0 0

HS77 2 5 0 2.42e-01 5.64e-10 9 13 1.0e+01 6 1 1 1

HS78 3 5 0 -2.92e+00 1.51e-09 4 5 1.0e+01 0 4 0 0

HS79 3 5 0 7.88e-02 1.19e-08 4 5 1.0e+01 4 0 0 0

HS8 2 2 0 -1.00e+00 1.86e-10 5 6 1.0e+01 0 5 0 0

HS80 3 5 0 5.39e-02 4.85e-10 7 8 1.0e+01 2 5 0 0

HS81 3 5 0 5.39e-02 1.50e-09 7 8 1.0e+01 2 5 0 0

HS83 3 5 0 -3.07e+04 4.63e-09 3 4 1.1e+03 1 2 0 0

HS84 3 5 0 -5.28e+06 2.33e-10 3 4 1.0e+01 3 0 0 0

HS86 10 5 0 -3.23e+01 2.66e-15 3 4 1.0e+01 3 0 0 0

HS88 1 2 0 1.36e+00 4.73e-15 16 24 1.1e+03 2 12 1 1

HS89 1 3 0 1.36e+00 1.51e-13 16 29 1.9e+03 1 11 2 2

HS9 1 2 0 -5.00e-01 1.78e-15 5 10 1.0e+01 5 0 0 0

HS90 1 4 -1 0.00e+00 1.33e-01 4 37 5.0e+01 2 0 1 1

HS91 1 5 0 1.36e+00 1.01e-12 19 22 1.3e+03 5 14 0 0

HS92 1 6 0 1.36e+00 4.21e-11 21 56 1.3e+03 5 14 1 1

HS93 2 6 0 1.35e+02 1.50e-13 6 7 9.9e+01 2 4 0 0

HS95 4 6 0 1.56e-02 0.00e+00 1 2 1.0e+01 0 1 0 0

HS96 4 6 0 1.56e-02 0.00e+00 1 2 1.0e+01 0 1 0 0

HS97 4 6 0 4.07e+00 0.00e+00 10 15 1.0e+01 7 3 0 0

HS98 4 6 0 4.07e+00 0.00e+00 10 15 1.0e+01 7 3 0 0

HS99 2 7 0 -8.31e+08 9.04e-11 4 5 5.4e+02 1 3 0 0

HUBFIT 1 2 0 1.69e-02 0.00e+00 1 2 1.0e+01 1 0 0 0

HYDCAR20 99 99 0 0.00e+00 4.89e-06 8 11 1.0e+01 0 8 0 0

HYDCAR6 29 29 0 0.00e+00 2.37e-06 5 8 1.0e+01 0 5 0 0

HYPCIR 2 2 0 0.00e+00 1.31e-09 4 7 1.0e+01 0 4 0 0

KIWCRESC 2 3 0 -7.24e-07 1.45e-06 9 11 1.0e+01 1 8 0 0

LAUNCH 28 25 0 9.00e+00 6.34e-13 6 6 3.0e+01 5 0 0 0

LEWISPOL 9 6 -8 1.16e+00 5.79e-05 14 35 9.6e+03 3 9 1 1

LIN 2 4 0 -1.96e-02 1.17e-16 16 17 1.0e+01 16 0 0 0

LINSPANH 33 97 0 -7.70e+01 5.07e-13 1 2 1.0e+01 0 1 0 0

LOADBAL 31 31 0 4.53e-01 4.40e-14 7 8 1.0e+01 7 0 0 0

LOOTSMA 2 3 -1 6.00e+00 4.00e+00 0 1 1.0e+01 0 0 0 0

LOTSCHD 7 12 0 2.40e+03 1.46e-13 1 2 2.0e+01 0 1 0 0

LSNNODOC 4 5 0 1.23e+02 1.78e-15 6 6 2.0e+01 5 0 0 0

LSQFIT 1 2 0 3.38e-02 0.00e+00 1 2 1.0e+01 1 0 0 0

MADSEN 6 3 0 6.16e-01 1.21e-09 9 12 1.0e+01 4 5 0 0

MAKELA1 2 3 0 -1.41e+00 2.26e-12 6 7 1.0e+01 3 3 0 0

MAKELA2 3 3 0 7.20e+00 7.99e-15 4 5 1.0e+01 1 3 0 0

MAKELA3 20 21 0 1.51e-14 1.89e-05 15 16 1.0e+01 1 14 0 0

MAKELA4 40 21 0 6.16e-15 1.07e-14 211 211 3.0e+01 209 1 0 0

MARATOS 1 2 0 -1.00e+00 1.45e-06 13 24 1.0e+01 3 10 0 0

MATRIX2 2 6 0 9.54e-07 0.00e+00 10 11 1.0e+01 10 0 0 0

MESH 48 41 0 -1.48e-04 5.30e-06 5 7 1.0e+01 4 1 0 0

METHANB8 31 31 0 0.00e+00 3.07e-07 2 3 1.0e+01 0 2 0 0

METHANL8 31 31 0 0.00e+00 4.36e-06 4 5 1.0e+01 0 4 0 0

MIFFLIN1 2 3 0 -1.00e+00 2.85e-08 8 9 1.0e+01 2 6 0 0

MIFFLIN2 2 3 0 -1.00e+00 9.63e-08 7 8 1.0e+01 2 5 0 0

MINMAXBD 20 5 0 1.16e+02 1.26e-08 17 46 1.0e+01 6 11 0 0

MINMAXRB 4 3 0 0.00e+00 0.00e+00 4 6 1.0e+01 2 2 0 0

MISTAKE 13 9 0 -1.00e+00 1.01e-05 8 9 1.0e+01 2 6 0 0

MRIBASIS 55 36 0 1.82e+01 2.18e-09 4 5 1.0e+01 1 3 0 0

MSS1 73 90 -9 -1.50e+01 5.86e-08 8460 642673 Inf 26 77 8 1826

MWRIGHT 3 5 0 2.50e+01 1.04e-12 7 10 1.0e+01 4 3 0 0

NASH 24 72 -1 0.00e+00 4.37e+01 2623 2624 2.0e+01 0 2623 0 0

NYSTROM5 20 18 0 0.00e+00 5.30e-07 23 36 3.0e+01 1 22 0 0

ODFITS 6 10 0 -2.38e+03 1.14e-13 7 8 1.0e+01 6 1 0 0

OPTCNTRL 20 32 0 5.50e+02 1.30e-09 3 4 1.3e+02 0 3 0 0

OPTPRLOC 30 30 0 -1.64e+01 6.21e-13 5 6 1.0e+01 1 4 0 0

ORTHREGB 6 27 0 8.67e-18 8.71e-09 2 3 1.0e+01 0 2 0 0

PENTAGON 15 6 0 1.37e-04 5.55e-17 10 14 1.0e+01 10 0 0 0

PFIT1 3 3 0 0.00e+00 3.77e-15 257 4079 1.2e+78 0 256 0 0

PFIT2 3 3 0 0.00e+00 1.02e-14 131 1720 1.7e+39 0 128 1 1

