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A SECOND DERIVATIVE SQP METHOD: GLOBAL CONVERGENCE∗
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Abstract. Sequential quadratic programming (SQP) methods form a class of highly efficient
algorithms for solving nonlinearly constrained optimization problems. Although second derivative
information may often be calculated, there is little practical theory that justifies exact-Hessian SQP
methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex,
and thus finding their global solutions may be computationally nonviable. This paper presents a
second derivative SQP method based on quadratic subproblems that are either convex, and thus may
be solved efficiently, or need not be solved globally. Additionally, an explicit descent-constraint is
imposed on certain QP subproblems, which “guides” the iterates through areas in which nonconvexity
is a concern. Global convergence of the resulting algorithm is established.
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1. Introduction. In this paper we present a sequential quadratic programming
(SQP) method for solving the problem

(�1-σ) minimize
x∈Rn

φ(x) = f(x) + σ‖[c(x)]−‖1,

where the constraint vector c(x) : Rn → R
m and the objective function f(x) : Rn → R

are assumed to be twice continuously differentiable, σ is a positive scalar known as
the penalty parameter, and we have used the notation [v]− = min(0, v) for a generic
vector v (the minimum is understood to be componentwise). Our motivation for
solving this problem is that solutions of problem (�1-σ) correspond (under certain
assumptions) to solutions of the problem

(NP) minimize
x∈Rn

f(x) subject to c(x) ≥ 0.

See [10, 23] for more details on exactly how problems (�1-σ) and (NP) are related.
The precise set of properties that characterize an SQP method is often author

dependent. In fact, as the immense volume of literature on SQP methods continues
to increase, the properties that define these methods become increasingly blurred.
One may argue, however, that the backbone of every SQP method consists of “step
generation” and “step acceptance/rejection.” We describe these concepts in turn.

All SQP methods generate a sequence of trial steps, which are computed as so-
lutions of cleverly chosen quadratic or quadratic-related subproblems. Typically, the
quadratic programming (QP) subproblems are closely related to the optimality con-
ditions of the underlying problem and thus give the potential for fast Newton-like
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convergence. More precisely, the trial steps “approximately” minimize (locally) a
quadratic approximation to a Lagrangian function subject to a linearization of all or
a subset of the constraint functions. Two major concerns associated with this QP
subproblem are incompatible linearized constraints and unbounded solutions. There
are essentially two approaches that have been used for handling unbounded solutions.
The first approach is to use a positive definite approximation to the Hessian in the
quadratic subproblem. The resultant strictly convex QP is bounded with a unique
minimizer. The second approach allows for a nonconvex QP by explicitly bounding
the solution via a trust-region constraint. Both techniques have been effective in
practice. The issue of incompatible subproblems is more delicate. We first note that
the QP subproblem may be “naturally” incompatible—i.e., the set of feasible points
is empty. However, even if the linearized constraints are compatible, the feasible re-
gion may still be empty if a trust-region constraint is imposed; the trust-region may
“cut-off” all solutions to the linear system. Different techniques, such as constraint
shifting [27], a special “elastic” mode [17], and a “feasibility restoration” phase [14],
have been used to deal with incompatible subproblems.

Strategies for accepting or rejecting trial steps are sometimes referred to as “glob-
alization techniques” since they are the instrument for guaranteeing global conver-
gence. The earliest methods used so-called merit functions to measure the quality of
a trial step. A merit function is a single function that carefully balances the (usually)
conflicting aims of reducing the objective function and satisfying the constraints. The
basic idea is that a step is accepted if it gives sufficient decrease in the merit func-
tion; otherwise, the step is rejected, parameters are updated, and a new trial step is
computed. More recently, filter methods [14] have become an attractive alternative
to a merit function. Filter methods view problem (NP) as a bi-objective optimiza-
tion problem—minimizing the objective function f(x) and minimizing the constraint
violation ‖[c(x)]−‖. These methods use the idea of a “filter,” which is essentially a
collection of pairs (‖[c(x)]−‖, f(x)) such that no pair dominates another—we say that
a pair (‖[c(x1)]

−‖, f(x1)) dominates a pair (‖[c(x2)]
−‖, f(x2)) if f(x1) < f(x2) and

‖[c(x1)]
−‖ < ‖[c(x2)]

−‖. Although the use of a merit function and a filter are concep-
tually quite different, Curtis and Nocedal [11] have shown that a “flexible” penalty
approach partially bridges this gap. Their method may be viewed as a continuum of
methods with traditional merit function and filter methods as the extrema.

The previous two paragraphs described two properties of all SQP methods—step
computation and step acceptance or rejection—and these properties alone may dif-
ferentiate one SQP method from another. In the context of problem (NP), a further
fundamental distinction between SQP methods can be found in how the inequality
constraints are used in the QP subproblems. This distinction has spawned a rivalry
between essentially two classes of methods, which are commonly known as sequen-
tial equality-constrained quadratic programming (SEQP) and sequential inequality-
constrained quadratic programming (SIQP) methods.

SEQP methods solve problem (NP) by solving an equality constrained QP during
each iterate. The linearized equality constraints that are included may be interpreted
as an approximation to the optimal active constraint set. Determining which con-
straints to include in each subproblem is a delicate task. The approach used by
Coleman and Conn [8] includes those constraints that are nearly active at the current
point. Then they solve an equality constrained QP in which a second-order approx-
imation to the locally differentiable part of an exact penalty function is minimized
subject to keeping the “nearly” active constraints fixed. An alternative approach is
to use the solution of a “simpler” auxiliary subproblem as a prediction of the optimal
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active constraints. Often, the simpler subproblem only uses first-order information
and results in a linear program. Merit function-based variants of this type have been
studied by Fletcher and Sainz de la Maza [15], and Byrd et al. [4, 5], while filter-based
variants have been studied by Chin and Fletcher [7].

SIQP methods solve problem (NP) by solving a sequence of inequality constrained
quadratic subproblems. Unlike the SEQP philosophy, SIQP methods utilize every
constraint in each subproblem and, therefore, avoid the precarious task of choosing
which constraints to include. These methods also have the potential for fast con-
vergence; under standard assumptions, methods of this type correctly identify the
optimal active set in a finite number of iterations, and thereafter rapid convergence
is guaranteed by the famous result due to Robinson [24, Theorem 3.1]. Probably the
greatest disadvantage of SIQP methods is their potential cost; to solve the inequal-
ity constrained QP subproblem, both active set and interior-point algorithms may
require the solution of many equality constrained quadratic programs. However, in
the case of moderate-sized problems, there is much empirical evidence that indicates
that the additional cost per iteration is often off set by substantially fewer function
evaluations (similar evidence has yet to surface for large-sized problems). SIQP meth-
ods that utilize exact second derivatives must also deal with nonconvexity. To our
knowledge, all previous second-order SIQP methods assume that global minimizers
of nonconvex subproblems are computed, which is not a realistic assumption in most
cases. For these methods, the computation of a local minimizer is unsatisfactory be-
cause it may yield an ascent direction. Line-search, trust-region, and filter variants
of SIQP methods have been proposed. The line-search method by Gill, Murray, and
Saunders [17] avoids unbounded and nonunique QP solutions by maintaining a posi-
tive definite quasi-Newton (sometimes limited-memory quasi-Newton) approximation
to the Hessian of the Lagrangian. The SIQP approaches by Boggs, Kearsley, and
Tolle [1, 2] modify the exact second derivatives to ensure that the reduced Hessian is
sufficiently positive definite. Finally, the filter SIQP approach by Fletcher and Leyf-
fer [14] deals with infeasibility by entering a special restoration phase to recover from
bad steps.

The algorithm we propose in this paper may be considered an SIQP/SEQP hy-
brid that is most similar to the S�1QP method proposed by Fletcher [13], which is a
second-order method designed for finding first-order critical points of problem (�1-σ).
The QP subproblem studied by Fletcher is to minimize a second-order approxima-
tion to the �1-penalty function subject to a trust-region constraint. More precisely,
the QP subproblem is obtained by approximating f(x) and c(x) in the �1-penalty
function by a second- and first-order Taylor approximation, respectively. Unfortu-
nately, the theoretical results of Fletcher’s method requires the computation of the
global minimizer of this (generally) nonconvex subproblem, which is known to be an
NP-hard problem. The method we propose is also a second derivative method that
is globalized via the �1-merit function, but we do not require the global minimizer of
any nonconvex QP. To achieve this goal, our procedure for computing a trial step is
necessarily more complicated than that used by Fletcher. Given an estimate xk of a
solution to problem (NP), a search direction is generated from a combination of three
steps, all of which are tractable for large problems: a predictor step sP

k is defined as a
solution to a strictly convex QP subproblem; a Cauchy step sCP

k drives convergence of
the algorithm and is computed from a special univariate global minimization problem;
and an (optional) accelerator step sA

k is computed from a local solution of a special
nonconvex QP subproblem. Since there is considerable flexibility in how we compute
the accelerator step, we may adaptively choose the accelerator subproblem to reflect
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the likely success of an SIQP or SEQP approach. This observation justifies our claim
that our method is an SIQP/SEQP hybrid.

