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NEW CRASH P R O C E D U R E S  FOR LARGE S Y S T E M S  OF 
L I N E A R  C O N S T R A I N T S  
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Computer Science and Systems Division, Harwell Laboratory, Oxfordshire, UK 

Many algorithms for solving linearly constrained optimization problems maintain sets of basic 
variables. The calculation of the initial basis is of great importance as it determines to a large 
extent the amount of computation that will then be required to solve the problem. In this paper, 
we suggest a number of simple methods for obtaining an initial basis and perform tests to indicate 
how they perform on a variety of real-life problems. 
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1. Introduction 

In this p a p e r  we shall  be conce rned  with f inding a vec tor  x that  satisfies the sys tem 

of  l inear  equa t ions  

Ax = b (1.1a) 

and  s imple  b o u n d  cons t ra in ts  

bl<~x <~ bu, (1.1b) 

where  A is an m by n real  matr ix ,  b is a real  m-vector ,  b~ and  bu are real  n-vectors  

wi th  poss ib ly  infinite coefficients and  the inequal i t i es  (1.1b) are t aken  c o m p o n e n t -  

wise. We assume that  b~ and  bu sat isfy the inequa l i ty  b~<~ bu. We will  refer to the  

p r o b l e m  of  f inding a so lu t ion  to (1.1) as the feasible point problem and  say that  any  

x which  solves the p r o b l e m  is a feasible point. We shall  be pa r t i cu la r ly  conce rned  

with  the feas ible  po in t  p r o b l e m  when  m and  n are large and  the matr ix  A is sparse.  

Not ice  tha t  it is s t r a igh t fo rward  to reduce  a p r o b l e m  with  genera l  l inear  inequal i t ies  

to this fo rm by in t roduc ing  an extra  " s l a ck"  var iab le  for  each inequal i ty .  

M a n y  op t imiza t ion  p r o b l e m s  require  the m i n i m u m  or  m a x i m u m  value  of  a real  

func t ion  

f ( x )  (1.2) 

over  vectors  x for  which  (1.1) is satisfied. Such p rob lems  are  of ten ca l led  l inear ly  

cons t r a ined  op t imiza t ion  p rob lems .  Of  pa r t i cu la r  i m p o r t a n c e  are the l inear  p r o g r a m -  

ming  p rob lem,  where  f ( x )  is l inear,  and  the quad ra t i c  p r o g r a m m i n g  p rob lem,  where  

f ( x )  is quadra t ic .  Typ ica l  a lgor i thms for the  so lu t ion  of  such p rob l ems  start  f rom 
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a feasible point and generate a sequence o f " i , np roved"  feasible points, the linearity 
of (1.1) enabling feasibility to be maintained. For such schemes, it is then crucial 

that an initial feasible point be determined. Unfortunately, the problem of  finding 
a feasible point is often as hard as solving the underlying optimization problem. 
Indeed, the feasible point problem has the same complexity bound as the linear 
programming problem (see, for instance, Papadimitriou and Steiglitz, 1982, pp. 

170-173). 
One way of  tackling the feasible point problem is to introduce extra, artificial, 

variables z,i and wi (i= 1 , . . . ,  m) and yi and z~ ( i =  1 , . . . ,  n) and consider the 

problem of minimizing 

e T ( V + z )  (1.3a) 
\ y +  

subject to the linear constraints 

A x + v - w + A y - A z  = b (1.3b) 

and simple bounds 

b~<~x<~bu, v>~O, w>~O, y>~O and z~>O, (1.3c) 

where e is a vector of  ones. Clearly, (1.1) has a feasible solution if and only if (l.3) 

has an optimal solution of zero. The problem (1.3) is one of  many initialpoint or 
phase-1 problems that have been suggested; others include replacing e in (1.3a) by 

a vector of  weights or including a contribution from f(x).  
Problem (1.3) is a linear program that may be solved by the simplex method 

(Dantzig, 1963). At each step of this method,  the variables are partitioned into two 
sets called basic and nonbasic variables. There are always m basic variables and 
the corresponding columns of  

(A I - I  A - A )  

form a nonsingular matrix B called the basis matrix or basis for short. The nonbasic 

components  of  x always satisfy their bounds (each usually lies at a bound) and the 
nonbasic artificial variables always have the value zero. The corresponding values 
of  the basic variables also satisfy their bounds and may be found from (1.3b) by 

solving a set of  equations whose matrix is the basis B. The simplex method changes 
the basis by one column at a time in such a way that B remains nonsingular, the 
bounds are satisfied and the function (1.3a) decreases. It continues until an optimal 
solution is found, which gives a feasible solution for the original problem if the 
corresponding value (1.3a) is zero. 

Note that at a feasible point we may still have some artificial basic variables, 
though they must have the value zero; indeed this will always happen if the rank 
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of A is smaller than m (for example if an equation is accidentally repeated) for 

otherwise B would be singular. We would normally expect most of  the basic variables 
to have values away from their bounds. 