PFIT3 3 3 0 0.00e+00 2.94e-07 203 2917 3.5e+14 0 203 0 0

PFIT4 3 3 0 0.00e+00 1.03e-13 144 1743 3.4e+39 0 143 0 0

POLAK1 2 3 0 2.72e+00 4.38e-11 8 9 1.0e+01 2 6 0 0

POLAK2 2 11 0 5.46e+01 2.98e-13 10 15 1.0e+01 2 8 0 0

POLAK3 10 12 0 5.93e+00 2.25e-10 11 16 1.0e+01 6 5 0 0

POLAK4 3 3 0 -9.21e-19 1.73e-18 4 5 1.0e+01 0 4 0 0

POLAK5 2 3 0 5.00e+01 0.00e+00 3 4 2.0e+01 0 3 0 0

POLAK6 4 5 0 -4.40e+01 2.57e-11 19 45 1.0e+01 10 9 0 0

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 29

PORTFL1 1 12 0 2.05e-02 2.22e-16 1 2 1.0e+01 1 0 0 0

PORTFL2 1 12 0 2.97e-02 1.11e-16 1 2 1.0e+01 1 0 0 0

PORTFL3 1 12 0 3.27e-02 2.78e-16 1 2 1.0e+01 1 0 0 0

PORTFL4 1 12 0 2.63e-02 1.67e-16 1 2 1.0e+01 1 0 0 0

PORTFL6 1 12 0 2.58e-02 8.33e-17 1 2 1.0e+01 1 0 0 0

POWELLBS 2 2 0 0.00e+00 2.76e-06 53 386 1.0e+01 0 53 0 0

POWELLSQ 2 2 1 0.00e+00 9.02e+00 10001 370442 1.0e+01 0 9993 4 4

PRODPL0 29 60 0 5.88e+01 6.65e-10 10 12 2.0e+01 1 9 0 0

PRODPL1 29 60 0 3.57e+01 1.71e-13 9 10 2.0e+01 2 7 0 0

QC 4 9 -9 -8.61e+02 1.25e-10 10001 279975 1.0e+01 2 0 0 0

QCNEW 3 9 0 -8.07e+02 0.00e+00 1 2 1.0e+01 1 0 0 0

QPCBLEND 74 83 0 -7.84e-03 3.18e-16 1 2 1.0e+01 1 0 0 0

QPNBLEND 74 83 0 -9.14e-03 1.50e-15 13 14 1.0e+01 13 0 0 0

RECIPE 3 3 0 0.00e+00 5.96e-06 11 12 1.0e+01 0 11 0 0

RES 14 20 0 0.00e+00 1.95e-14 0 1 1.0e+01 0 0 0 0

RK23 11 17 0 8.33e-02 1.49e-13 8 10 1.0e+01 3 5 0 0

ROBOT 2 14 0 6.59e+00 7.97e-10 6 7 1.0e+01 1 5 0 0

ROSENMMX 4 5 0 -4.40e+01 1.41e-07 10 23 1.0e+01 2 8 0 0

RSNBRNE 2 2 0 0.00e+00 0.00e+00 8 37 1.0e+01 0 8 0 0

S268 5 5 0 -2.55e-11 0.00e+00 1 2 1.0e+01 1 0 0 0

S316-322 1 2 -1 8.00e+02 1.00e+00 0 1 1.0e+01 0 0 0 0

SIMPLLPA 2 2 0 1.00e+00 0.00e+00 3 4 1.0e+01 2 1 0 0

SIMPLLPB 3 2 0 1.10e+00 0.00e+00 3 4 1.0e+01 2 1 0 0

SINVALNE 2 2 0 0.00e+00 0.00e+00 5 42 1.0e+01 0 5 0 0

SNAKE 2 2 0 -2.17e-14 2.17e-18 5 6 1.0e+01 3 2 0 0

SPANHYD 33 97 0 2.40e+02 1.54e-12 5 6 1.0e+01 5 0 0 0

SPIRAL 2 3 0 -1.64e-10 3.27e-10 45 64 1.0e+01 32 13 0 0

SUPERSIM 2 2 0 6.67e-01 1.11e-16 1 2 1.0e+01 0 1 0 0

SWOPF 92 83 0 6.79e-02 4.30e-10 8 9 1.0e+01 1 7 0 0

SYNTHES1 6 6 0 7.59e-01 1.32e-10 4 6 1.0e+01 1 1 1 1

SYNTHES2 14 11 0 -5.54e-01 1.67e-16 5 6 1.0e+01 4 1 0 0

SYNTHES3 23 17 0 1.51e+01 4.16e-16 5 6 1.0e+01 5 0 0 0

TAME 1 2 0 0.00e+00 0.00e+00 1 2 1.0e+01 0 1 0 0

TENBARS1 9 18 0 2.30e+03 1.72e-11 45 76 4.0e+01 3 38 2 2

TENBARS2 8 18 0 2.30e+03 7.60e-07 49 98 2.0e+01 2 39 4 4

TENBARS3 8 18 0 2.25e+03 1.07e-06 46 104 1.0e+01 3 39 2 2

TENBARS4 9 18 0 3.68e+02 5.09e-09 63 109 3.6e+01 48 15 0 0

TRIGGER 6 7 0 0.00e+00 6.09e-07 38 257 1.0e+01 0 38 0 0

TRO3X3 13 30 -1 -5.04e+04 1.00e+00 11 12 6.7e+01 8 3 0 0

TRY-B 1 2 0 1.00e+00 2.51e-06 6 7 1.0e+01 6 0 0 0

TWOBARS 2 2 0 1.51e+00 7.66e-06 6 7 1.0e+01 1 5 0 0

WACHBIEG 2 3 -1 -1.00e+00 1.50e+00 5 6 1.0e+01 0 5 0 0

WATER 10 31 0 1.05e+04 3.69e-13 10 11 3.5e+02 6 2 1 1

WOMFLET 3 3 0 2.49e-18 1.20e-05 30 231 1.0e+01 3 27 0 0

YFITNE 17 3 0 0.00e+00 8.41e-06 19 76 1.0e+01 0 19 0 0

ZANGWIL3 3 3 0 0.00e+00 0.00e+00 1 2 1.0e+01 0 1 0 0

ZECEVIC2 2 2 0 -4.12e+00 2.22e-16 1 2 1.0e+01 1 0 0 0

ZECEVIC3 2 2 0 9.73e+01 7.64e-08 8 10 2.0e+01 3 5 0 0

ZECEVIC4 2 2 0 7.56e+00 0.00e+00 5 6 1.0e+01 2 3 0 0

ZY2 2 3 0 2.00e+00 0.00e+00 4 5 1.0e+01 4 0 0 0

Table 1.4: Results for PenSQO on the CUTEst problems of size m ≥ 1 and max{m,n} ≤ 100.