The paper is organized as follows. In section 2 we provide a complete description
of how the predictor, Cauchy, and accelerator steps are computed; we then show how
to combine these steps to obtain a trial step. Once the trial step is defined, we then
apply traditional trust-region updating strategies. The statement and description of
the resulting algorithm is given in section 3. Finally, in section 4 we prove global
convergence of our algorithm and draw general conclusions in section 5.

General notation and consequences. We let e denote the vector of all ones
whose dimension is determined by the context. A local solution of (�1-σ) is denoted
by x∗; g(x) is the gradient of f(x), and ∇xxf(x) is its (symmetric) Hessian; the matrix
∇xxcj(x) is the Hessian of cj(x); J(x) is the m×n Jacobian matrix of the constraints
with ith row ∇ci(x)T . For a general vector v, the notation [v]− = min(0, v) is used,
where the minimum is understood to be componentwise. The Lagrangian function
associated with (NP) is L(x, y) = f(x)− yT c(x). The Hessian of the Lagrangian with
respect to x is ∇xxL(x, y) = ∇xxf(x)−

∑m
j=1 yj∇xxcj(x).

We often consider problem functions evaluated at a specific point xk. To simplify
notation we define the following: fk = f(xk), ck = c(xk), gk = g(xk), and Jk = J(xk).
Given a pair of values (xk, yk), we let Hk and Bk denote symmetric approximations to
∇xxL(xk, yk) in which Bk is required additionally to be positive definite. In practice
Hk may be chosen to be ∇xxL(xk, yk), but this is not necessary in what follows.

To prove global convergence to a first-order point of the merit function φ, we
require the local linear model

ML

k(s)
def
= ML

k(s ;xk) = fk + gTk s+ σ‖[ck + Jks]
−‖1.

For a given step s, we then define the change in the linear model to be

ΔML

k(s)
def
= ΔML

k(s ;xk) = ML

k(0 ;xk)−ML

k(s ;xk).

We may now define a criticality measure for minimizing φ as

(1.1) ΔL

max
(x,Δ) = ML

k(0 ;x)− min
‖s‖∞≤Δ

ML

k(s ;x),

which is the maximum possible decrease of the linear model for a given trust-region
radius Δ ≥ 0, primal variable x, and penalty parameter σ. Useful properties of ΔL

max
,

including the fact that it is a criticality measure, are given in the next lemma. See
Borwein and Lewis [3], Rockafellar [25], and Yuan [28] for more details.

Lemma 1.1. Consider the definition of ΔL
max

as given by (1.1). Then the following
properties hold:

(i) ΔL
max
(x,Δ) ≥ 0 for all x and all Δ ≥ 0;

(ii) ΔL
max
(x, ·) is a nondecreasing function;

(iii) ΔL
max(x, ·) is a concave function;

(iv) ΔL
max
(·,Δ) is continuous;

(v) For any fixed Δ > 0, ΔL
max(x,Δ) = 0 if and only if x is a stationary point for

problem (�1-σ).
Properties (ii) and (iii) of Lemma 1.1 allow us to relate the maximum decrease in

the linear model for an arbitrary radius to the maximum decrease in the linear model
for a constant radius. For convenience, we have chosen that constant to be one. The
following corollary makes this precise.
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Corollary 1.2. Let x be fixed. Then for all Δ ≥ 0

(1.2) ΔL

max(x,Δ) ≥ min(Δ, 1)ΔL

max(x, 1).

Proof. See Lemma 3.1 in [5].

2. Step computation. During each iterate of our proposed method, we com-
pute a trial step sk that is calculated from three steps: a predictor step sP

k, a Cauchy
step sCP

k , and an accelerator step sA

k . The predictor step is defined as the solution of
a strictly convex model for which the global minimum is unique and computable in
polynomial time. The Cauchy step is then computed as the global minimizer of a spe-
cialized one-dimensional optimization problem involving a “faithful” model of φ and
is also computable in polynomial time. It will be shown that the Cauchy step alone is
enough for proving convergence, but we allow the option for computing an additional
accelerator step. The accelerator step is the solution of a special QP subproblem that
utilizes a less restrictive approximationHk to ∇xxL(xk, yk) and is intended to improve
the efficiency of the method by encouraging fast convergence. Once the trial step sk
has been computed, standard trust-region strategies are used to promote convergence.
We begin by discussing the predictor step.

2.1. The predictor step sP

k. In our algorithm, the predictor step sP

k plays a
role analogous to the role played by the direction of steepest descent in unconstrained
trust-region methods. During each iterate of a traditional unconstrained trust-region
method, a quadratic model of the objective function is minimized in the direction
of steepest descent. The resulting step, known as the Cauchy step, gives a decrease
in the quadratic model that is sufficient for proving convergence (see Conn, Gould,
and Toint [9]). In our setting, a vector that is directly analogous to the direction of
steepest descent is the vector that minimizes the linearization of the �1-merit function
within a trust-region constraint. However, since we want to incorporate second-order
information, we define the predictor step to be the solution to

(2.1) minimize
s∈Rn

MB

k(s) subject to ‖s‖∞ ≤ ΔP

k,

where the convex model MB

k is defined by

MB

k(s)
def
= MB

k(s ;xk) = fk + gTk s+
1
2s

TBks+ σ‖[ck + Jks]
−‖1

for any symmetric positive definite matrix approximation Bk to the Hessian matrix
∇xxL(xk, yk) and ΔP

k > 0 is the predictor trust-region radius; since Bk is positive
definite, problem (2.1) is strictly convex, and the minimizer is unique. Given a step
s, we define the change in the convex model to be

ΔMB

k(s)
def
= ΔMB

k(s ;xk) = MB

k(0 ;xk)−MB

k(s ;xk).

Note that

(2.2) ΔMB

k(s
P

k) ≥ 0,

since MB

k(s
P

k) ≤MB

k(0) and that problem (2.1) is a nonsmooth minimization problem.
In fact, it is not differentiable at any point for which the constraint linearization is
zero. In practice, we solve the equivalent “elastic” problem [17] defined as

(2.3)
minimize
s∈Rn,v∈Rm

fk + gTk s+
1
2s

TBks+ σke
Tv

subject to ck + Jks+ v ≥ 0, v ≥ 0, ‖s‖∞ ≤ ΔP

k.
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Problem (2.3) is a smooth linearly constrained convex quadratic program that may
be solved using a number of software packages such as LOQO [26] and QPOPT [16], as
well as the QP solvers QPA, QPB, and QPC that are part of the GALAHAD [19] library.
In addition, if Bk is chosen to be diagonal, then the GALAHAD package LSQP may be
used, since problem (2.3) is then a separable convex quadratic program.

The following bound is [28, Lemma 2.2] transcribed into our notation.
Lemma 2.1. For a given xk and σ the following inequality holds:

(2.4) ΔMB

k(s
P

k) ≥ 1
2Δ

L

max(xk,Δ
P

k)min

(
1,

ΔL
max(xk,Δ

P

k)

‖Bk‖2(ΔP

k)
2

)
.

We note that the proof by Yuan requires the global minimum of the associated QP.
For a general QP this requirement is not practical, since finding the global minimum
of a nonconvex QP is NP-hard. This is likely the greatest drawback of any previous
method that utilized both exact second derivatives and the �1-penalty function. In
our situation, however, the matrix Bk is positive definite by construction, and the
global minimum may be found efficiently.

We may further bound ΔMB

k(s
P

k) by applying Corollary 1.2.
Corollary 2.2.

(2.5) ΔMB

k(s
P

k) ≥ 1
2Δ

L

max(xk, 1)min

(
1,ΔP

k,
ΔL

max
(xk, 1)

‖Bk‖2 ,
ΔL

max
(xk, 1)

‖Bk‖2(ΔP

k)
2

)
.

Proof. The proof follows directly from Corollary 1.2 and Lemma 2.1.
The previous corollary bounds the change in the convex model at the predictor

step in terms of the maximum change in the linear model within a unit trust-region.
In the next section we show how to compute a step for which the change in a faithful
model (see subsection 2.2) of φ is bounded below in terms of the maximum change in
the linear model within a unit trust-region; this computation is based on the predictor
step.