Given any set of m columns of (A I )  that forms a nonsingular matrix, a basis 
and corresponding basic solution of (1.3) may be found as follows. Take the given 
set of  columns to define a tentative basis R If  column i of  A is not in B, give the 
variable xi a value satisfying its bounds (1.1b). If  column i of  I is not in B, give 
the variable vi the value zero. Solve the equation 

A x  + v = b (1.4) 

for the remaining values. I f  any variable vi is negative, replace it in the basic set by 

the corresponding wi and change the sign of the corresponding column of B. I f  any 
xi lies above its upper  bound,  replace it in the basic set by the corresponding yi, 
setting the value of y~ to the discrepancy and resetting x~ to its upper  bound. I f  any 

x~ lies below its lower bound, replace it in the basic set by the corresponding z~, set 
the value of z~ to the discrepancy, reset xi to its lower bound,  and change the sign 
of the corresponding column of B. 

Note that a practical implementation does not need to store two extra copies of  

A or any copies o f / .  All that is necessary is to attach suitable flags to the basic 
variables to indicate their origin. 

The time taken by the simplex algorithm in solving a particular problem (1.3) is 

very roughly proportional to no, the number  of nonzero components  of v, w, y and 
z in the initial basic solution. (no is a lower bound on the number  of simplex 

iterations. In some implementations, when a variable y~ or zj reaches zero, it can 

be replaced by Xi by a very economical change of basis. The total computational  
cost is then less directly related to no.) It is therefore highly desirable to keep this 
number  small. An initial choice of ! for the basis is commonly used in linear 
programming teaching texts. However, this choice is normally undesirable as it is 
likely that few, if any, components  of v will still be present in an optimal basic 
solution and considerable work will be necessary to replace them. 

Practical codes usually contain some heuristic algorithm that aims to find a good 

initial basis quickly. Usually this is a triangular matrix because it is then easy to 
ensure that it is nonsingular and solving the corresponding sets of  equations is also 
easy. A very sophisticated algorithm is unlikely to compete with the simplex 
algorithm applied to (1.3) from a poor  start. Therefore, a crude algorithm is tolerated 
as long as it is quick and gives the simplex method a reasonably good start. This 
is the reason for calling the process "crashing".  Unfortunately, the literature appears 

to be greatly lacking in descriptions of crash algorithms but we describe those that 
we have found in Section 2. In Section 3, we describe an algorithm that has been 
in use at Harwell for some ten years; in Section 4, we describe a new heuristic 
algorithm that is based on first permuting A to block lower triangular form; and in 
Section 5, we consider alternative ways to find this block form. Numerical results 
are given in Sections 6 to 8, and concluding comments made in Section 9. 
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2. Existing crash algorithms 

A summary of crashing techniques available in 1968 is given by Carstens (1968) in 
the book by Orchard-Hays (1968), and we have been unable to find a comparable 
recent summary. For example,  in his book on linear programming, Chv~tal (1983) 
mentions exchanging artificial variables for any slack variables that have been 

introduced to convert inequalities to the equations (1.1a), and this is the only crash 
algorithm described. 

Carstens assumes that a starting set of  basic variables is given. Failing other 
information, it may consist entirely of artificial variables, but often experience with 
similar problems allows a better choice to be made. I f  the starting basis B is not 
equal to I, he multiplies (1.1a) by B -1 to yield an equivalent problem in which A 
is replaced by B - ~ A  and b is replaced by B - t b .  For the new problem, the starting 

basis is /, so there is no loss of  generality in considering only the case B = / .  The 
aim is to replace artificial columns of the basis by columns of A. When column j 

of  A replaces column i of  B, the entry a o plays a special role and is called the pivot .  

A sequence of nonzeros of  A is chosen for pivots. Each pivot a 0 must lie in a 
column j that is nonbasic and has zeros in all of the rows of preceding pivots. This 
leads to a basis that is a symmetric permutation of a lower triangular matrix (the 
permutation brings the successive pivot rows into positions 1, 2, . . . ) .  The fact that 
it is a permutation of a triangular matrix ensures that it is nonsingular and it is 
hoped that many artificial variables will be removed. 

There remains considerable choice for the pivots and Carstens distinguishes two 
classes of  algorithms, which he calls " G A I N  switch on"  and " G A I N  switch off". 
With the G A I N  switch off, the objective function (1.3a) is ignored and the choice 
is made on sparsity grounds alone. I f  column j of A has c s nonzeros and row i has 
ri nonzeros, he mentions the following possibilities: 

(a) consider the nonbasic columns in order of  increasing % and choose the pivot 
a o to be a nonzero that minimizes ri; 

(b) consider the rows in order of  increasing ri, and choose the pivot ao to be a 
nonzero that minimizes cj for j nonbasic; 

(c) consider the nonzeros in order of  increasing ( r i - 1 ) ( C i - 1 )  f o r j  nonbasic. 
With the G A I N  switch on, a basis change is made only if it leads to an improvement  

in the objective function (l.3a). Therefore, any column without an advantageous 
reduced cost (see, for instance, Chvfital, 1983, for the meaning of this terminology) 
is rejected. Once a column has been selected, the pivot is chosen for the greatest 

improvement  in (1.3a). The columns may be taken sequentially or grouped and the 
best improvement  in the group chosen. 

Carstens also suggest hybrid algorithms in which the objective function is used 
as a tie-breaker for a sparsity choice or a sparsity measure is used as a tie-breaker 
on function reduction. 

Carstens makes no firm recommendations,  but prefers the G A I N  switch off when 
the starting basis is totally or mostly artificial and the G A I N  switch on when it has 
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few artificials. He also mentions the possibility of a further "grand cycle", that is 
using the basis found as a fresh starting basis for another round of crashing, but 
says that there is rarely any advantage in doing this. 