prob m n status f v iters feval σ

ACOPP14 68 38 0 8.08e+03 5.45e-09 5 41 1.2e+03

ACOPR14 82 38 0 8.08e+03 4.12e-05 7 45 1.4e+02

AIRCRFTA 5 8 0 0.00e+00 6.04e-06 2 3 1.0e+01

AIRPORT 42 84 0 4.80e+04 4.00e-13 16 131 2.7e+03

ALLINITA 4 4 -9 3.33e+01 8.47e-13 10001 906005 Inf

ALLINITC 1 4 0 3.05e+01 1.10e-13 43 631 8.4e+07

ALSOTAME 1 2 0 8.21e-02 2.92e-13 4 5 1.0e+01

ANTWERP 10 27 1 2.44e+04 7.28e-12 10001 10002 1.0e+01

ARGAUSS 15 3 -8 0.00e+00 3.38e-04 2 3 1.0e+01

AVGASA 10 8 0 -4.63e+00 2.83e-15 1 2 1.0e+01

AVGASB 10 8 0 -4.48e+00 1.11e-16 1 2 1.0e+01

AVION2 15 49 -9 9.47e+07 1.38e-12 10001 319727 1.4e+04

BATCH 73 48 0 2.59e+05 6.30e-07 8 28 7.2e+01

BIGGSC4 7 4 0 -2.44e+01 0.00e+00 3 5 1.0e+01

BOOTH 2 2 0 0.00e+00 0.00e+00 1 2 1.0e+01

BT1 1 2 0 -9.99e-01 9.79e-06 2043 43284 1.5e+03

BT10 2 2 0 -1.00e+00 5.57e-09 6 7 1.0e+01

BT11 3 5 0 8.25e-01 2.57e-08 7 8 1.0e+01

BT12 3 5 0 6.19e+00 5.15e-06 3 4 1.0e+01

BT13 1 5 0 0.00e+00 7.82e-06 15 16 1.0e+01

BT2 1 3 0 3.26e-02 9.10e-07 11 12 1.0e+01

BT3 3 5 0 4.09e+00 1.07e-14 1 2 1.0e+01

BT4 2 3 0 -4.55e+01 1.54e-09 7 27 1.0e+01

BT5 2 3 0 9.62e+02 5.59e-06 5 8 1.0e+01

BT6 2 5 0 2.77e-01 5.87e-10 11 20 1.0e+01

BT7 3 5 0 3.60e+02 3.83e-12 40 306 2.4e+03

BT8 2 5 0 1.00e+00 7.63e-06 9 10 1.0e+01

BT9 2 4 0 -1.00e+00 6.71e-08 8 9 1.0e+01

BURKEHAN 1 1 -1 0.00e+00 1.00e+00 0 1 1.0e+01

BYRDSPHR 2 3 0 -4.68e+00 6.60e-10 8 21 4.0e+01

30 N. I. M. Gould, Y. Loh and D. P. Robinson

CANTILVR 1 5 0 1.34e+00 5.94e-07 10 11 1.0e+01

CB2 3 3 0 1.95e+00 9.37e-12 6 7 1.0e+01

CB3 3 3 0 2.00e+00 1.43e-12 6 7 1.0e+01

CHACONN1 3 3 0 1.95e+00 7.33e-08 4 5 1.0e+01

CHACONN2 3 3 0 2.00e+00 3.16e-12 6 7 1.0e+01

CLUSTER 2 2 0 0.00e+00 7.22e-06 7 8 1.0e+01

CONGIGMZ 5 3 0 2.80e+01 2.95e-10 4 5 1.0e+01

COOLHANS 9 9 0 0.00e+00 2.35e-08 199 212 1.0e+01

CRESC4 8 6 -1 1.59e-08 7.50e-01 19 26 3.2e+02

CRESC50 100 6 0 7.86e-01 6.85e-12 67 181 1.3e+06

CSFI1 4 5 0 -4.91e+01 9.61e-11 6 9 1.0e+01

CSFI2 4 5 0 5.50e+01 8.81e-13 8 9 1.0e+01

CUBENE 2 2 0 0.00e+00 0.00e+00 4 15 1.0e+01

DALLASS 31 46 0 -3.24e+04 5.37e-13 13 21 1.0e+01

DEGENLPA 15 20 0 3.06e+00 6.55e-07 5 5 3.0e+01

DEGENLPB 15 20 0 -3.07e+01 5.88e-07 3 6 3.0e+01

DEMBO7 20 16 1 1.75e+02 8.38e-13 10001 257134 Inf

DEMYMALO 3 3 0 -3.00e+00 0.00e+00 8 8 2.0e+01

DIPIGRI 4 7 0 6.81e+02 1.11e-09 12 47 1.0e+01

DISC2 23 29 0 1.56e+00 4.60e-06 19 100 1.0e+01

DIXCHLNG 5 10 0 2.47e+03 2.34e-09 9 49 6.8e+02

DNIEPER 24 61 0 1.87e+04 2.10e-07 7 50 1.5e+03

DUAL1 1 85 0 3.50e-02 1.08e-16 1 2 1.0e+01

DUAL2 1 96 0 3.37e-02 2.93e-16 1 2 1.0e+01

DUAL4 1 75 0 7.46e-01 4.36e-16 1 2 1.0e+01

EQC 3 9 1 -8.28e+02 0.00e+00 10001 19004 1.0e+01

ERRINBAR 9 18 1 2.83e+01 3.60e-06 10001 59171 8.0e+01

EXPFITA 22 5 0 1.14e-03 0.00e+00 14 18 1.0e+01

EXTRASIM 1 2 0 1.00e+00 0.00e+00 1 2 1.0e+01

FCCU 8 19 0 1.11e+01 1.78e-14 1 2 1.0e+01

FLETCHER 4 4 -1 4.00e+00 1.00e+00 1 2 1.0e+01

FLT 2 2 -6 0.00e+00 4.86e-05 8 9 1.0e+01

GENHS28 8 10 0 9.27e-01 3.89e-15 1 2 1.0e+01

GIGOMEZ1 3 3 0 -3.00e+00 3.43e-11 6 11 1.0e+01

GIGOMEZ2 3 3 0 1.95e+00 1.63e-07 5 6 1.0e+01

GIGOMEZ3 3 3 0 2.00e+00 9.62e-13 6 7 1.0e+01

GOFFIN 50 51 0 7.28e-14 0.00e+00 26 26 2.0e+01

GOTTFR 2 2 0 0.00e+00 2.24e-10 5 10 1.0e+01

GOULDQP1 17 32 0 -3.49e+03 0.00e+00 1 2 1.0e+01

GROWTH 12 3 -1 0.00e+00 2.44e+00 20 75 1.0e+01

HAIFAS 9 13 0 -4.50e-01 4.01e-06 21 219 1.0e+01

HALDMADS 42 6 0 1.22e-04 1.96e-09 6 11 1.0e+01

HATFLDF 3 3 1 0.00e+00 9.50e-03 10001 69110 4.0e+01

HATFLDG 25 25 0 0.00e+00 4.26e-05 6 31 1.0e+01