2.2. The Cauchy step sCP

k . In the beginning of section 2 we stated that the
Cauchy step induces global convergence of our proposed method. However, it is
also true that the predictor step may be used to drive convergence for a slightly
different method; this modified algorithm may crudely be described as follows. During
the computation of each iterate, the ratio of actual versus predicted decrease in the
merit function is computed, where the predicted decrease is given by the change in
the convex model MB

k(s) at sP

k. Based on this ratio, the trust-region radius and
iterate xk may be updated using standard trust-region techniques. Using this idea
and assuming standard conditions on the iterates generated by this procedure, one
may prove convergence to a first-order solution of problem (�1-σ). This may be
derived from Fletcher’s work [13] by allowing a positive definite approximation to
∇xxL(xk, yk). However, our intention is to stay as faithful to the problem functions
as possible. Therefore, in computing the ratio of actual versus predicted decrease in
the merit function, we use the decrease in the faithful model

MH

k (s)
def
= MH

k (s ;xk) = fk + gTk s+
1
2s

THks+ σ‖[ck + Jks]
−‖1,

instead of the strictly convex model MB

k(s). Unfortunately, since the predictor step is
computed using the approximate Hessian Bk, the point sP

k is not directly appropriate
as a means for ensuring convergence. In fact, it is possible that MH

k (s
P

k) > MH

k (0) so
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that the predictor step gives an increase in the faithful model. However, a reasonable
point is close-at-hand and is what we call the Cauchy step. The basic idea behind
the Cauchy step is to make improvement in the faithful model in the direction sP

k by
finding the global minimizer of MH

k (αs
P

k) for 0 ≤ α ≤ 1. We will see that the Cauchy
step allows us to prove convergence by using the change in the faithful model, defined
to be

ΔMH

k (s)
def
= ΔMH

k (s ;xk) = MH

k (0 ;xk)−MH

k (s ;xk),

as a prediction of the decrease in the merit function.
To be more precise, the Cauchy step is defined as sCP

k = αks
P

k, where αk is the
solution to

(2.6) minimize
0≤α≤1

MH

k (αs
P

k).

The function MH

k (αs
P

k) is a piecewise-continuous quadratic function of α for which the
exact global minimizer may be found efficiently. Before discussing the properties of
the Cauchy step, we give the following simple lemma.

Lemma 2.3. Let c ∈ R
m, J ∈ R

m×n, and s ∈ R
n. Then the following inequality

holds for all 0 ≤ α ≤ 1:

(2.7) ‖[c+ αJs]−‖1 ≤ α‖[c+ Js]−‖1 + (1− α)‖[c]−‖1.

Proof. From the convexity of ‖[·]−‖1 it follows that

‖[c+ αJs]−‖1 = ‖[α(c+ Js) + (1 − α)c]−‖1 ≤ α‖[c+ Js]−‖1 + (1 − α)‖[c]−‖1,

which is (2.7).
We now give a precise lower bound for the change in the faithful model obtained

from the Cauchy step.
Lemma 2.4. Let sP

k and sCP

k be defined as previously. Then

(2.8) ΔMH

k(s
CP

k ) ≥ 1
2ΔMB

k(s
P

k)min

(
1,

ΔMB

k(s
P

k)

n‖Bk −Hk‖2(ΔP

k)
2

)
.

Proof. For all 0 ≤ α ≤ 1, we have

ΔMH

k (s
CP

k ) ≥ ΔMH

k (αs
P

k)(2.9)

= σ
(‖[ck]−‖1 − ‖[ck + αJks

P

k]
−‖1

)− αgTk s
P

k −
α2

2
sP

k
T
Hks

P

k(2.10)

= σ
(‖[ck]−‖1 − ‖[ck + αJks

P

k]
−‖1

)
− αgTk s

P

k −
α2

2
sP

k
T
Bks

P

k +
α2

2
sP

k
T
(Bk −Hk)s

P

k.(2.11)

Equation (2.9) follows, since sCP

k minimizes MH

k (αs
P

k) for 0 ≤ α ≤ 1. Equations (2.10)
and (2.11) follow from the definition of MH

k and from simple algebra. Continuing to
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bound the change in the faithful model, we have

ΔMH

k (s
CP

k ) ≥ σ
(‖[ck]−‖1 − α‖[ck + Jks

P

k]
−‖1 − (1− α)‖[ck]−‖1

)
− αgTk s

P

k −
α

2
sP

k
T
Bks

P

k +
α2

2
sP

k
T
(Bk −Hk)s

P

k(2.12)

= ασ
(‖[ck]−‖1 − ‖[ck + Jks

P

k]
−‖1

)
− αgTk s

P

k −
α

2
sP

k
T
Bks

P

k +
α2

2
sP

k
T
(Bk −Hk)s

P

k(2.13)

= αΔMB

k(s
P

k) +
α2

2
sP

k
T
(Bk −Hk)s

P

k.(2.14)

Equation (2.12) follows from (2.11), Lemma 2.3, and the inequality α2 ≤ α, which
holds since 0 ≤ α ≤ 1. Finally, (2.13) and (2.14) follow from simplification of (2.12)
and from the definition of ΔMB

k(s
P

k).
The previous string of inequalities holds for all 0 ≤ α ≤ 1, so it must hold for

the value of α that maximizes the right-hand side. As a function of α, the right-hand
side may be written as q(α) = aα2 + bα, where

a = 1
2s

P

k
T
(Bk −Hk)s

P

k and b = ΔMB

k(s
P

k) ≥ 0.

There are three cases to consider.
Case 1. a ≥ 0. In this case the quadratic function q(α) is convex, and the

maximizer on the interval [0, 1] must occur at x = 1. Thus, the maximum of q on the
interval [0, 1] is q(1) and may be bounded by

q(1) = a+ b ≥ b ≥ 1
2b =

1
2ΔMB

k(s
P

k),

since b ≥ 0 and a ≥ 0.
Case 2. a < 0 and −b/2a ≤ 1. In this case the maximizer on the interval [0, 1]

must occur at α = −b/2a. Therefore, the maximum of q on the interval [0, 1] is given
by

q

(
− b

2a

)
= a

b2

4a2
+ b
−b
2a

= − b2

4a
.

Substituting for a and b, using the Cauchy–Schwarz inequality, and applying norm
inequalities shows

q

(
− b

2a

)
=

(
ΔMB

k(s
P

k)
)2

2|sP

k
T (Bk −Hk)sP

k|
≥

(
ΔMB

k(s
P

k)
)2

2‖Bk −Hk‖2‖sP

k‖22
≥

(
ΔMB

k(s
P

k)
)2

2n‖Bk −Hk‖2‖sP

k‖2∞
.

Finally, since ‖sP

k‖∞ ≤ ΔP

k, we have

q

(
− b

2a

)
≥

(
ΔMB

k(s
P

k)
)2

2n‖Bk −Hk‖2(ΔP

k)
2
.

Case 3. a < 0 and −b/2a > 1. In this case the maximizer of q on the interval
[0, 1] is given by α = 1. Therefore, the maximum of q on the interval [0, 1] is given by
q(1) and is bounded by

q(1) = a+ b > − 1
2b+ b = 1

2b =
1
2ΔMB

k(s
P

k),

since the inequality −b/2a > 1 implies a > −b/2.
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If we denote the maximizer of q(α) on the interval [0, 1] by α∗, then consideration
of all three cases shows that

(2.15) q(α∗) ≥ 1

2
ΔMB

k(s
P

k)min

(
1,

ΔMB

k(s
P

k)

n‖Bk −Hk‖2(ΔP

k)
2

)
.

Returning to (2.14), we have

ΔMH

k (s
CP

k ) ≥ q(α∗) ≥ 1
2ΔMB

k(s
P

k)min

(
1,

ΔMB

k(s
P

k)

n‖Bk −Hk‖2(ΔP

k)
2

)
,

which completes the proof.
Note that in the special case Bk = Hk, the term ΔMB

k(s
P

k)/
(
n‖Bk −Hk‖2(ΔP

k)
2
)

should be interpreted as infinity, and then Lemma 2.4 reduces to

(2.16) ΔMH

k (s
CP

k ) ≥ 1
2ΔMB

k(s
P

k),

which trivially holds, since Bk = Hk and sCP

k = sP

k.
We now arrive at the desired result for the Cauchy step; the change in the faith-

ful model obtained by the Cauchy step is bounded below in terms of the criticality
measure ΔL

max
.

Corollary 2.5. Let sP

k and sCP

k be defined as previously. Then

ΔMH

k(s
CP

k ) ≥ 1
4Δ

L

max
(xk, 1)min(Sk),

where

Sk =

{
1, ΔP

k,
ΔL

max
(xk, 1)

‖Bk‖2 ,
ΔL

max
(xk, 1)

‖Bk‖2(ΔP

k)
2
,

ΔL
max
(xk, 1)

2n‖Bk −Hk‖2 ,
ΔL

max
(xk, 1)

2n‖Bk −Hk‖2(ΔP

k)
2
,

(
ΔL

max(xk, 1)
)3

2n‖Bk −Hk‖2‖Bk‖22(ΔP

k)
2
,

(
ΔL

max(xk, 1)
)3

2n‖Bk −Hk‖2‖Bk‖22(ΔP

k)
6

}
.

Proof. The bound follows from Corollary 2.2 and Lemma 2.4.
Corollary 2.5 provides a bound that is sufficient for proving convergence of our

proposed algorithm, but we note that an approximate Cauchy point sACP

k satisfying
(2.17)
ΔMH

k (s
ACP

k ) ≥ ηACPΔMH

k (s
CP

k ) and ‖sACP

k ‖∞ ≤ ‖sP

k‖∞ for some 0 < ηACP < 1

is also sufficient. An approximate Cauchy point may be obtained, for example, by
backtracking from the predictor step sP

k to the Cauchy point sCP

k until (2.17) is satis-
fied. Since the theory for an approximate Cauchy point is identical to the theory for
the Cauchy point (modulo a constant factor in the appropriate estimates), we focus
primarily on the latter.