Following conversations with Martin Beale, John Tomlin and Mike Saunders, 

one of us (Reid) conducted some numerical experiments ten years ago that favoured 
generating a sparse basis containing as many columns of A as possible but ignoring 

the objective function ( G A I N  switch off in Carstens '  terminology). This algorithm 
is explained in the next section. The other algorithms that he tried were significantly 
slower and frequently produced worse results. Note that in practice b is often sparse 
and many of the constraints are simple positivity bounds x i~0 .  Under  these 
circumstances, a very sparse B is likely to be reducible and yield many zero 
components  of  x, so there may be few infeasibilities. 

The package MINOS (Murtagh and Saunders, 1987) contains a crash algorithm 

that is a variant of Carstens '  GAIN-switch-off  algorithm and is typical of  those of 
mathematical  programming systems of  the 1970s. Here, a pivot a;j may be selected 
because its row contains zeros in all the columns that have so far been chosen as 
basic or because its column contains zeros in all the rows that have been pivotal. 
In the former case, the new column is placed at the front of  the set of columns so 

far selected. In the latter case, it is placed behind the set of columns so far selected. 
Carstens considered only the latter case. In MINOS, a pivot of the former kind is 

preferred, and ties are otherwise broken by choosing the largest nonzero. The pivots 
are chosen in three passes: 

(1) f o r j  = 1, 2 , . . .  n, if xj is free (its bounds are infinite), column j is considered; 
(2) for j = 1, 2 . . . .  n, column j is considered if it has not already been chosen, 

but is not selected unless a pivot can be found in a row that was not originally an 
inequality (see the first paragraph of Section 1); 

(3) for j = 1, 2 , . . .  n, column j is considered if it has not already been chosen; 
and artificials are used to complete the basis. 

In addition, MINOS ignores (treats as if zero) any entry that does not satisfy the 

inequality 

[a~jl ~> u maxla~{ (2.1) 

for a preset tolerance u (with default value 0.1). The chosen pivots therefore satisfy 
(2.1) and the basis may contain small entries outside the (permuted) triangular form. 

3. The upper-triangular algorithm 

The algorithm that Reid developed generates a basis that is upper  triangular when 

permuted to place the pivots on the diagonal in their order of  generation, as opposed 
to lower triangular in Carstens'  GAIN-off  algorithms. This means that a column 
that is chosen late is required to have a nonzero in at least one row that has not 
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yet been pivotal, a less stringent requirement than needing zeros in all the rows that 
have been pivotal. 

The matrix A is first scanned for column singletons and as each is found, it is 
introduced into the basis and the row containing its entry is flagged. When testing 
later columns for being singletons, flagged rows are ignored. During the search, the 

number  k I of nonzeros in the shortest column that is neither empty nor a singleton 
(excluding flagged rows, of  course) is determined. Note that any slack variables 
introduced into the problem to handle inequalities (see the first paragraph of Section 
1) correspond to singleton columns. 

I f  the basis is not completed during the scan, a second search is commenced 
during which columns of length up to k~ are accepted. I f  an accepted column is 
not a singleton, the greatest candidate pivot is taken, artificial variables v~ are 

introduced for the other candidates and the rows of all of  the candidates are flagged. 
During this scan, the length k2 of the shortest rejected candidate column is recorded. 

Such sweeps continue until the basis is complete or until a preset limit on the 
number  of sweeps is reached (default value 10). During sweep s, the length k~ of 
the shortest rejected candidate column is recorded, together with the number  of 

such candidates. Sweep s + 1 normally uses the threshold k~, but if sweep s finds 
fewer columns of length k, than the average needed for the remaining sweeps, sweep 
s + 1 uses the threshold k~ + 1 in order to make rapid progress more certain. Note 

that if sweep s fails to find any columns, sweep s + 1 is bound to find one or more 

columns. 
Our experience is that usually three or four sweeps suffice, but that occasionally 

six or seven are needed. I f  the limit is reached, the basis is completed with artificials. 
For the sake of numerical stability, we accept pivots only if they satisfy the relative 

pivot tolerance (2.1). 

4. The tearing algorithm 

We now describe a new algorithm for attempting to solve problem (1.1). The strategy 
we adopt is one of breaking the problem into smaller pieces and solving an initial 
point problem for each piece. We shall assume that we have a good method for 

solving dense linear programs involving t or fewer equations; we have in mind a 
typical value of t = 5. Call such a method DLP. We shall assume that DLP generates 
basic optimal solutions, that is, gives optimal solutions and corresponding sets of 

basic variables. The method works as follows. 
We start by permuting the rows and columns of A so that the permuted matrix 

has the form (A / 
4..21 . -. A22 

/a~l a~ Art I I B 

\Ar+11 A~+12 . . .  A r + l r  0 

(4.1) 
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here each matrix A!j is m~ by n~, and the integers mg and nJ are positive, excepting 

m,.+~ and n~+~ which may be zero. We consider  alternative algorithms for permut ing 

to this form in the next section. The sizes m~ of  the blocks are typically very small 

in practice (see Sections 6 and 7). 
We now assume that A has been ordered as in (4.1) and that  x and b have been 

part i t ioned so that ( l • l )  may  be written as minimizing 

eT(v -4- W) (4.2a) 

subject to All / (Vl)(Wl)(b) 
A2! A22 2 v2 w2 b2 

\ A r + l l  Ar+12 Ar+lr 0 x 1 t~r+l Wr+l br+l 

and 

bl~<~&<~bui, ~)i~O, wi>>-O, i = l , . . . , r + l .  