HATFLDH 7 4 0 -2.44e+01 8.88e-16 1 2 1.0e+01

HEART6 6 6 0 0.00e+00 6.80e-07 33 234 5.4e+09

HEART8 8 8 0 0.00e+00 1.01e-08 12 55 5.1e+03

HIMMELBA 2 2 0 0.00e+00 0.00e+00 1 2 1.0e+01

HIMMELBC 2 2 0 0.00e+00 1.72e-08 5 8 1.0e+01

HIMMELBD 2 2 1 0.00e+00 4.67e+01 10001 400990 1.0e+01

HIMMELBE 3 3 0 0.00e+00 2.22e-16 2 3 1.0e+01

HIMMELBI 12 100 0 -1.74e+03 8.08e-14 9 10 1.0e+01

HIMMELBJ 14 45 -10 -3.04e+01 1.01e+02 0 2 1.0e+01

HIMMELBK 14 24 0 5.18e-02 4.11e-10 8 12 1.0e+01

HIMMELP2 1 2 0 -6.40e+00 0.00e+00 94 1267 1.0e+01

HIMMELP3 2 2 0 -5.90e+01 0.00e+00 3 5 1.0e+01

HIMMELP4 3 2 0 -5.90e+01 0.00e+00 3 6 1.0e+01

HIMMELP5 3 2 0 -5.90e+01 0.00e+00 7 10 1.0e+01

HIMMELP6 5 2 0 -5.90e+01 0.00e+00 6 10 1.0e+01

HONG 1 4 0 2.26e+01 1.67e-16 6 7 1.0e+01

HS10 1 2 0 -1.00e+00 4.32e-10 9 10 1.0e+01

HS100 4 7 0 6.81e+02 1.11e-09 12 47 1.0e+01

HS100LNP 2 7 0 6.81e+02 1.52e-09 7 30 1.0e+01

HS100MOD 4 7 0 6.79e+02 1.12e-11 8 43 1.0e+01

HS101 5 7 0 1.81e+03 2.50e-16 21 137 7.3e+03

HS102 5 7 0 9.12e+02 2.78e-17 18 68 3.8e+03

HS103 5 7 0 5.44e+02 7.56e-16 16 32 1.0e+03

HS104 5 8 0 3.95e+00 4.53e-09 12 88 1.0e+01

HS105 1 8 0 1.04e+03 0.00e+00 15 22 1.0e+01

HS106 6 8 0 7.05e+03 3.77e-08 522 2498 1.0e+01

HS107 6 9 0 5.06e+03 5.45e-10 5 28 1.5e+03

HS108 13 9 0 -8.66e-01 9.40e-06 16 38 1.0e+01

HS109 10 9 0 5.36e+03 5.03e-08 11 47 3.4e+03

HS11 1 2 0 -8.50e+00 6.71e-08 5 6 1.0e+01

HS111 3 10 0 -4.78e+01 1.96e-07 16 32 2.0e+01

HS111LNP 3 10 0 -4.78e+01 1.02e-06 15 27 2.0e+01

HS112 3 10 0 -4.78e+01 4.97e-14 11 12 1.0e+01

HS113 8 10 0 2.43e+01 2.88e-13 5 6 1.0e+01

HS114 11 10 0 -1.77e+03 1.24e-12 39 87 2.0e+02

HS116 14 13 0 9.76e+01 5.81e-14 13 29 5.0e+01

HS117 5 15 0 3.23e+01 0.00e+00 13 24 1.0e+01

HS118 17 15 0 6.65e+02 0.00e+00 1 2 1.0e+01

HS119 8 16 0 2.45e+02 6.92e-15 7 8 1.0e+01

HS12 1 2 0 -3.00e+01 1.25e-10 6 19 1.0e+01

HS13 1 2 0 1.00e+00 0.00e+00 26 26 2.0e+01

HS14 2 2 0 1.39e+00 7.67e-13 5 6 1.0e+01

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 31

HS15 2 2 0 3.06e+02 0.00e+00 7 61 6.6e+03

HS16 2 2 0 2.31e+01 0.00e+00 4 5 1.0e+01

HS17 2 2 0 1.00e+00 0.00e+00 7 11 1.0e+01

HS18 2 2 0 5.00e+00 5.54e-06 5 6 1.0e+01

HS19 2 2 0 -6.96e+03 7.26e-09 6 37 2.5e+02

HS20 3 2 0 4.02e+01 0.00e+00 3 4 1.0e+01

HS21 1 2 0 -1.00e+02 0.00e+00 1 2 1.0e+01

HS21MOD 1 7 0 -9.60e+01 0.00e+00 1 2 1.0e+01

HS22 2 2 0 1.00e+00 2.10e-09 4 5 1.0e+01

HS23 5 2 0 2.00e+00 0.00e+00 5 6 1.0e+01

HS24 3 2 0 -1.00e+00 0.00e+00 6 10 2.0e+01

HS26 1 3 0 6.77e-11 4.63e-06 14 16 1.0e+01

HS268 5 5 0 -2.55e-11 0.00e+00 1 2 1.0e+01

HS27 1 3 0 4.00e-02 2.31e-11 152 1987 1.0e+01

HS28 1 3 0 1.23e-32 4.44e-16 1 2 1.0e+01

HS29 1 3 0 -2.26e+01 3.77e-10 7 15 1.0e+01

HS30 1 3 0 1.00e+00 0.00e+00 9 10 1.0e+01

HS31 1 3 0 6.00e+00 1.64e-08 5 6 1.0e+01

HS32 2 3 0 1.00e+00 0.00e+00 1 2 1.0e+01

HS33 2 3 0 -4.00e+00 0.00e+00 4 5 1.0e+01

HS34 2 3 0 -8.34e-01 3.84e-06 47 469 1.0e+01

HS35 1 3 0 1.11e-01 0.00e+00 1 2 1.0e+01

HS35I 1 3 0 1.11e-01 0.00e+00 1 2 1.0e+01

HS35MOD 1 3 0 2.50e-01 8.88e-16 1 2 1.0e+01

HS36 1 3 0 -3.30e+03 0.00e+00 2 4 1.0e+01

HS37 2 3 0 -3.46e+03 1.78e-14 4 5 1.0e+01

HS39 2 4 0 -1.00e+00 6.71e-08 8 9 1.0e+01

HS40 3 4 0 -2.50e-01 2.18e-06 3 4 1.0e+01

HS41 1 4 0 1.93e+00 2.22e-16 5 6 1.0e+01

HS42 2 4 0 1.39e+01 2.58e-11 5 6 1.0e+01

HS43 3 4 0 -4.40e+01 8.83e-09 6 13 1.0e+01

HS44 6 4 0 -3.00e+00 0.00e+00 1 2 1.0e+01

HS44NEW 6 4 0 -1.50e+01 0.00e+00 5 6 1.0e+01

HS46 2 5 0 5.86e-10 6.03e-06 16 24 1.0e+01

HS47 3 5 0 3.53e-09 3.41e-06 14 18 1.0e+01

HS48 2 5 0 0.00e+00 0.00e+00 1 2 1.0e+01