The derivation of the bound supplied by Corollary 2.5 relied on minimizing the
faithful model along the single direction sP

k. If the predictor step is a bad search
direction for the faithful model (most likely because Bk is, in some sense, a poor
approximate to Hk), then convergence is likely to be slow. In order to improve
efficiency we may need to make “better” use of the faithful model; the accelerator
step serves this purpose and more.
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2.3. The accelerator step sA

k and the full step sk. We begin by discussing
three primary motivations for an accelerator step sA

k ; we use the word “an” instead of
the word “the,” since we propose several reasonable alternatives. The first motivation
of the accelerator step is to improve the rate-of-convergence. The predictor step sP

k

uses a positive definite approximation Bk to the true Hessian ∇xxL(xk, yk), while
the Cauchy step sCP

k is computed as a minimization problem in the direction sP

k.
Therefore, the quality of both the predictor step and the Cauchy step is constrained
by how well Bk approximates ∇xxL(xk, yk) (possibly when restricted to the null space
of the Jacobian of the active constraints). The simplest and cheapest choice is Bk = I,
but this would likely result in a linear convergence rate. In general, if Bk is chosen
to more closely approximate ∇xxL(xk, yk), then the predictor step sP

k becomes more
costly to compute but would likely lead to faster convergence. Of course, as Bk is
required to be positive definite and since ∇xxL(xk, yk) is usually indefinite, this is
typically not even possible. To promote efficiency, therefore, we may compute an
accelerator step sA

k from various accelerator subproblems that are formed from either
the predictor step or the Cauchy step. Once the “quality” of the step sA

k has been
determined, we define the full step accordingly; sections 2.3.1, 2.3.2, and 2.3.3 make
this statement precise.

The previous paragraph may do the Cauchy step injustice; not only does the
Cauchy step guarantee convergence of the algorithm, but it may happen that the
Cauchy step is an excellent direction. In fact, if we are allowed the choice Bk =
∇xxL(xk, yk) and choose σ sufficiently large, then provided the trust-region radius ΔP

k

is inactive, the resulting Cauchy step sCP

k (= sP

k) is the classical SQP step for problem
(NP). This means that the Cauchy step may be the “ideal” step. As previously
stated, however, the choice Bk = ∇xxL(xk, yk) will generally not be permissible. We
summarize by saying that the quality of the Cauchy step is strongly dependent on
how well Bk “approximates” ∇xxL(xk, yk).

Unfortunately, even if the Cauchy step is an “excellent” direction, it may still
suffer from the Maratos effect [9, 22]. The Maratos effect occurs when the linear
approximation to the constraint function does not adequately capture the nonlinear
behavior of the constraints. As a result, although the unit step may make excellent
progress towards finding a solution of problem (NP), it is in fact rejected by the
merit function, and subsequently the trust-region radius is reduced; this inhibits the
natural convergence of Newton’s Method. Avoiding the Maratos effect is the second
motivation for the accelerator step.

The third motivation for the accelerator step is to improve the performance of
our method; the quadratic model used in computing the accelerator step may use
an indefinite approximation Hk to the Hessian of the Lagrangian and is, therefore,
considered a more faithful model of the merit function.

Since the Cauchy step is good enough to guarantee convergence, we require that
the accelerator step and the full step sk be defined so that

(2.18) ΔMH

k (sk) ≥ ηΔMH

k (s
CP

k )

for some 0 < η ≤ ηACP < 1. The method we choose for computing the accelerator
step is irrelevant from a global convergence perspective, since we may set sk = sCP

k

regardless of the merit of the kth accelerator step (this includes the case when an
accelerator step is not computed) and thus satisfy (2.18) in a trivial way. However,
from a numerical efficiency perspective we have two goals in mind. First, we want
to calculate accelerator steps that lead to fast quadratic convergence locally. Second,
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we do not want to waste the computation of the accelerator step globally by having
to resort to satisfying (2.18) in a trivial way; i.e., we want to satisfy (2.18) in a non-
trivial way. How to obtain both these goals is not obvious, since if we simply replicate
traditional SQP subproblems, we quickly find that nonconvexity may cause trial steps
to be ascent directions for MH

k (s) and thus wasteful. In the next three subsections we
propose different subproblems for computing an accelerator step, two of which satisfy
all of our required criteria. The fact that they lead to fast local convergence, however,
is the topic of our companion paper [20].

2.3.1. An explicitly inequality-constrained accelerator subproblem. In
this section we discuss an accelerator step that is the solution of an explicitly
inequality-constrained QP subproblem (EIQP). The terminology “explicitly inequality-
constrained” is used to emphasize that the subproblem has a subset of the linearized
constraints as explicit constraints and that all these explicit constraints are imposed
as inequalities. The subproblem is given by

(EIQP) minimize
s∈Rn

MA

k (s)

subject to [ck + Jk(s
CP

k + s)]Sk
≥ 0,

(gk +Hks
CP

k + σJT
k wk)

T s ≤ 0,
‖s‖∞ ≤ ΔA

k ,

where the accelerator model MA

k is given by

MA

k (s)
def
= MA

k (s ;xk, s
CP

k ) = f̄k+(gk+Hks
CP

k )T s+ 1
2s

THks+σ‖[ck+Jk(s
CP

k +s)]−Vk
‖1,

sCP

k is the Cauchy step, f̄k = fk+gTk s
CP

k + 1
2s

CP

k
THks

CP

k , wk ∈ R
m is defined component-

wise as

(2.19) [wk]i =

{
−1 if i ∈ Vk ,

0 if i ∈ Sk ,

where Vk def
= V(xk ; s

CP

k ) = {i : [ck + Jks
CP

k ]i < 0} and Sk def
= S(xk ; s

CP

k ) = {i :
[ck+Jks

CP

k ]i ≥ 0}, and ΔA

k > 0 is the accelerator trust-region radius. The sets Vk and
Sk contain the indices of the linearized constraints that are violated and satisfied at
the Cauchy step, respectively; given a generic vector v or matrix V , the notations [v]Vk

and [V ]Vk
will denote the rows of v and V , respectively, that correspond to the indices

in Vk. Analogous notation applies to the indexing set Sk. The artificial constraint
(gk + Hks

CP

k + σJT
k wk)

T s ≤ 0 (henceforth referred to as the “descent-constraint”)
guarantees that the directional derivative of MA

k (s) in the direction sA

k is nonpositive.
We will soon see that this condition ensures that a useful accelerator-Cauchy step
sCA

k may easily be defined from any local solution to problem (EIQP); without the
descent-constraint, it is clear that a local minimizer may be an ascent direction for
which MH

k increases. If problem (EIQP) was smooth, then the descent-constraint
would guarantee that any solution would not cause the model MA

k (s) to increase.
However, since (EIQP) is not smooth, it is possible that the model may still increase
at a local solution even though it must initially decrease in that direction! Consider
problem (EIQP) with data σ = 2, sCP

k = 0, ΔA

k = 2,

ck =

⎛
⎝ −4−11
−11

⎞
⎠ , Jk =

⎛
⎝16 0

6 10
6 −10

⎞
⎠ , gk =

(
34
4

)
, and Hk =

( −13 −24/11
−24/11 1

)
.
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It can be verified that sA

k = (11/6, 0) is a local solution and that MA

k (s
A

k ) > MA

k (0),
and thus the change in the accelerator model

ΔMA

k (s)
def
= ΔMA

k (s ;xk, s
CP

k ) = MA

k (0 ;xk, s
CP

k )−MA

k (s ;xk, s
CP

k )

is negative; the model has increased. However, if we define α0 = min(αB, 1) > 0,
where αB is defined as

(2.20) αB = min

{{−[ck + Jks
CP

k ]i
[JksA

k ]i
: i ∈ Vk and [Jks

A

k ]i > 0

}
∪ {∞}

}
,

i.e., αB is the distance in the direction sA

k to the first point of nondifferentiability, then
it follows from Lemma 2.6 that the accelerator model does not increase for the step
sCA

k = αss
A

k , where αs is the minimizer of MA

k (αs
A

k ) for 0 ≤ α ≤ α0 (see Figure 1).
Lemma 2.6. Let sA

k be any local solution for problem (EIQP), and define α0 =
min(αB, 1) > 0, where αB is defined by (2.20). It follows that the vector sCA

k = αss
A

k,
where αs is the minimizer of MA

k(αs
A

k) for 0 ≤ α ≤ α0, satisfies

(2.21)

ΔMA

k(s
CA

k ) ≥ − 1
2 (gk+Hks

CP

k +σJT
kwk)

TsA

k·min

(
αs,− (gk +Hks

CP

k + σJT
kwk)

TsA

k

n‖Hk‖2(ΔA

k)
2

)
≥ 0.