In its most  simple form, our  method  proceeds in stages, as follows• 

(4.2b) 

(4.2c) 

We shall assume, for now, that rni ~< t for all 1 <~ i <~ r. The first b lock of  (4.2b) 
and constraints (4.2c) require that xl satisfies 

A n x l + v l - w t = b l ,  bn<~xl<~bu~, vl>~0, wl~>0. (4.3) 

We want both  artificial variables v~ and w~ to be zero. As m~ is no larger than t, we 

may achieve this using D L P  to minimize 

eT( vl + wl) 

subject to the constraints (4.3). This is the first stage of  the process• As a by-produc t  

we would  also expect to obtain a set o f  rn~ basic variables, perhaps including some 

of  the artificial variables v~ and wl. Let x~, v~ and ~ be the values o f  x~, v~ and 

w~ obtained• (In the case o f  this first block, fi~ and ~ are zero if (1.1) has a feasible 

point.)  
Moving to the kth stage of  the method,  we assume that we have obtained values 

&, vi and ~g for the variables x~, v~ and w~ for 1 ~< i <  k and a set of  m ~ + '  • . +  mk-~ 
basic variables• We then wish to satisfy 

k--1 
AkkXk + Vk -- Wg = bk -- ~ Akixi, blk <~ Xk <~ buk, Vk ~ 0, Wk >/0, (4•4) 

i=l 

with both  Vk and Wk being z e r o - - w e  say that  such a solution to (4•4) is a sat is factory 

solution. We at tempt to find a satisfactory solution by minimizing 

eT(t)k "4- Wk) 
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subject to the constraints (4.4) using DLP---recall  that we have assumed that mk <~ t. 
There are two possible outcomes.  Firstly, we m ay  reduce all o f  the artificial variables 

to zero. (The basic set may  still possibly include some artificial variables with values 

o f  zero.) Secondly,  there may  be no satisfactory solution to (4.4). Nonetheless,  mk 

basic variables will be obtained (including some artificial variables). In either case, 

the values "~'k, ~k and ~k o f  Xk, Vk and •k obtained are passed, together with the set 

o f  mk basic variables obtained,  to stage k + 1. 
We apply this process for stages k = 2 , 3 , . . . ,  r. In the last stage ( k = r + l )  we 

cannot  alter the residuals o f  the last block of  (4.2b) by choice o f  Xr+l ; therefore we 

merely pick Xr+~ to satisfy (4.2c), set the artificial variables 

g r + t = m a x  0, b r + l -  i and wr+ l=max  0'-br+l-k~i=l Ar+li'['i 
(4.5) 

and select mr+ 1 of  the variables Vr+~ and wr+l to be basic (including all nonzero  

components  o f  vr+~ and wr+l). We thus end up with values for all o f  the variables, 

a set of  m basic variables and, we hope,  most  o f  the artificial variables at zero. 
So far, we have assumed that rni <~ t for all 1 ~ i ~ r. Our  experience (see Section 

6) is that this is almost always the case. However ,  if mk>  t, we further parti t ion 

(4.4) into 

k-1 

A k k l X k - ~ - l ) k l - - W k l = b k l  - ~ AkilXi,  V k l ~ 0 ,  W k l ~ 0  , 
i=l 

blk ~ X k ~ buk , 
k - I  

Akk2Xk ~- Vk2 -- Wk2 = bk2 -- ~ Aki2Xi, i)k2 >~ O, Wk2 >~ O, (4.6) 
i~l 

where Akk I has t rows and as large a rank as possible. This latter condit ion can be 

ensured by reordering the rows of  Akk and we assume that this has been done. We 

may  then apply DL P  to at tempt to find a satisfactory solution to the first set o f  

equations in (4.6). I f  we let Xk, Vkl and #k~ be the solution obtained,  we pass this 

solution and associated set o f  basic variables, together  with an appropr ia te  basic 
subset (of  cardinali ty mk -- t)  of  the variables 

~3k2 = max 0, bk2-- , r?k2 = max O, --bk2 + A k i 2 X  i , (4.7) 
i i=1 

to the next stage. We would,  o f  course, not  expect the artificial variables, vk2 and 

wk2, in the basis to be zero but are assured at least of  a set o f  mk basic variables. 

In this form of  our  algorithm, one would  suspect that  bad choices for the early 
variables xk could have unfor tunate  consequences  when one tries to satisfy the later 

equations.  With this in mind,  we prefer the fol lowing variation. 