HS49 2 5 0 3.52e-08 1.33e-15 14 15 1.0e+01

HS50 3 5 0 6.38e-13 9.33e-15 8 9 1.0e+01

HS51 3 5 0 0.00e+00 0.00e+00 1 2 1.0e+01

HS52 3 5 0 5.33e+00 2.22e-15 1 2 1.0e+01

HS53 3 5 0 4.09e+00 1.33e-15 1 2 1.0e+01

HS54 1 6 0 -8.61e-01 6.37e-12 700 701 1.0e+01

HS55 6 6 0 6.67e+00 2.22e-16 1 2 1.0e+01

HS56 4 7 0 -2.51e-16 9.67e-06 37 149 9.4e+01

HS57 1 2 0 3.06e-02 0.00e+00 1 2 1.0e+01

HS59 3 2 0 -7.80e+00 0.00e+00 23 167 1.0e+01

HS6 1 2 0 0.00e+00 7.63e-11 10 55 1.0e+01

HS60 1 3 0 3.26e-02 1.20e-07 6 7 1.0e+01

HS61 2 3 0 -1.44e+02 2.94e-07 4 6 1.0e+01

HS62 1 3 0 -2.63e+04 1.32e-16 5 8 1.0e+01

HS63 2 3 0 9.62e+02 8.36e-07 7 11 1.0e+01

HS64 1 3 0 6.30e+03 2.26e-12 15 16 2.6e+03

HS65 1 3 0 9.54e-01 3.22e-09 10 25 1.0e+01

HS66 2 3 0 5.18e-01 4.07e-07 6 17 1.0e+01

HS68 2 4 0 -9.20e-01 2.85e-06 14 38 1.0e+01

HS69 2 4 0 -9.57e+02 4.29e-13 9 22 6.2e+01

HS7 1 2 0 -1.73e+00 6.88e-07 7 32 1.0e+01

HS70 1 4 0 1.86e-01 0.00e+00 26 35 1.0e+01

HS71 2 4 0 1.70e+01 6.70e-10 5 6 1.0e+01

HS72 2 4 0 7.28e+02 3.50e-09 17 76 2.2e+04

HS73 3 4 0 2.99e+01 9.13e-08 4 9 1.0e+01

HS74 5 4 0 5.13e+03 3.60e-07 5 6 1.0e+01

HS75 5 4 0 5.17e+03 1.93e-12 8 21 4.0e+01

HS76 3 4 0 -4.68e+00 0.00e+00 1 2 1.0e+01

HS76I 3 4 0 -4.68e+00 0.00e+00 1 2 1.0e+01

HS77 2 5 0 2.42e-01 4.20e-09 12 45 1.0e+01

HS78 3 5 0 -2.92e+00 1.51e-09 4 5 1.0e+01

HS79 3 5 0 7.88e-02 1.19e-08 4 5 1.0e+01

HS8 2 2 0 -1.00e+00 1.86e-10 5 6 1.0e+01

HS80 3 5 0 5.39e-02 4.85e-10 7 8 1.0e+01

HS81 3 5 0 5.39e-02 1.20e-08 8 13 1.0e+01

HS83 3 5 0 -3.07e+04 2.66e-12 4 7 1.1e+03

HS84 3 5 0 -5.28e+06 2.33e-10 3 4 1.0e+01

HS86 10 5 0 -3.23e+01 2.66e-15 3 4 1.0e+01

HS88 1 2 0 1.36e+00 3.11e-13 17 78 1.8e+03

HS89 1 3 0 1.36e+00 2.72e-14 17 179 1.2e+03

HS9 1 2 0 -5.00e-01 1.78e-15 5 10 1.0e+01

HS90 1 4 0 1.36e+00 4.29e-13 19 137 1.1e+03

HS91 1 5 0 1.36e+00 3.06e-12 21 204 2.1e+03

HS92 1 6 0 1.36e+00 3.11e-12 21 119 1.7e+03

HS93 2 6 0 1.35e+02 1.38e-14 7 12 9.9e+01

HS95 4 6 0 1.56e-02 0.00e+00 1 2 1.0e+01

HS96 4 6 0 1.56e-02 0.00e+00 1 2 1.0e+01

HS97 4 6 0 4.07e+00 0.00e+00 10 15 1.0e+01

HS98 4 6 0 4.07e+00 0.00e+00 10 15 1.0e+01

HS99 2 7 0 -8.31e+08 3.38e-10 5 32 5.4e+02

32 N. I. M. Gould, Y. Loh and D. P. Robinson

HUBFIT 1 2 0 1.69e-02 0.00e+00 1 2 1.0e+01

HYDCAR20 99 99 0 0.00e+00 4.89e-06 8 11 1.0e+01

HYDCAR6 29 29 0 0.00e+00 2.37e-06 5 8 1.0e+01

HYPCIR 2 2 0 0.00e+00 1.31e-09 4 7 1.0e+01

KIWCRESC 2 3 0 -3.28e-06 6.57e-06 9 37 1.0e+01

LAUNCH 28 25 0 9.00e+00 4.33e-13 7 13 3.0e+01

LEWISPOL 9 6 -8 1.16e+00 5.79e-05 25 135 7.8e+03

LIN 2 4 0 -1.96e-02 1.17e-16 16 17 1.0e+01

LINSPANH 33 97 0 -7.70e+01 5.07e-13 1 2 1.0e+01

LOADBAL 31 31 0 4.53e-01 4.40e-14 7 8 1.0e+01

LOOTSMA 2 3 -1 6.00e+00 4.00e+00 0 1 1.0e+01

LOTSCHD 7 12 0 2.40e+03 1.40e-13 2 5 2.0e+01

LSNNODOC 4 5 0 1.23e+02 1.78e-15 6 6 2.0e+01

LSQFIT 1 2 0 3.38e-02 0.00e+00 1 2 1.0e+01

MADSEN 6 3 0 6.16e-01 7.53e-10 12 29 1.0e+01

MAKELA1 2 3 0 -1.41e+00 8.33e-10 6 8 1.0e+01

MAKELA2 3 3 0 7.20e+00 7.99e-15 4 5 1.0e+01

MAKELA3 20 21 0 -7.28e-14 6.78e-05 15 34 1.0e+01

MAKELA4 40 21 0 6.16e-15 1.07e-14 211 211 3.0e+01

MARATOS 1 2 0 -1.00e+00 2.45e-08 4 45 1.0e+01

MATRIX2 2 6 0 9.54e-07 0.00e+00 10 11 1.0e+01

MESH 48 41 -2 -1.00e+37 4.22e-14 448 3324 2.0e+01

METHANB8 31 31 0 0.00e+00 3.07e-07 2 3 1.0e+01

METHANL8 31 31 0 0.00e+00 4.36e-06 4 5 1.0e+01

MIFFLIN1 2 3 0 -1.00e+00 6.51e-06 13 78 1.0e+01

MIFFLIN2 2 3 0 -1.00e+00 2.94e-09 8 25 1.0e+01

MINMAXBD 20 5 0 1.16e+02 1.70e-06 12 51 1.0e+01

MINMAXRB 4 3 0 1.39e-17 0.00e+00 97 648 1.0e+01