Moreover;

(2.22) if sA

k
T
Hks

A

k > 0, then (gk +Hks
CP

k + σJT
k wk)

T sA

k < 0.

Proof. We first prove (2.22). Suppose that sA

k
THks

A

k > 0 and that (gk +Hks
CP

k +
σJT

k wk)
T sA

k ≥ 0. These conditions and the fact that sA

k is a local solution to problem

(EIQP) imply that sA

k = 0. This contradicts sA

k
THks

A

k > 0, and therefore (2.22) holds.

To establish (2.21) we consider the quadratic function q(α)
def
= MA

k (αs
A

k ) = aα2 +
bα+ c defined on the interval [0, α0], where

(2.23)

a = 1
2s

A

k
T
Hks

A

k , b = (gk+Hks
CP

k +σJT
k wk)

T sA

k ≤ 0, and c = f̄+σ(ck+Jks
CP

k )Twk.

We consider three cases.
Case 1. a > 0 and −b/2a > α0. In this case we must have αs = α0. Using this

fact, the definitions of ΔMA

k (s) and of q(α), and the inequalities −b/2a > α0 = αs

and a > 0, we have

(2.24)

ΔMA

k (αss
A

k ) = q(0)−q(αs) = −aα2
s−bαs ≥ −1

2
bαs = −αs

2
(gk+Hks

CP

k +σJT
k wk)

T sA

k .

Case 2. a > 0 and −b/2a ≤ α0. In this case we must have αs = −b/2a. Using
this fact, the definitions of ΔMA

k (s) and of q(α), norm inequalities, and the inequality
‖sA

k‖∞ ≤ ΔA

k , we have

ΔMA

k (αss
A

k ) = q(0)− q(αs) = −aα2
s − bαs =

b2

4a

=

(
(gk +Hks

CP

k + σJT
k wk)

T sA

k

)2
2sA

k
THksA

k

≥
(
(gk +Hks

CP

k + σJT
k wk)

T sA

k

)2
2n‖Hk‖2(ΔA

k )
2

.(2.25)
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(a) Contour graph of the function MA
k (s).

(b) Graph of MA
k (αs

A
k ) for 0 ≤ α ≤ 12/11.

Fig. 1. (a) Contour graph of MA
k(s) with local solution sAk = (11/6, 0). The vector sCA

k = (1/4, 0)
is a local minimizer when constrained to the direction sAk . (b) Graph of MA

k(αs
A
k) for 0 ≤ α ≤ 12/11.

Notice that αs = αB = 6/44 and that MA
k(s

A
k) > MA

k(0) > MA
k(αssAk) = MA

k(s
CA
k ).

Case 3. a ≤ 0. In this case we must have αs = α0. Using this fact, the definitions
of ΔMA

k (s) and of q(α), and the inequalities a ≤ 0 and b ≤ 0, we have

ΔMA

k (αss
A

k) = q(0)− q(αs) = −aα2
s − bαs ≥ max(−aα2

s,−bαs)

≥ −bαs ≥ − 1
2bαs = −αs

2
(gk +Hks

CP

k + σJT
k wk)

T sA

k .(2.26)

The desired bound on ΔMA

k (αss
A

k ) follows from (2.24), (2.25), and (2.26).
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c1(xk) + ∇c1(xk)Ts = 0

c2(xk) + ∇c2(xk)Ts = 0

�sCP
k

�sP
k

�
sA
k

�
sCA
k

�
sk

0

F

Fig. 2. The relevant steps for subproblem (EIQP) with linearized constraints c1(xk) +
∇c1(xk)

Ts = 0 and c2(xk) + ∇c2(xk)
Ts = 0 and feasible region F. We have illustrated the case

ΔMA
k(s

A
k) < 0 so that the full step sk is defined from the accelerator-Cauchy step as sk = sCP

k + sCA
k .

If the condition ΔMA
k(s

A
k) ≥ 0 had been satisfied, then the full step would have been defined as

sk = sCP
k + sAk.

This result suggests that we define the full step as (see Figure 2)

(2.27) sk =

{
sCP

k + sA

k if ΔMA

k (s
A

k ) ≥ 0,

sCP

k + sCA

k otherwise.

The next result shows that this definition guarantees that condition (2.18) is
satisfied in a nontrivial way.

Lemma 2.7. If the accelerator step and full step are defined by (2.27), then they
satisfy

ΔMH

k(sk) ≥ ΔMH

k(s
CP

k ).

Proof. Using the definitions of MH

k , ΔMH

k , M
A

k , and ΔMA

k , it follows that

ΔMH

k (sk) = MH

k (0)−MH

k (s
CP

k ) +MH

k (s
CP

k )−MH

k (sk) = ΔMH

k (s
CP

k ) +ΔMA

k (sk − sCP

k ).

We may then conclude that

ΔMH

k (sk) =

{
ΔMH

k (s
CP

k ) +ΔMA

k (s
A

k ) ≥ ΔMH

k (s
CP

k ) if ΔMA

k (s
A

k ) ≥ 0,

ΔMH

k (s
CP

k ) +ΔMA

k (s
CA

k ) ≥ ΔMH

k (s
CP

k ) otherwise,

by using Lemma 2.6 and (2.27).
This result shows that if subproblem (EIQP) is used and the full step is defined

by (2.27), then the full step is always at least as good as the Cauchy step, which is
itself good enough to guarantee convergence. We stress that Lemma 2.7 is true as
a direct result of the descent-constraint and is generally not true if the full step is
defined from the traditional SQP subproblem. This property is, to our knowledge,
the only result of its kind.

2.3.2. An equality-constrained accelerator subproblem. This particular
accelerator subproblem includes a subset of the linearized constraints as equality con-
straints. The choice of which to include is based on a prediction of those constraints
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c1(xk) + ∇c1(xk)Ts = 0

c2(xk) + ∇c2(xk)Ts = 0
F

0

�sCP
k

�
sP
k

sA
k

�sk �

Fig. 3. The relevant steps for subproblem (EQP) with linearized constraints c1(xk) +
∇c1(xk)

Ts = 0 and c2(xk) + ∇c2(xk)
Ts = 0 and feasible region F. The illustration depicts the

case ΔMH
k(s

P
k + sAk) ≥ ηΔMH

k(s
CP
k ) so that the full step is defined as sk = sPk + sAk . By construction,

the accelerator step sAk is contained in the null space of the constraints that are not strictly feasible
at the predictor step sPk, i.e., the constraints whose indices are in the set A(sPk) = {1}. Compare
this with Figure 2, which shows that if the accelerator step sAk is computed from subproblem (EIQP),
then it is not necessarily contained in the null space of the constraints that are not strictly feasible
at the Cauchy step sCP

k .

that will be active at a solution to problem (NP). Our prediction is based on those
constraints whose linearization is not strictly satisfied by the predictor step sP

k. If we
define the set A(sP

k) = {i : [ck + Jks
P

k]i ≤ 0}, then the subproblem takes the form

(EQP) minimize
s∈Rn

f̄k + (gk +Hks
P

k)
T s+ 1

2s
THks

subject to [Jks]A(sPk ) = 0, ‖s‖2 ≤ ΔA

k ,

where f̄k = fk + gTk s
P

k + 1
2s

P

k
THks

P

k. Note that we have used the two-norm for the
trust-region constraint and that this does not change any of the theoretical results,
since ‖s‖∞ ≤ ‖s‖2 ≤ ΔA

k for all feasible vectors s. If a priori we knew the optimal
active set, then we could compute a solution to problem (NP) by solving a sequence
of equality constrained QP subproblems; this is equivalent to solving a sequence of
subproblems of the form given by (EQP) if A(sP

k) agrees with the optimal active set.
The fact that A(sP

k) does eventually agree with the optimal active set (under certain
assumptions) may be deduced from Robinson [24, Theorem 3.1]. His result implies
that if x∗ is a solution to problem (NP) that satisfies the strong second-order sufficient
conditions for optimality, then there exists a neighborhood of x∗ such that if xk is
in this neighborhood, then the predictor step sP

k will correctly identify the optimal
active set, provided the trust-region constraint is inactive.

Let sA

k denote the solution to subproblem (EQP). In an attempt to satisfy condi-
tion (2.18) in a nontrivial way, we define the full step sk as (see Figure 3)

(2.28) sk =

{
sP

k + sA

k if ΔMH

k (s
P

k + sA

k ) ≥ ηΔMH

k (s
CP

k ),

sCP

k otherwise.

We note that this update strategy guarantees that the full step sk satisfies condi-
tion (2.18), but perhaps in a trivial way.

Generally speaking, computing a solution to subproblem (EQP) is less expensive
than computing a solution to subproblem (EIQP); this is certainly an advantage.
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c1(xk) + ∇c1(xk)Ts = 0

c2(xk) + ∇c2(xk)Ts = 0
�

sCP
k

�
sP
k

sA
k

�

sACP
k

sk �

F

0

Fig. 4. The relevant steps for subproblem (EQP-ACP) with linearized constraints c1(xk) +
∇c1(xk)

Ts = 0 and c2(xk) + ∇c2(xk)
Ts = 0 and feasible region F. All points that lie along the

direction sPk and between the two dashed lines are acceptable approximate Cauchy points as defined
by (2.17). By construction, the accelerator step sAk is contained in the null space of the constraints
that are not strictly feasible at sACP

k , i.e., the constraints whose indices are in the set A(sACP
k ) = {1}.