We assume that we have obtained values x~, v~ and r?~ for the variables x~, v~ and 

w~, for 1 ~< i < k, and a set o f  m ~ + . . -  + rnk_~ basic variables. As before,  we first 

a t tempt  to find a satisfactory solution to (4.4) using D L P - - a g a i n  we have assumed 
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that mk <~ r I f  we find such a solution, we pass it along with the associated set of  
mk basic variables (possibly including some artificial variables with values of zero) 
to the ( k +  1)st stage. I f  we fail to obtain such a solution, it is likely that values of 
Y~, 1 <~ i < k - I, found in the previous stages are inappropriate.  We will, nonetheless, 
have found a set of mk basic variables (including some artificial variables). There 
may be scope for "backtracking" through the set of  recently allocated blocks of 

variables and equations, changing the values of  the variables whilst continuing to 
satisfy the equations. We might then be able to find a satisfactory solution to (4.4) 
after all. I f  we work with blocks j, j + 1 . . . .  , k, we need the inequality 

m~ + mj+l + .  • • + mk <~ t (4.8) 

to be satisfied so that we will not consider more equations than DLP can accommo- 
date. We use our linear programming method to attempt to find a satisfactory 

solution to 

kj Akj+, . . .  Ak \ x k /  \ v k ]  \ W k /  \ b k /  ki 

(4.9a) 

and 

b,<~x~<~bui, vi~>0, wi>~0, i = L . . .  ,k. (4.9b) 

Let ~ ,  ~i and #~, for j ~< i ~< k, be the values obtained. Then these new values replace 
the existing values, and are passed to the next stage. Notice, however, that we do 

not necessarily keep the property of  having m~ basic variables among x~, vi and w~ 
(some blocks may gain basic variables at the expense of others). Therefore, as well 

as satisfying (4.8), we need to choose j so that the condition, 

number  of basic variables in x~, v~ and w~, for i = j , j +  1 . . . .  , k, 

equals rnj+mj+l+'"+mk,  (4.10) 

is true, which may reduce the amount  of  backtracking possible. An important feature 

is that we do not alter the attempted solution to the first j -  1 blocks of  equations. 

5. Permuting to block lower-triangular form 

We have considered two alternative algorithms, along with several minor variations, 
for permuting to the block lower-triangular form (4.1). The p5 algorithm of Erisman, 

Grimes, Lewis and Poole (1985) (see also Duff, Erisman and Reid, 1986, Chapter  
8) is available in the Harwell Subroutine Library (Harwell Subroutine Library, 1988) 
as ~c33. The algorithm is designed to permute a square matrix to bordered block 
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triangular form, but it may readily be adapted to the rectangular case and the border 

columns may be permuted forward to give the required form. It has the additional 

properties that the diagonal blocks A,, i = 1, 2, . . .  r, are full and have at least as 

many columns as rows (mi <~ ni). As a consequence, no set of rows from the first r 

blocks can be structurally dependent, that is linearly dependent even if arbitrary 

changes are made to the values of the nonzero entries. Any null rows must be 

included in block r+  1 and any set of structurally dependent rows must have some 
members in block r+  1. Our experience is that the rows of this block are usually 

all of these kinds. The sizes m~ of the blocks are typically very small in practice 

(see Section 6). 
The p5 algorithm chooses the columns one at a time to maximize the number of 

entries in rows of minimum row count, where the row count is the number of 

nonzeros in the row when columns that have been chosen are excluded. When 

several columns are best from this point of  view, a column with greatest column 
count is chosen (unless the number of entries in rows with minimum row count is 

one). This biases the later columns towards sparseness, which is seen as desirable 

as far as the success of the later stages of the algorithm are concerned. However, 

our backtracking algorithm (last paragraph of Section 4) might be expected to be 

successful if there is little dependence on the values of the earlier variables (J?~, 

i -= 1 . . . . .  j - 1, in equation (4.9a)), which we are not free to change. Therefore, we 

experimented with a variation of the p5 algorithm in which ties are broken by 
minimizing rather than maximizing the column count and giving no special attention 

to the case where the number of entries in rows with minimum row count is one, 

but unfortunately found that on the whole this variation gave poorer results. 

Another possibility for helping the backtracking algorithm is to aim for the block 

bidiagonal form 

I;i I 
a32 a3_,.., a,s] 

(5.1) 

which corresponds to the normal matrix A A  T being block tridiagonal. This is the 

foundation of our alternative algorithm, which we call the normal matrix method. 

There are established techniques for permuting a symmetric matrix to block 
tridiagonal form that are based on examining the associated graph, finding a 

pseudo-diameter, and constructing a rooted level structure based on an end point 

of a pseudo-diameter (see, for example, Gibbs, Poole and Stockmeyer, 1976). We 

have used the variant of  Sloan (1986), whose code is available as MC40 in the Harwell 

Subroutine Library. Several strategies have been proposed for ordering within the 

level sets (blocks of the block tridiagonal form), which is important if a small local 

bandwidth is to be obtained. Again, we have used Sloan's code, but we have adjusted 
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his weights so that the block tridiagonal form is preserved. Each node in a level set 

is then ordered in turn to minimize the current front size (number of nodes that are 
neighbours of  ordered nodes but have not yet themselves been ordered). This is the 
variant proposed by Gibbs (1976) and called the Gibbs-King  algorithm by Lewis 

(1982). Sloan (1986) allows departure from the form (5.1) that the rooted level 
structure suggests and chooses each variable to minimize a weighted sum of the 
front size and the level set number. We tried this variant, but found that its results 
were generally inferior for our application. 

This analysis of the normal matrix provides us with an ordering for the rows of 
A. If  there are any null rows, they are permuted to the end and included in the last 
block. 