MISTAKE 13 9 0 -1.00e+00 7.61e-09 7 11 1.0e+01

MRIBASIS 55 36 0 1.82e+01 2.18e-09 4 5 1.0e+01

MSS1 73 90 -9 -1.60e+01 2.82e-07 9422 675629 Inf

MWRIGHT 3 5 0 2.50e+01 1.04e-12 7 10 1.0e+01

NASH 24 72 -1 0.00e+00 4.37e+01 2623 2624 2.0e+01

NYSTROM5 20 18 0 0.00e+00 5.21e-07 23 39 3.0e+01

ODFITS 6 10 0 -2.38e+03 1.14e-13 7 8 1.0e+01

OPTCNTRL 20 32 0 5.50e+02 5.13e-06 5 20 8.0e+01

OPTPRLOC 30 30 0 -1.64e+01 5.58e-13 19 94 1.0e+01

ORTHREGB 6 27 0 8.67e-18 8.71e-09 2 3 1.0e+01

PENTAGON 15 6 0 1.37e-04 5.55e-17 10 14 1.0e+01

PFIT1 3 3 0 0.00e+00 3.77e-15 257 4079 1.2e+78

PFIT2 3 3 0 0.00e+00 7.11e-15 131 1719 1.7e+39

PFIT3 3 3 0 0.00e+00 2.94e-07 203 2917 3.5e+14

PFIT4 3 3 0 0.00e+00 1.03e-13 144 1743 3.4e+39

POLAK1 2 3 0 2.72e+00 5.47e-09 11 28 1.0e+01

POLAK2 2 11 0 5.46e+01 4.34e-06 5 22 1.0e+01

POLAK3 10 12 0 5.93e+00 1.41e-10 7 16 1.0e+01

POLAK4 3 3 0 -9.21e-19 1.73e-18 4 5 1.0e+01

POLAK5 2 3 0 5.00e+01 0.00e+00 3 4 2.0e+01

POLAK6 4 5 0 -4.40e+01 2.86e-10 14 85 1.0e+01

PORTFL1 1 12 0 2.05e-02 2.22e-16 1 2 1.0e+01

PORTFL2 1 12 0 2.97e-02 1.11e-16 1 2 1.0e+01

PORTFL3 1 12 0 3.27e-02 2.78e-16 1 2 1.0e+01

PORTFL4 1 12 0 2.63e-02 1.67e-16 1 2 1.0e+01

PORTFL6 1 12 0 2.58e-02 8.33e-17 1 2 1.0e+01

POWELLBS 2 2 0 0.00e+00 2.76e-06 53 386 1.0e+01

POWELLSQ 2 2 1 0.00e+00 9.02e+00 10001 370438 1.0e+01

PRODPL0 29 60 0 5.88e+01 7.13e-14 9 14 2.0e+01

PRODPL1 29 60 0 3.57e+01 1.05e-15 9 14 2.0e+01

QC 4 9 -9 -8.61e+02 1.25e-10 10001 279975 1.0e+01

QCNEW 3 9 0 -8.07e+02 0.00e+00 1 2 1.0e+01

QPCBLEND 74 83 0 -7.84e-03 3.18e-16 1 2 1.0e+01

QPNBLEND 74 83 0 -9.14e-03 1.50e-15 13 14 1.0e+01

RECIPE 3 3 0 0.00e+00 5.96e-06 11 12 1.0e+01

RES 14 20 0 0.00e+00 1.95e-14 0 1 1.0e+01

RK23 11 17 0 8.33e-02 8.48e-12 10 37 1.0e+01

ROBOT 2 14 0 6.59e+00 2.22e-15 7 10 1.0e+01

ROSENMMX 4 5 0 -4.40e+01 6.55e-06 8 37 1.0e+01

RSNBRNE 2 2 0 0.00e+00 0.00e+00 8 37 1.0e+01

S268 5 5 0 -2.55e-11 0.00e+00 1 2 1.0e+01

S316-322 1 2 -1 8.00e+02 1.00e+00 0 1 1.0e+01

SIMPLLPA 2 2 0 1.00e+00 0.00e+00 3 4 1.0e+01

SIMPLLPB 3 2 0 1.10e+00 0.00e+00 3 4 1.0e+01

SINVALNE 2 2 0 0.00e+00 0.00e+00 5 42 1.0e+01

SNAKE 2 2 0 1.56e-14 0.00e+00 8 23 1.0e+01

SPANHYD 33 97 0 2.40e+02 1.54e-12 5 6 1.0e+01

SPIRAL 2 3 0 -6.24e-08 1.25e-07 179 1306 1.0e+01

SUPERSIM 2 2 0 6.67e-01 1.11e-16 1 2 1.0e+01

SWOPF 92 83 0 6.79e-02 4.72e-11 466 930 1.0e+01

SYNTHES1 6 6 0 7.59e-01 1.32e-10 4 5 1.0e+01

SYNTHES2 14 11 0 -5.54e-01 1.67e-16 5 6 1.0e+01

SYNTHES3 23 17 0 1.51e+01 4.16e-16 5 6 1.0e+01

TAME 1 2 0 0.00e+00 0.00e+00 1 2 1.0e+01

TENBARS1 9 18 0 2.30e+03 1.57e-05 50 123 2.0e+01

TENBARS2 8 18 0 2.30e+03 2.71e-08 49 91 2.0e+01

TENBARS3 8 18 0 2.25e+03 4.58e-11 189 432 2.0e+01

TENBARS4 9 18 1 3.69e+02 1.99e-05 10001 121686 5.7e+02

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 33

TRIGGER 6 7 0 0.00e+00 6.09e-07 38 257 1.0e+01

TRO3X3 13 30 0 9.00e+00 2.18e-12 85 184 6.7e+01

TRY-B 1 2 0 1.00e+00 2.51e-06 6 7 1.0e+01

TWOBARS 2 2 0 1.51e+00 4.70e-09 6 9 1.0e+01

WACHBIEG 2 3 -1 -1.00e+00 1.50e+00 5 6 1.0e+01

WATER 10 31 0 1.05e+04 2.56e-13 10 12 3.5e+02

WOMFLET 3 3 1 2.75e-06 2.21e-07 10001 992903 Inf

YFITNE 17 3 0 0.00e+00 8.41e-06 19 76 1.0e+01

ZANGWIL3 3 3 0 0.00e+00 0.00e+00 1 2 1.0e+01

ZECEVIC2 2 2 0 -4.12e+00 2.22e-16 1 2 1.0e+01

ZECEVIC3 2 2 0 9.73e+01 2.34e-11 6 13 1.0e+01

ZECEVIC4 2 2 0 7.56e+00 0.00e+00 5 6 1.0e+01

ZY2 2 3 0 2.00e+00 0.00e+00 4 5 1.0e+01

34 N. I. M. Gould, Y. Loh and D. P. Robinson

Table 1.5: Results for FiSQO on the CUTEst problems of size m ≥ 1 and 100<max{m,n} ≤ 1000.