Compare this with Figure 3.

However, problem (EQP) has at least two disadvantages. First, its success depends
on correctly identifying the optimal active set, which may not always occur. If fact,
if any of the strong second-order sufficient conditions do not hold at a minimizer,
then the predictor step is not guaranteed to correctly identify the optimal active set.
Second, the strategy for defining sk may resort to satisfying condition (2.18) in a
trivial way. When this occurs, the cost in computing sA

k has essentially been wasted.
To avoid this, we consider the alternative subproblem

(EQP-ACP) minimize
s∈Rn

f̄ + (gk +Hks
ACP

k )T s+ 1
2s

THks

subject to [Jks]A(sACP
k ) = 0, ‖s‖2 ≤ ΔA

k ,

where sACP

k is an approximate Cauchy point as given by (2.17), 1 > ηACP ≥ η > 0,
and A(sACP

k ) = {i : [ck + Jks
ACP

k ]i ≤ 0} (see Figure 4). It follows that if we define

(2.29) sk = sACP

k + αsA

k ,

where 0 < α ≤ 1 ensures that the step αsA

k is feasible for linearized constraints i such
that i /∈ A(sACP

k ), then

(2.30) ΔMH

k (sk) ≥ ΔMH

k (s
ACP

k ) ≥ ηACPΔMH

k (s
CP

k ) ≥ ηΔMH

k (s
CP

k ).

The first inequality follows, sinceΔMH

k (sk) = ΔMH

k (s
ACP

k )+ΔMA

k (s
A

k ) andΔMA

k (s
A

k ) ≥
0; the latter is ensured, since the global solution sA

k of problem (EQP-ACP) may be
found. We note, however, that an appropriate approximate solution to problem (EQP)
may be found by using GLTR [18] with a constraint preconditioner [9, section 7.5.4];
GLTR guarantees model decrease during every step of its iterative process. The second
and third inequalities follow from (2.17) and the inequality η ≤ ηACP that holds by
construction. Therefore, sk is guaranteed to satisfy condition (2.18) in a nontrivial
way, and computation is never wasted. Note that sACP

k = sCP

k satisfies (2.17) trivially.
However, since we show in [20] that the predictor step ultimately correctly identifies



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL CONVERGENCE 2039

the set of constraints active at a minimizer of φ, it may be more efficient to define an
approximate Cauchy point by performing a backtracking search from the predictor
step; this is allowed, provided we satisfy (2.17). We conclude this section by mention-
ing that the GALAHAD library contains the software package EQP, which may be used
to solve subproblems (EQP) and (EQP-ACP).

2.3.3. An implicitly inequality-constrained accelerator subproblem. In
this section we briefly discuss a third possibility for computing an accelerator step.
Motivated by traditional SQP correction steps [9, section 15.3.2.3] which are intended
to avoid the Maratos effect [22], we would like to formulate accelerator subproblems
with shifted variants of the linearized constraints. However, this is not completely
reasonable, since the shifted constraints may lead to infeasible accelerator subprob-
lems. An alternative is to try to satisfy the shifted linearized constraints implicitly by
moving them into the objective function via an �1-penalty term. This assures us that
the accelerator subproblem will be feasible, but the resultant accelerator step may
not decrease the faithful model MH

k . Therefore, in this case we define the full step as

(2.31) sk =

{
sCP

k + sA

k if ΔMH

k (s
CP

k + sA

k ) ≥ ΔMH

k (s
CP

k ),

sCP

k otherwise.

Note that use of this strategy may result in some iterations satisfying (2.18) in a
trivial way. However, since these subproblems would be intended to avoid the Maratos
effect, they are likely to be used asymptotically, and this is precisely the situation for
which we may expect them to give sufficient decrease. For further details see [21,
section 2.3.3].

3. The algorithm. In this section we describe Algorithm 3.1—an SQP algo-
rithm for computing a first-order critical point for problem (�1-σ). First, the user
supplies an initial estimate (x0, y0) of a solution and then initial trust-region radii
ΔP

0 and ΔA
0 ,“success” parameters 0 < ηS ≤ ηVS < 1, a maximum allowed predictor

trust-region radius Δu, expansion and contraction factors 0 < ηc < 1 < ηe, sufficient
model decrease and approximate Cauchy point tolerances 0 < η ≤ ηACP < 1, and
accelerator trust-region radius factor τf are defined. With parameters set, the main
“do-while” loop begins. First, the problem functions are evaluated at the current
point (xk, yk). Next, a symmetric positive definite matrix Bk is defined, and the
predictor step sP

k is computed as a solution to problem (2.1). Simple choices for Bk

would be the identity matrix or perhaps a scaled diagonal matrix that attempts to
model the “essential properties” of the matrix ∇xxL(xk, yk). However, computing Bk

via a limited-memory quasi-Newton update is an attractive option. We leave further
discussion of the matrix Bk to a separate paper. Next, we solve problem (2.6) for
the Cauchy step sCP

k , calculate the decrease in the model MH

k as given by ΔMH

k (s
CP

k ),
and compute an accelerator step if we believe that it will be advantageous. The step
computation is completed by defining a full step sk that satisfies condition (2.18).
This may be done in three ways. First, the accelerator step may be skipped and then
we simply define sk = sCP

k ; this satisfies condition (2.18) in a trivial way. Second, we
may solve either of the subproblems discussed in sections 2.3.1 or 2.3.2 and then de-
fine sk according to (2.27) or (2.28) and (2.29), respectively. Third, we may compute
an accelerator step as briefly described in section 2.3.3 and then define sk according
to (2.31). In all cases we are guaranteed that sk satisfies condition (2.18). Next, we
compute φ(xk + sk) and ΔMH

k (sk) and then calculate the ratio rk of actual versus
predicted decrease in the merit function.
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Our strategy for updating the predictor trust-region radius and for accepting or
rejecting candidate steps is identical to that used by Fletcher [13] and is determined
by the ratio rk. More precisely, if the ratio rk is larger than ηVS , then we believe
that the model is a very accurate representation of the true merit function within the
current trust-region; therefore, we increase the predictor trust-region radius with the
belief that the current trust-region radius may be overly restrictive. If the ratio is
greater than ηS , then we believe the model is sufficiently accurate, and we keep the
predictor trust-region radius fixed. Otherwise, the ratio indicates that there is poor
agreement between the model MH

k and the merit function, and, therefore, we decrease
the predictor trust-region radius, with the hope that the model will accurately ap-
proximate the merit function over the smaller trust-region. As for step acceptance or
rejection, we accept any iterate for which rk is positive, since this indicates that the
merit function has decreased. Next, the dual vector yk+1 is updated, but for proving
global convergence the particular choice is not important. To emphasize this point, we
do not specify any particular update in Algorithm 3.1. However, a reasonable strat-
egy would be to use the multiplier vector from the solution of the smooth predictor
subproblem (2.3). The specific update to yk becomes essential when considering the
rate-of-convergence and then the most obvious choice becomes the multiplier vector
from whichever accelerator subproblem is used. In fact, we show in a companion pa-
per [20] that updating yk with the multipliers from various accelerator subproblems
in section 2.3 ensures quadratic local convergence, under certain assumptions.

Finally, we have the additional responsibility of updating the accelerator trust-
region radius. In Algorithm 3.1 we set the accelerator trust-region radius to a constant
multiple of the predictor trust-region radius, although the condition ΔA

k+1 ≤ τf ·ΔP

k+1

for some constant τf is also sufficient. Although this update is simple and may be
viewed as “obvious,” we believe that it deserves extra discussion. If the predictor trust-
region radius is not converging to zero on any subsequence, then the algorithm must
be making good progress in reducing the merit function. However, a delicate situation
arises when the trust-region radius does converge to zero on some subsequence. Since
the predictor step must also be converging to zero, it seems natural to require that
the full step sk also converge to zero. Therefore it seems intuitive to require that if
{xkj}j≥0 is any subsequence such that limj→∞ ‖sP

kj‖∞ = 0, then the sequence

(3.1) {ΔA

k j/‖sP

kj‖∞}j≥0 remains bounded.

A simple way to ensure this condition is by defining the accelerator trust-region radius
as ΔA

k+1 ← τf · ‖sP

k‖∞; i.e., set the accelerator trust-region radius to be a constant
multiple of the size of the predictor step. This condition is sufficient for proving
convergence, but we prefer the alternate update ΔA

k+1 ← τf · ΔP

k+1; i.e., set the
accelerator trust-region radius to be a constant multiple of the size of predictor radius.
Corollary 4.2 shows that, in fact, they are equivalent asymptotically, but the update
ΔA

k+1 ← τf ·ΔP

k+1 allows for a larger value of ΔA

k globally and has been observed to
perform better during initial testing.