Given an ordering for the rows of A, the form (4.1) may be constructed by column 
permutat ions as follows. Permute the columns with entries in row 1 to the front; 
follow these with columns with the property of  having a zero in row 1 and an entry 
in row 2; then columns with the property of  having zeros in rows 1 and 2 and an 
entry in row 3; and so on. I f  the normal matrix A A  z is block tridiagonal, the 

permuted A will have the form (5.1) with identical block row sizes. However, these 
sizes are usually quite large and in practice the column permutation will break each 
diagonal block ,~ii in (5.1) into a block lower triangular form with small blocks. 
Thus overall we have the form 

i 2~ A22 (5.2) 
° °  . 

rl A t2  . . .  Arr 

with many zero blocks in the left-hand lower corner. Note that this is comparable 

to the form (4.1)7 but that the diagonal blocks are no longer full and may have more 
rows than columns. Therefore any block may include a set of structurally dependent  
rows and the last block may have some null rows. When the Sloan variant of the 
ordering algorithm for the normal matrix is used, the large blocks are not necessarily 
preserved, but there should be more small zero blocks since a small local bandwidth 
of  the normal matrix corresponds to the sparsity pattern of  the row of  A intersecting 
the sparsity patterns of  only nearby rows. 

To illustrate the two alternative algorithms, we show the sparsity pattern of the 
original matrix and the two reordered matrices for the problem Forplan in Figures 

1-3 and for the problem Capri  in Figures 4-6. These problems are part  of  the Netlib 
set (Gay, 1985). The patterns illustrated are typical; for pS, the nonzeros tend to 

"bow"  under the "diagonal" ,  while the reverse is true for the normal matrix method. 
Notice also that the normal equations method does yield some large zero blocks in 
the lower left-hand part  of  the matrix. 

It has been pointed out to us by Mike Saunders that this procedure will not be 
useful if A has a dense column since A A  T is full in this case. He suggests placing 
the full columns at the front and applying our procedure to the rest. 
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Fig. I. The sparsity pattern of the problem Forplan before reordering. 
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Fig. 2. The sparsity pattern of the problem Forplan after p5 reordering. 
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Fig. 3. The sparsity pattern of the problem Forplan after normal matrix reordering. 

6 .  N u m e r i c a l  e x p e r i m e n t s  

In this sect ion we descr ibe  the results  of  tes t ing the me thod  sugges ted  in the  previous  

sect ions on a var ie ty  o f  r ea l -wor ld  l inear  p r o g r a m m i n g  p rob lems .  All o f  the p rob lems  

are ava i lab le  in Mps fo rmat  (see, for  example ,  Mur tagh ,  1981, Chap t e r  9) and  were 

conver ted ,  i f  necessary ,  to the gener ic  fo rm 

min imize  cVx  
(6.1) 

subjec t  to A x  = b, bj <~ x <~ bu,  
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Fig .  4. The sparsity pattern of the problem Capri before reordering. 
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Fig .  5. The sparsity pattern of the problem Capri after p5 reordering• 

by adding slack variables to any inequality constraints. Our aim is to find a feasible 
solution to the set of constraints for the given problem and we judge the success 
of a crash algorithm by the number of infeasibilities (nonzero artificial variables) 
since it is our experience that the computer time taken by the simplex method to 
reach feasibility is usually approximately proportional to the number of  
infeasibilities. We give details of two sets of linear programming test problems, 
those collected at Harwell and the extensive set available from Netlib (Dongarra 
and Grosse, 1987) as collected by Gay (1985). The characteristics of the Harwell 
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Fig. 6. The sparsity pattern of the problem Capri after normal matrix reordering. 

p r o b l e m s  a re  s h o w n  in  T a b l e  6.1. N o t e  t h a t  th i s  d a t a  c o n f i r m s  o u r  S e c t i o n  4 

c o n t e n t i o n  t h a t  w h e n  t h e  p5 a l g o r i t h m  is u s e d ,  e a c h  b l o c k  r o w  s i ze  mi is t y p i c a l l y  

v e r y  smal l .  

Al l  o f  o u r  c o m p u t a t i o n  was  p e r f o r m e d  o n  t he  IBM3084Q at  H a r w e l l .  O u r  c o d e s  

w e r e  w r i t t e n  in  F o r t r a n  77 a n d  c o m p i l e d  b y  leve l  1.4.1 o f  t h e  VS c o m p i l e r  w i t h  

O P T  = 3. 

T h e  p r o b l e m s  w e r e  c o n s i d e r e d  b o t h  as  d e f i n e d  f r o m  t h e i r  r a w  d a t a  in  t h e  f o r m  

( 6 . l )  ( r e f e r r e d  to as unscaled)  a n d  a l so  a f t e r  r o w  a n d  c o l u m n  s c a l i n g s  h a v e  b e e n  

Table 6.1 

The Harwell test problem attributes 

Problem No. rows No. cols No. p5 block sizes 
name (m) (n) nonzeros 

m I , . . . , m,. m r +  1 

Sc50a 50 78 160 50 (1) 0 
Sc50b 50 78 148 50 (1) 0 
Blend 74 114 522 74 (1) 0 
Sc105 105 163 340 105 (1) 0 
Boeing 2 166 305 1358 165 (1) 0 
Boeing 1 351 726 3827 351 (1) 0 
Stair 356 532 3813 344 (1), 6 (2) 0 
Finnis 497 1019 2542 497 (1) 0 
Powell 524 1028 6401 511 (1), 6 (2) 1 
Shell 536 1527 3058 528 (1), 4 (2) 0 
Perold 625 1442 5962 579 (1), 23 (2) 0 
BP 821 1876 10705 810 (1), 2 (2), 1 (3) 4 
GUB 929 3333 10022 929 (1) 0 