prob m n status f v iters feval σ #o #v #b #p

ACOPP118 608 344 0 1.30e+05 4.17e-08 6 7 9.3e+02 2 4 0 0

ACOPP30 142 72 0 5.77e+02 4.09e-12 6 9 7.4e+01 1 5 0 0

ACOPP57 274 128 0 4.17e+04 4.90e-10 6 7 3.8e+03 0 6 0 0

ACOPR118 726 344 0 1.30e+05 1.81e-04 612 3591 4.4e+02 443 167 1 1

ACOPR30 172 72 0 5.77e+02 1.49e-08 306 609 4.9e+01 287 19 0 0

ACOPR57 331 128 0 4.17e+04 1.58e-06 7 16 3.8e+03 0 5 1 1

AGG 488 163 2 -2.05e+06 9.35e+06 8096 8097 4.0e+01 8096 0 0 0

C-RELOAD 284 342 0 -1.02e+00 2.26e-09 62 63 1.0e+01 56 6 0 0

CRESC100 200 6 0 7.44e-01 2.69e-10 37 48 8.2e+04 5 32 0 0

DALLASL 667 906 0 -2.03e+05 5.68e-09 15 16 3.0e+01 15 0 0 0

DALLASM 151 196 0 -4.82e+04 1.64e-12 12 13 1.0e+01 12 0 0 0

DUAL3 1 111 0 1.36e-01 2.66e-15 1 2 1.0e+01 0 1 0 0

DUALC1 215 9 0 6.16e+03 4.16e-17 1 2 4.0e+03 0 1 0 0

DUALC2 229 7 0 3.55e+03 3.89e-16 1 2 4.8e+03 0 1 0 0

DUALC5 278 8 0 4.27e+02 7.22e-16 1 2 7.9e+02 0 1 0 0

DUALC8 503 8 0 1.83e+04 0.00e+00 1 2 6.8e+03 0 1 0 0

ELATTAR 102 7 1 6.64e+01 4.36e-08 10001 19990 1.0e+01 9987 14 0 0

EXPFITB 102 5 0 5.02e-03 1.42e-14 13 14 1.0e+01 13 0 0 0

EXPFITC 502 5 0 2.33e-02 2.84e-14 13 15 1.0e+01 13 0 0 0

FEEDLOC 259 90 0 0.00e+00 2.37e-06 6 8 1.0e+01 2 4 0 0

GMNCASE1 300 175 0 2.67e-01 4.04e-16 1 3 1.0e+01 0 0 1 0

GMNCASE4 350 175 0 5.95e+03 1.95e-11 1 2 6.6e+01 0 1 0 0

HAIFAM 150 99 0 -4.50e+01 1.56e-06 10 23 1.0e+01 3 7 0 0

HIE1372D 525 637 0 2.78e+02 2.11e-11 3 4 1.0e+01 2 1 0 0

HYDROELM 504 505 2 -3.57e+06 2.73e-12 1223 1224 1.0e+01 1223 0 0 0

HYDROELS 168 169 0 -3.58e+06 2.88e-13 2002 2034 1.0e+01 2001 0 0 0

KTMODEL 450 726 -7 0.00e+00 1.93e+04 28 60 2.0e+04 0 28 0 0

LEAKNET 153 156 0 8.05e+00 8.75e-08 6 7 4.0e+01 4 2 0 0

LEUVEN7 946 360 0 6.95e+02 3.67e-14 2 3 1.0e+01 0 0 1 1

LHAIFAM 150 99 -6 -Inf 0.00e+00 3 4 1.0e+01 3 0 0 0

PRIMAL1 85 325 0 -3.50e-02 6.72e-14 1 2 1.0e+01 1 0 0 0

PRIMAL2 96 649 0 -3.37e-02 3.31e-13 1 2 1.0e+01 1 0 0 0

PRIMAL3 111 745 0 -1.36e-01 4.75e-13 1 2 1.0e+01 1 0 0 0

PRIMALC1 9 230 0 -6.16e+03 6.21e-11 2 3 1.0e+01 2 0 0 0

PRIMALC2 7 231 0 -3.55e+03 0.00e+00 1 2 1.0e+01 1 0 0 0

PRIMALC5 8 287 0 -4.27e+02 3.95e-12 1 2 1.0e+01 1 0 0 0

PRIMALC8 8 520 0 -1.83e+04 1.16e-10 8 9 1.0e+01 8 0 0 0

QPCBOEI1 351 384 0 1.15e+07 2.74e-10 12 17 9.5e+05 2 8 1 1

QPCBOEI2 166 143 0 8.17e+06 1.95e-12 12 13 2.4e+04 0 12 0 0

QPCSTAIR 356 467 0 6.20e+06 5.23e-12 9 28 6.5e+04 1 6 1 1

QPNBOEI1 351 384 0 6.74e+06 4.14e-11 31 33 2.5e+06 20 11 0 0

QPNBOEI2 166 143 0 1.37e+06 2.83e-12 23 45 1.1e+05 10 9 2 2

QPNSTAIR 356 467 0 5.15e+06 2.87e-12 19 20 2.3e+05 11 8 0 0

READING6 50 102 0 -1.45e+02 1.69e-11 397 466 1.0e+01 395 2 0 0

S365 5 7 0 0.00e+00 2.81e-10 18 50 1.0e+01 9 9 0 0

S365MOD 5 7 -1 2.50e-01 2.50e+00 16 293 2.0e+04 2 5 1 7

SAWPATH 774 583 -5 1.47e+03 3.56e+00 0 1 1.0e+01 0 0 0 0

SMBANK 64 117 0 -7.13e+06 8.53e-10 77 78 1.0e+01 77 0 0 0

SMMPSF 263 720 0 1.03e+06 2.92e-09 11 16 7.7e+01 2 9 0 0

SSEBLIN 72 194 1 1.99e+07 2.64e-10 10001 10002 6.2e+03 9466 535 0 0

SSEBNLN 96 194 0 1.62e+07 1.14e-13 5 5 3.3e+03 2 2 0 0

STATIC3 96 434 0 -1.53e+03 8.70e-16 1 2 1.0e+01 1 0 0 0

STEENBRA 108 432 0 1.70e+04 1.22e-12 3 4 1.0e+01 2 1 0 0

STEENBRB 108 468 0 1.11e+04 1.09e-12 875 1084 1.0e+03 873 2 0 0

STEENBRC 126 540 2 2.77e+04 7.66e-14 2616 2814 2.7e+03 2613 3 0 0

STEENBRE 126 540 2 2.86e+04 5.63e-13 2608 2781 2.3e+09 2604 2 1 1

STEENBRF 108 468 0 9.91e+03 6.52e-13 369 487 1.0e+03 367 2 0 0

STEENBRG 126 540 2 2.85e+04 1.80e-12 2646 2891 2.7e+03 2643 3 0 0

TABLE7 230 624 2 5.96e+04 7.32e-11 1212 68715 Inf 24 2 1 72

TARGUS 63 162 0 1.08e+03 5.61e-07 79 80 1.0e+01 78 1 0 0

TRIMLOSS 75 142 0 9.06e+00 7.44e-12 7 8 2.0e+01 3 4 0 0

TRO21X5 201 540 -5 5.00e+01 9.81e-01 8 28 2.1e+04 0 8 0 0

ZAMB2-10 96 270 0 -1.58e+00 3.64e-12 11 12 1.0e+01 9 2 0 0

ZAMB2-11 96 270 0 -1.12e+00 8.29e-10 5 6 1.0e+01 5 0 0 0

ZAMB2-8 48 138 0 -1.53e-01 4.73e-10 11 19 1.0e+01 9 0 1 1

ZAMB2-9 48 138 0 -3.55e-01 2.61e-05 8 9 1.0e+01 8 0 0 0

A Nonmonotone Filter SQP Method: Local Convergence and Numerical Results 35

Table 1.6: Results for PenSQO on the CUTEst problems of size m≥1 and 100<max{m,n}≤1000.