Algorithm 3.1 Minimizing the �1-penalty function.
Input: (x0, y0)
Set parameters 0 < ηS ≤ ηVS < 1, Δu > 0, 0 < η ≤ ηACP < 1, and τf > 0.

Initialize predictor radius ΔP
0 and then set accelerator radius ΔA

0 ← τfΔ
P
0 .

Set expansion and contraction factors 0 < ηc < 1 < ηe.
k ← 0.
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do
Evaluate fk, gk, ck, Jk, and then compute φk.
Define Bk to be a positive definite symmetric approximation to ∇xxL(xk, yk).
Solve problem (2.1) for sP

k.

Define Hk to be a symmetric approximation to ∇xxL(xk, yk).
Solve problem (2.6) for sCP

k and compute ΔMH

k (s
CP

k ).

Compute an accelerator step sA

k (optional) as described in section 2.

if an accelerator step from section 2.3.1 is computed, then
define sk by (2.27);

else if an accelerator step is computed from problem (EQP) of section 2.3.2, then
define sk by (2.28);

else if an accelerator step is computed from problem (EQP-ACP) of section 2.3.2, then
define sk by (2.29);

else if an accelerator step from section 2.3.3 is computed, then
define sk by (2.31);

else
set sk = sCP

k .

end if
Evaluate φ(xk + sk) and ΔMH

k (sk).

Compute rk =
(
φk − φ(xk + sk)

)
/ΔMH

k (sk).

if rk ≥ ηVS , then [very successful]
ΔP

k+1 ← min( ηe ·ΔP

k, Δu ) [increase predictor radius]

else if rk ≥ ηS , then [successful]
ΔP

k+1 ← ΔP

k [keep predictor radius]

else [unsuccessful]
ΔP

k+1 ← ηc ·ΔP

k [decrease predictor radius]

end
if rk > 0, then [accept step]

xk+1 ← xk + sk
yk+1 ← any reasonably chosen estimate

else [reject step]
xk+1 ← xk

yk+1 ← yk
end
ΔA

k+1 ← τf ·ΔP

k+1 [update accelerator radius]

k ← k + 1
end do

4. Convergence. This section shows that Algorithm 3.1 is globally convergent.
Our main result is that under certain assumptions, there exists a subsequence of
the iterates generated by Algorithm 3.1 that converges to a first-order solution of
problem (�1-σ). The proof requires two preliminary results as well as two estimates.
First, since f(x) and c(x) are continuously differentiable by assumption, there exists
a positive constant M such that

(4.1)

∥∥∥∥
(

g(x)T

J(x)

)∥∥∥∥
∞
≤M for all x ∈ B,
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where B is a closed, bounded, convex subset of Rn. Second, since the function h(f, c) =
f + σ‖[c]−‖1 is convex, there exists a positive constant L such that

(4.2) |h(f1, c1)− h(f2, c2)| ≤ L

∥∥∥∥
(
f1 − f2
c1 − c2

)∥∥∥∥
∞

for all (f1, c1) and (f2, c2) ∈
(
f(B), c(B)) [25, Theorem 10.4]. Using these bounds we

may now state the following lemma, which provides a lower bound on the size of the
predictor step. This is essentially [28, Lemma 3.2], except for the use of the infinity
norm.

Lemma 4.1. Let xk ∈ B so that (4.1) and (4.2) hold. Then, if ‖sP

k‖∞ < ΔP

k, then

(4.3) ‖sP

k‖∞ ≥
1

2
ΔL

max(xk, 1)min

(
1

LM
,

1

n(1 + Δu)‖Bk‖2

)
.

Corollary 4.2. Suppose that {xk}k≥0 ⊂ B so that (4.1) and (4.2) hold and
that K is a subsequence of the integers such that the following hold:

(i) There exists a number δ such that ΔL
max(xk, 1) ≥ δ > 0 for all k ∈ K;

(ii) There exists a positive constant bB such that ‖Bk‖2 ≤ bB for all k ∈ K;
(iii) limk∈K ΔP

k = 0.
Then

(4.4) ‖sP

k‖∞ = ΔP

k for all k ∈ K sufficiently large.

Proof. If (4.3) holds, then (i) and (ii) of Corollary 4.2 imply that ‖sP

k‖∞ is strictly
bounded away from zero for all k ∈ K. However, this contradicts assumption (iii)
of Corollary 4.2 for k ∈ K sufficiently large, since ‖sP

k‖∞ ≤ ΔP

k. Therefore, (4.3)
must not be true, and Lemma 4.1 implies that ‖sP

k‖∞ = ΔP

k for all k ∈ K sufficiently
large.

We may now state our main result. The organization of the proof is based on
Fletcher [13, Theorem 14.5.1], and the proof of Case 1 of Theorem 4.3 is nearly
identical.

Theorem 4.3. Let f and c be twice continuously differentiable functions, and let
{xk}, {Hk}, {Bk}, {ΔP

k}, and {ΔA

k} be sequences generated by Algorithm 3.1. Assume
that the following conditions hold:

1. {xk}k≥0 ⊂ B ⊂ R
n, where B is a closed, bounded, convex set; and

2. There exists positive constants bB and bH such that ‖Bk‖2 ≤ bB and ‖Hk‖2 ≤
bH for all k ≥ 0.

Then, either xK is a first-order critical point for problem (�1-σ) for some K ≥ 0,
or there exists a subsequence of {xk} that converges to a first-order solution of prob-
lem (�1-σ).

Proof. If xK is a first-order point for problem (�1-σ) for some K ≥ 0, then we are
done. Therefore, we assume that xk is not a first-order solution to problem (�1-σ) for
all k. We consider two cases.

Case 1. There exists a subsequence of {ΔP

k} that converges to zero. Examination
of the algorithm shows that this implies the existence of a subsequence S of the
integers such that

lim
k∈S

xk = x∗,(4.5)

lim
k∈S

ΔP

k = 0,(4.6)

lim
k∈S
‖sP

k‖∞ = 0, and(4.7)

rk < ηS for all k ∈ S.(4.8)
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For a proof by contradiction, we suppose that x∗ is not a first-order critical point.
This implies that there exists a direction s and a scalar ρ > 0 such that ‖s‖∞ = 1
and

(4.9) max
y∈∂ ‖[c∗]−‖1

sT (g∗ + σJT∗ y) = −ρ,

where ∂ ‖[c∗]−‖1 is the subdifferential of ‖[·]−‖1 at the point c∗ (see [13, section 14.3]
for more details). A Taylor expansion of f at xk in a general direction v gives

(4.10) f(xk + εv) = fk + εgTk v + o(ε) = fk + εgTk v +
ε2

2
vTHkv + o(ε),

since {Hk} is bounded by assumption, while a Taylor expansion of c at xk gives

(4.11) c(xk + εv) = ck + εJkv + o(ε).

Combining these two equations gives

φ(xk + εv) = fk + εgTk v +
ε2

2
vTHkv + o(ε) + σ‖[ck + εJkv + o(ε)]−‖1

= fk + εgTk v +
ε2

2
vTHkv + σ‖[ck + εJkv]

−‖1 + o(ε)

= MH

k (εv) + o(ε),

(4.12)

where the first equality follows from the definition of φ and the Taylor expansions,
the second equality follows from the boundedness of ∂ ‖[·]−‖1, and the last equality
follows from the definition of MH

k (εv). The same argument using Bk in place of Hk

gives the estimate

(4.13) φ(xk + εv) = MB

k(εv) + o(ε).

Choosing v = sk/‖sk‖∞ and ε = ‖sk‖∞ in (4.12) and v = s and ε = εk (we have not
yet defined εk) in (4.13) yields

φ(xk + sk) = MH

k (sk) + o(‖sk‖∞) and(4.14)

φ(xk + εks) = MB

k(εks) + o(εk).(4.15)

Equation (4.14) then implies the equation

(4.16) rk =
φk − φ(xk + sk)

ΔMH

k (sk)
=

ΔMH

k (sk) + o(‖sk‖∞)

ΔMH

k (sk)
= 1 +

o(‖sk‖∞)

ΔMH

k (sk)
.

We now proceed to bound ΔMH

k (sk). For all k ∈ S we have

ΔMH

k (sk) ≥ ηΔMH

k (s
CP

k )(4.17)

≥ ηΔMH

k (s
P

k)(4.18)

= η
(
MH

k (0)−MH

k (s
P

k)
)

(4.19)

= η
(
MB

k(0)−MB

k(s
P

k)− 1
2s

P

k
T
(Hk −Bk)s

P

k

)
(4.20)

= ηΔMB

k(s
P

k)−
η

2
sP

k
T
(Hk −Bk)s

P

k(4.21)

= ηΔMB

k(s
P

k) + o(‖sP

k‖∞).(4.22)
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Inequalities (4.17) and (4.18) follow from assumption (2.18) and since the Cauchy
step maximizes ΔMH

k (s) in the direction sP

k. Equations (4.19)–(4.21) follow from the
definitions of ΔMH

k and ΔMB

k and by introducing Bk. Finally, (4.22) follows, since
{Bk} and {Hk} are bounded by assumption.