Legend: k(l) means k blocks of 1 rows. 
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appl ied  to the matr ix A (scaled). Given  the raw data  for the problems,  the rows 

and co lumns  of  the matr ix  A are rescaled using the scheme of  Curt is  and Reid 

(1972), imp lemen ted  as subrout ine  MCl9 in the Harwel l  Subrout ine  Library. To be 

specific, d iagonal  matrices D~ and D2 are found  to conver t  (6.1) to the equiva len t  

p rob lem 

minimize  ~v£ 

subject  to P~  = b, b, ~< ~ <~/~u, (6.2) 

where  A= D~AD2, (~= Dlb, ?.= D2c, ~= D~lbl and 6u= D2~bu. The scheme is 

in t ended  to p roduce  a scaled matrix A~ whose  nonzero  entries are approx imate ly  

equal  in magni tude  and does this by min imiz ing  the sum of  squares o f  the logar i thms 

of  the absolute  values o f  the nonzero  entries. 

We appl ied  the a lgor i thms of  Sections 3, 4 and 5 to the unscaled and scaled test 

problems.  As far as the relat ive per fo rmances  of  the crash algori thms are concerned ,  

we found  little difference be tween  the scaled and unsca led  cases, and have therefore  

chosen to present  only the unscaled results here. This should  not be in terpre ted  as 

a r e c o m m e n d a t i o n  against  scaling, which was f requent ly  (but not always) advan-  

tageous  to the efficiency of  the comple te  solution.  

In Table  6.2 we show the number  of  infeasibil i t ies after the appl ica t ion  of  our  p5 

tear ing algor i thm,  both  wi thout  backt racking and with t = 5, 10 and 50 backtracking.  

We conc luded  from this data  that some backt racking  is certainly wor thwhi le ,  but  

that  a large value o f  t does not  give sufficient gains to just i fy its extra expense.  This 

data  also suggests that  any value of  t be tween  5 and 10 wou ld  be suitable for general  

use and we have chosen to r e c o m m e n d  5. 

Table 6.2 

Harwell test problem results for the p5 tearing algorithm without and with backtracking 

Problem No. Without t = 5 t = 10 t = 50 
name rows 

No. Time No. Time No. Time No. Time 
infeas. ( s ee s )  infeas. ( s ee s )  infeas. ( s ee s )  infeas. (secs) 

Sc50a 50 0 0.03 0 0.03 0 0.02 0 0.03 
ScS0b 50 0 0.02 0 0.03 0 0.03 0 0.03 
Blend 74 0 0.05 0 0.06 0 0.06 0 0.07 
Sc105 105 0 0.05 0 0.05 0 0.06 0 0.09 
Boeing2 166 24 0.19 17 0.21 15 0.24 5 0.69 
Boeingl 351 58 0.79 13 1.13 5 1.21 3 2.32 
Stair 356 83 0.40 77 0.46 76 0.57 68 2.09 
Finnis 497 41 0.57 31 0.63 31 0.72 22 14.78 
Powell 524 61 1.21 33 1.24 15 1.39 8 46.64 
Shell 536 53 0.53 31 0.59 25 0.70 19 2.05 
Perold 625 84 0.72 75 5.79 63 7.83 59 64.52 
BP 821 139 1.70 102 1.86 97 2.13 79 30.72 
GUB 929 5 5.68 4 5.57 4 5.75 5 6.92 
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Table 6.3 

Test problem results using p5 tearing with t = 5, Reid, and MINOS algorithms 

Problem No. p5 tearing Reid 
name rows 

No. Time No. Time Time to 
infeas. (secs) infeas. (secs) match 

tearing 

MINOS 

No. 
infeas. 

Sc50a 50 0 0.03 0 0.04 0.04 
ScS0b 50 0 0.03 0 0.04 0.04 
Blend 74 0 0.06 0 0.08 0.08 
Sc105 105 0 0.05 0 0.07 0.07 
Boeing2 166 17 0.21 34 0.17 0.76 
Boeingl 351 13 1.13 111 0.55 9.11 
Stair 356 77 0.46 117 0.27 1.78 
Finnis 497 31 0.63 92 0.86 5.31 
Powell 524 33 1.24 65 0.58 1.37 
Shell 536 31 0.59 43 0.82 1.00 
Perold 625 75 5.79 156 1.94 49.85 
BP 821 102 1.86 189 1.67 11.21 
GUB 929 4 5.57 6 2.99 4.91 

139 

131 
12 

229 
20 

We show the n u m b e r  of infeasibil i t ies after the appl ica t ion  of the crash algorithm 

of Reid (Section 3) in Table 6.3. For these problems,  it always produced  more 

infeasibil i t ies than the tearing algori thm with t = 5, though on one problem it 

p roduced  fewer than the tearing algori thm without  backtracking.  To measure the 

difference, we show the t ime taken for the Harwell  LP code LA04, starting from the 

basis constructed by Reid 's  crash, to reach the n u m b e r  of infeasibil i t ies obta ined  

for the tearing method with t = 5. It can be seen that the gain can be quite worthwhile,  

though in one case (GUB) ,  even when the t ime for simplex i teration was included,  

the Reid algori thm was faster to the same n u m b e r  of infeasibilities.  

For  five of the problems,  we also show in Table  6.3 the n u m b e r  of infeasibili t ies 

that are ob ta ined  by the M1NOS crash algori thm that we described at the end of 

Section 2. 