prob m n status f v iters feval σ

ACOPP118 608 344 0 1.30e+05 4.09e-08 7 22 6.0e+02

ACOPP30 142 72 0 5.77e+02 1.10e-11 7 22 6.2e+01

ACOPP57 274 128 0 4.17e+04 2.39e-11 5 38 3.8e+03

ACOPR118 726 344 2 1.30e+05 5.83e-08 1189 39284 7.4e+07

ACOPR30 172 72 0 5.77e+02 1.50e-08 313 625 4.4e+01

ACOPR57 331 128 0 4.17e+04 1.96e-06 9 49 3.8e+03

AGG 488 163 2 -2.16e+06 9.34e+06 8569 8570 4.0e+01

C-RELOAD 284 342 0 -1.02e+00 2.02e-09 359 1405 1.0e+01

CRESC100 200 6 0 7.44e-01 2.53e-11 49 80 3.3e+05

DALLASL 667 906 0 -2.03e+05 1.39e-10 16 29 3.0e+01

DALLASM 151 196 0 -4.82e+04 1.64e-12 12 13 1.0e+01

DUAL3 1 111 0 1.36e-01 2.66e-15 1 2 1.0e+01

DUALC1 215 9 0 6.16e+03 1.67e-16 3 52 7.9e+03

DUALC2 229 7 0 3.55e+03 1.05e-15 2 41 4.8e+03

DUALC5 278 8 0 4.27e+02 6.11e-16 2 37 7.9e+02

DUALC8 503 8 0 1.83e+04 1.67e-16 4 33 2.7e+04

ELATTAR 102 7 1 5.82e+01 8.90e-08 10001 23277 1.0e+01

EXPFITB 102 5 0 5.02e-03 1.42e-14 13 14 1.0e+01

EXPFITC 502 5 0 2.33e-02 2.84e-14 13 15 1.0e+01

FEEDLOC 259 90 0 0.00e+00 2.37e-06 6 8 1.0e+01

GMNCASE1 300 175 0 2.67e-01 3.96e-14 1 2 1.0e+01

GMNCASE4 350 175 0 5.95e+03 1.86e-11 2 43 6.6e+01

HAIFAM 150 99 0 -4.50e+01 9.16e-06 21 76 1.0e+01

HIE1372D 525 637 0 2.78e+02 2.11e-11 3 4 1.0e+01

HYDROELM 504 505 2 -3.57e+06 1.99e-12 1224 1225 1.0e+01

HYDROELS 168 169 0 -3.58e+06 2.88e-13 2002 2034 1.0e+01

KTMODEL 450 726 -10 0.00e+00 3.41e+05 0 2 1.0e+01

LEAKNET 153 156 0 8.05e+00 1.37e-08 7 9 4.0e+01

LEUVEN7 946 360 0 6.95e+02 3.67e-14 2 3 1.0e+01

LHAIFAM 150 99 -10 6.93e-01 0.00e+00 0 3 1.0e+01

LHAIFAM 150 99 -10 6.93e-01 0.00e+00 0 3 1.0e+01

PRIMAL1 85 325 0 -3.50e-02 6.72e-14 1 2 1.0e+01

PRIMAL2 96 649 0 -3.37e-02 3.31e-13 1 2 1.0e+01

PRIMAL3 111 745 0 -1.36e-01 4.75e-13 1 2 1.0e+01

PRIMALC1 9 230 0 -6.16e+03 6.21e-11 2 3 1.0e+01

PRIMALC2 7 231 0 -3.55e+03 0.00e+00 1 2 1.0e+01

PRIMALC5 8 287 0 -4.27e+02 3.95e-12 1 2 1.0e+01

PRIMALC8 8 520 0 -1.83e+04 1.16e-10 8 9 1.0e+01

QPCBOEI1 351 384 0 1.15e+07 2.00e-11 19 74 1.0e+06

QPCBOEI2 166 143 0 8.17e+06 1.10e-12 21 128 5.8e+04

QPCSTAIR 356 467 0 6.20e+06 3.82e-12 15 106 5.8e+04

QPNBOEI1 351 384 0 6.78e+06 8.24e-10 25 92 2.5e+06

QPNBOEI2 166 143 0 1.38e+06 8.27e-13 23 84 1.1e+05

QPNSTAIR 356 467 0 5.15e+06 1.81e-12 26 119 5.3e+04

READING6 50 102 0 -1.45e+02 1.42e-12 2196 4065 1.0e+01

S365 5 7 -10 1.25e+00 8.26e+00 1 3 1.0e+01

S365MOD 5 7 -1 2.50e-01 2.50e+00 16 293 2.0e+04

SAWPATH 774 583 -5 1.47e+03 3.56e+00 0 1 1.0e+01

SMBANK 64 117 0 -7.13e+06 8.53e-10 77 78 1.0e+01

SMMPSF 263 720 0 1.03e+06 1.40e-06 10 45 1.5e+02

SSEBLIN 72 194 1 1.99e+07 2.64e-10 10001 10002 6.2e+03

SSEBNLN 96 194 0 1.62e+07 1.14e-13 5 5 3.3e+03

STATIC3 96 434 0 -1.53e+03 8.70e-16 1 2 1.0e+01

STEENBRA 108 432 0 1.70e+04 1.22e-12 3 4 1.0e+01

STEENBRB 108 468 0 9.08e+03 0.00e+00 401 489 1.0e+03

STEENBRC 126 540 2 2.84e+04 8.79e-13 2600 2758 1.4e+03

STEENBRE 126 540 2 2.85e+04 4.88e-13 2555 2714 1.7e+16

STEENBRF 108 468 0 8.99e+03 0.00e+00 401 490 1.0e+03

STEENBRG 126 540 2 2.82e+04 3.27e-12 2655 2813 1.4e+03

TABLE7 230 624 2 5.96e+04 3.76e-11 1218 65858 Inf

TARGUS 63 162 0 1.08e+03 5.61e-07 79 80 1.0e+01

TRIMLOSS 75 142 0 9.06e+00 3.67e-09 9 13 2.0e+01

TRO11X3 61 150 -5 1.43e+01 9.91e-01 26 159 5.4e+05

TRO21X5 201 540 -6 6.80e+00 9.97e-01 32 296 1.1e+10

ZAMB2-10 96 270 0 -1.58e+00 4.55e-05 20 62 1.0e+01

ZAMB2-11 96 270 0 -1.12e+00 8.29e-10 5 6 1.0e+01

ZAMB2-8 48 138 0 -1.53e-01 1.77e-09 170 1927 1.0e+01

ZAMB2-9 48 138 0 -3.55e-01 6.63e-06 10 13 1.0e+01

36 N. I. M. Gould, Y. Loh and D. P. Robinson

Table 1.7: Results for FiSQO/modFiSQO on the CUTEst problems of size 1≤m≤max{m,n}≤

1000 for which at least one b-pair was needed by FiSQO during the solution process.

prob m n status iters feval σ

ACOPP14 68 38 0/0 5/6 42/11 1.2e+03/7.3e+02

ACOPR14 82 38 0/0 7/16 45/57 1.4e+02/2.0e+01

BT11 3 5 0/0 7/8 9/21 1.0e+01/1.0e+01

BT12 3 5 0/0 3/4 4/6 1.0e+01/1.0e+01

BT2 1 3 0/0 11/11 13/16 1.0e+01/1.0e+01

BT7 3 5 0/0 26/32 106/77 4.7e+02/2.1e+03

HALDMADS 42 6 0/1 215/6001 423/490438 1.0e+01/1.0e+01

HIMMELP2 1 2 0/0 15/14 23/23 1.0e+01/1.0e+01

HS101 5 7 0/0 27/149 72/1879 5.1e+03/5.3e+11

HS102 5 7 0/0 26/39 38/200 1.3e+04/2.9e+03

HS103 5 7 0/0 18/40 24/92 1.3e+03/5.3e+04

HS111LNP 3 10 0/0 18/17 21/21 2.0e+01/2.0e+01

HS27 1 3 0/0 22/21 150/155 1.0e+01/1.0e+01

HS29 1 3 0/0 6/7 11/13 1.0e+01/1.0e+01

HS61 2 3 0/0 6/7 8/18 1.0e+01/1.0e+01

HS77 2 5 0/0 9/9 13/14 1.0e+01/1.0e+01

HS88 1 2 0/0 16/19 24/69 1.1e+03/1.3e+03

HS89 1 3 0/0 16/25 29/54 1.9e+03/2.1e+03

HS92 1 6 0/0 21/16 56/62 1.3e+03/1.1e+03

PFIT2 3 3 0/0 131/132 1720/1730 1.7e+39/3.4e+39

SYNTHES1 6 6 0/0 4/5 6/14 1.0e+01/1.0e+01

TENBARS1 9 18 0/0 45/64 76/525 4.0e+01/6.5e+01

TENBARS2 8 18 0/0 49/89 98/945 2.0e+01/7.1e+01

TENBARS3 8 18 0/0 46/82 104/967 1.0e+01/1.2e+02

WATER 10 31 0/0 10/18 11/86 3.5e+02/3.5e+02

ACOPR57 331 128 0/0 7/22 16/101 3.8e+03/3.8e+03

GMNCASE1 300 175 0/0 1/2 3/5 1.0e+01/1.0e+01

LEUVEN7 946 360 0/0 2/3 3/23 1.0e+01/1.0e+01

QPCBOEI1 351 384 0/0 12/13 17/16 9.5e+05/9.5e+05

QPCSTAIR 356 467 0/0 9/10 28/12 6.5e+04/6.5e+04

QPNBOEI2 166 143 0/0 23/25 45/39 1.1e+05/1.1e+05

ZAMB2-8 48 138 0/0 11/23 19/43 1.0e+01/1.0e+01