We now define the scalar-valued sequence {εk}k≥0 such that εk = ‖sP

k‖∞. It
follows that ‖εks‖∞ = ‖sP

k‖∞, and, therefore, the vector εks is feasible for the kth
predictor subproblem. It follows that for all k ∈ S sufficiently large we have

ΔMH

k (sk) ≥ ηΔMB

k(εks) + o(‖sP

k‖∞)(4.23)

= η
(
φk − φ(xk + εks)

)
+ o(‖sP

k‖∞)(4.24)

≥ ηεk
(
ρ+ o(1)

)
+ o(‖sP

k‖∞)(4.25)

= ηρεk + o(εk) + o(‖sP

k‖∞)(4.26)

= ηρ‖sP

k‖∞ + o(‖sP

k‖∞),(4.27)

where we have used the convention ζ(εk) = o(1) to mean that ζ(εk) → 0 as εk → 0.
Inequality (4.23) follows from (4.22) and since sP

k is a global minimizer for the kth
predictor subproblem. Equation (4.24) follows from (4.15), while inequality (4.25)
follows from [13, Corollary to Lemma 14.5.1]. Finally, (4.26) and (4.27) follow from
algebra and definition of εk.

Equation (4.27) implies the existence of a positive sequence {zk} such that for
k ∈ S sufficiently large

∣∣∣∣o(‖sk‖∞)

ΔMH

k (sk)

∣∣∣∣ ≤
∣∣∣∣ o(‖sk‖∞)

ηρ‖sP

k‖∞ + o(‖sP

k‖∞)

∣∣∣∣(4.28)

≤ zk‖sk‖∞
1
2ηρ‖sP

k‖∞
(4.29)

≤ 2zk(‖sP

k‖∞ + ‖sA

k‖∞)

ηρ‖sP

k‖∞
(4.30)

=
2zk
ηρ

(
1 +
‖sA

k‖∞
‖sP

k‖∞

)
(4.31)

and where {zk}S is a subsequence that converges to zero as k →∞. Inequality (4.28)
follows from inequality (4.27), while inequality (4.29) follows from the definition of
“little-oh.” Inequality (4.30) follows from the triangle-inequality, the updates (2.27),
(2.28), (2.29), and (2.31), and the construction of the steps sCP

k , sACP

k , and sCA

k . Finally,
inequality (4.31) follows from simplification.

We now show that the assumptions in Corollary 4.2 are satisfied. Since x∗ is
not first-order optimal by assumption, it follows from part (v) of Lemma 1.1 that
ΔL

max
(x∗, 1) = 0. From part (iv) of Lemma 1.1 it follows that ΔL

max
(xk, 1) is strictly

bounded away from zero for k ∈ S sufficiently large; this is assumption (i) of Corol-
lary 4.2. Assumptions (ii) and (iii) of Corollary 4.2 follow directly from the assump-
tions in this theorem and the case we are considering.

Equation (4.31), Corollary 4.2, and the accelerator trust-region radius update
used in Algorithm 3.1 imply

(4.32)

∣∣∣∣o(‖sk‖∞)

ΔMH

k (sk)

∣∣∣∣ ≤ 2zk
ηρ

(
1 +
‖sA

k‖∞
ΔP

k

)
≤ 2(1 + τf )zk

ηρ
.
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Finally, inequalities (4.16) and (4.32) show that

(4.33) rk = 1 + o(1) for k ∈ S.

This is a contradiction, since this implies that for k ∈ S sufficiently large, the identity
rk > ηS holds, which violates (4.8). Thus, x∗ is a first-order critical point if Case 1 of
Theorem 4.3 occurs.

Case 2. There does not exists a subsequence of {ΔP

k} that converges to zero.
Examination of the algorithm shows that this implies the existence of a positive
number δ and of an infinite subsequence S of the integers such that

lim
k∈S

xk = x∗,(4.34)

ΔP

k ≥ δ > 0 for all k,(4.35)

rk ≥ ηS for all k ∈ S.(4.36)

Equation (2.18) and the fact that each k ∈ S is a successful iterate imply

(4.37) φk − φ(xk + sk) ≥ ηSΔMH

k (sk) ≥ ηηSΔMH

k (s
CP

k ).

Corollary 2.5, (4.35), the bounds bB and bH on Bk and Hk, and the bound ΔP

k ≤ Δu

imply

(4.38) φk − φ(xk + sk) ≥ ηηS

4
ΔL

max(xk, 1)min(Sk),

where

Sk =

{
1, δ,

ΔL
max(xk, 1)

bB
,
ΔL

max(xk, 1)

bBΔ2
u

,
ΔL

max(xk, 1)

2n(bB + bH)
,

ΔL
max(xk, 1)

2n(bB + bH)Δ2
u

,

(
ΔL

max
(xk, 1)

)3
2n(bB + bH)b2BΔ

2
u

,

(
ΔL

max
(xk, 1)

)3
2n(bB + bH)b2BΔ

6
u

}
.

Summing over all k ∈ S yields

(4.39)
∑
k∈S

φk − φ(xk + sk) ≥
∑
k∈S

ηηS

4
ΔL

max
(xk, 1)min(Sk).

Next, using the monotonicity of {φ(xk)}k≥0 it follows that

(4.40)
∑
k∈S

φk − φ(xk + sk) =
∑
k∈S

φk − φ(xk+1) ≤ φ(x0)− φ(x∗).

Combining the two previous inequalities gives

(4.41) φ(x0)− φ(x∗) ≥
∑
k∈S

ηηS

4
ΔL

max
(xk, 1)min(Sk),

which implies

(4.42) lim
k∈S

ΔL

max(xk, 1) = 0,

since the series on the right-hand side is convergent. Parts (iv) and (v) of Lemma 1.1
then imply that ΔL

max
(x∗, 1) = 0 and that x∗ is a first-order critical point.
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In both cases we have shown that there exists a limit point x∗ that is a first-order
critical point. We are done, since one of these cases must occur.

As stated previously, the proof of Case 1 of Theorem 4.3 is nearly identical to
that given by Fletcher. However, his proof for Case 2 of Theorem 4.3 does not carry
over to our setting because he essentially requires the global minimizer of MH

k over
the trust-region defined by radius ΔP

k, while we compute only the global minimizer of
MH

k in the single direction sP

k.
It is possible to weaken the assumption on the boundedness of ‖Hk‖2 in The-

orem 4.3. In fact, Algorithm 3.1 is still globally convergent if there exists positive
constants c1 and c2 such that either

‖Hk‖2 ≤ c1 + c2

k∑
i=1

‖sk‖∞ or ‖Hk‖2 ≤ c1 + c2k for all k ≥ 0,

provided we use the modified update

ΔA

k ← τf‖sP

k‖∞
for the accelerator trust-region radius. It can be shown [12] that these conditions hold
for many quasi-Newton updating formula under reasonable assumptions. We give no
further details here but rather point the reader to [21].

5. Conclusions and future work. Research on second derivative SQP meth-
ods is very active. The optimization community continues to tangle with the difficul-
ties associated with nonconvex subproblems in an attempt to further our understand-
ing of these methods. This paper has provided additional understanding by showing
that the relatively simple idea of imposing descent (via an artificial constraint) guar-
antees that certain pitfalls typically associated with second derivative SQP algorithms
may be avoided.

We presented an SQP method that is based on the work by Fletcher [13]. In sec-
tion 2, we described how to compute trial steps using a predictor step, a Cauchy step,
and an (optional) accelerator step. Since there is considerable flexibility in defining the
accelerator step from various subproblems, we explored three options: section 2.3.1
discussed an explicitly inequality-constrained quadratic programming (EIQP) sub-
problem that was enhanced by an artificial descent-constraint; section 2.3.2 considered
an equality-constrained quadratic programming (EQP) subproblem; and section 2.3.3
briefly described a class of implicitly inequality-constrained quadratic programming
subproblems that were motivated by traditional strategies for avoiding the Maratos
effect. We feel that the flexibility in our algorithm provides a natural framework for
avoiding the Maratos effect that is less ad hoc than traditional means. The key to an
effective and efficient implementation of our method is the careful utilization of the
advantages that each subproblem enjoys.

In section 4, we proved that our method is globally convergent without having to
compute the global minimizer of a nonconvex quadratic program; this is arguably the
greatest contribution of this paper. Moreover, we provided two reasonable strategies
for computing accelerator steps that are guaranteed to not be an ascent direction for
the �1-merit function. This result does not hold for traditional second derivative SQP
methods.

In a companion paper we plan to (1) discuss strategies for updating the penalty
parameter; (2) investigate local convergence issues; (3) discuss mechanisms for defin-
ing convex approximations to the Hessian of the Lagrangian in the large-scale case;
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and (4) provide numerical experiments with our evolving GALAHAD package S2QP. We
note that Byrd, Nocedal, and Waltz [6] and Byrd et al. [4] have published clever tech-
niques for updating the penalty parameter, and this will influence our developments.
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