In Tables 6.4 to 6.6 we give details of  further tests performed on the Netl ib l inear  

p rogramming  test set (Gay,  1985), excluding the two largest cases (80bau3b and  

Pilot). We note that the Netl ib problems Czprob,  Fffff800, Shell, Stair and 25fv47 

appear  in the Harwell test set unde r  the names  GUB,  Powell, Shell, Stair and  BP 

respectively. 

Table 6.4 confirms our  earlier experience of small  blocks and Table 6.5 reinforces 

our  earlier conclusion in favour  of the choice of  t = 5 for the amoun t  of backtracking 

in the tearing algorithm. However,  the compar i son  with Reid's  algori thm is not  so 

straightforward here. In  Table  6.6 we see that in 10 of the cases (out of 50), Reid's  

a lgori thm produced  fewer infeasibil i t ies and  for these we show the t ime for the 

tearing method  to match the Reid result by s implex iterations. In all these cases, 

the time taken by the Reid algori thm is the lesser. Being the s impler  algorithm, it 
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Table 6.4 

Additional Netlib test problem attributes 

491 

Problem No. rows No. cols No. pS block sizes 
name (m) (n) nonzeros 

D I I ~ . , . ~  DI r rY/r+ I 

Adlittle 56 138 424 
Afiro 27 51 102 
Bandm 305 472 2494 
Beaconfd 173 295 3408 
Bore3d 233 333 1446 
Brandy 220 303 2202 
Capri 271 466 1864 
Etamacro 400 734 2188 
E226 223 472 2768 
Forplan 161 489 4565 
Ganges 1309 1706 6937 
Gffd-pnc 616 1160 2445 
Grow7 140 301 2612 
Growl5 300 645 5620 
Grow22 440 946 8252 
Israel 174 316 2443 
Nesm 662 2930 13260 
Pilotja 940 1956 12100 
Pilotnov 975 2242 12460 
Pilot.we 722 2850 9001 
Pilot4 410 1093 5164 
Recipe 91 180 654 
Scagr7 129 185 465 
Scagr25 471 671 1725 
Scfxml 330 600 2732 
Scfxm2 660 1200 5469 
Scfxm3 990 1800 8206 
Scorpion 388 466 1534 
Scrs8 490 1275 3288 
Scsdl 77 760 2388 
Scsd6 147 1350 4316 
Scsd8 397 2750 8584 
Sctapl 300 660 1872 
Sctap2 1090 2500 7334 
Sctap3 1480 3340 9734 
Sc205 205 317 665 
Seba 515 1036 4360 
Sbarelb 117 253 1179 
Sbare2b 96 162 777 
Ship041 402 2166 6380 
Sbip04s 402 1506 4400 
Sbip081 778 4363 12882 
Ship08s 778 2467 7194 
Shipl21 1151 5533 16276 
Shipl2s 1151 2869 8284 
Sierra 1227 2735 8001 
Standata 359 1258 3173 
Standgab 361 1366 3281 
Standmps 467 1258 3821 
Vtp.base 198 328 944 

54 (1), 1 (2) 0 
27 (1) 0 
291 (1), 7 (2) 0 
139 (1), 3 (2), 3 (3), 1 (4) 15 
213 (1), 4 (1), l (3), 1 (9) 0 
175 (1), 5 (2), 1 (3) 32 
271 (1) 0 
397 (1), 1 (2) 0 
211 (1), 2 (2), 1 (5) 3 
147 (1), 3 (2) 8 
1261 (1), 7 (2) 34 
573 (1), 21 (2) 1 
140(1) 0 
300 (1) 0 
440 (1) 0 
174 (1) 0 
662 (1) 0 
820 (1), 52 (2) 16 
809 (1), 68 (2), 2 (3) 24 
569 (1), 66 (2), 7 (3) 0 
386 (1), 12 (2) 0 
88(1) 3 
129 (1) 0 
471 (1) 0 
300 (1), 8 (2), 2 (3) 8 
601 (1), 16 (2), 4 (3) 15 
902 (1), 24 (2), 6 (3) 22 
248 (1), 12 (2), 12 (3), 6 (4) 56 
448 (1), 14(3) 0 
73 (1), 2 (2) 0 
145 (1), 1 (2) 0 
393 (1), 2 (2) 0 
300 (1) 0 
1090 (1) 0 
1480 (1) 0 
205 (1) o 
515(1) 0 
82 (1), 8 (2), 5 (3), 1 (4) 0 
96(1) 0 
352 (1), 4 (2) 42 
352 (1), 4(2) 42 
696 (1), 8 (2) 66 
696 (1), 8 (2) 66 
1028 (1), 7 (2) 89 
1028 ( l ) ,  7 (2) 89 
1117 (1), 55 (2) 0 
359(1) 0 
360 (1) 1 
455 (1) 12 
198(1) 0 

Legend: k(1) means k blocks of  I rows. 
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Table 6.5 

Additional test problem results for the p5 tearing algorithm without and with backtracking 

Problem No. Without t = 5 t = 10 t = 50 
name rows 

No. time No. time No. time No. time 
infeas. (secs) .infeas. (secs) infeas. (secs) infeas. (secs) 

Adlittle 56 3 0.04 2 0.05 2 0,05 0 0.13 
Afiro 27 0 0.01 0 0.01 0 0.02 0 0.02 
Bandm 305 41 0.31 31 0.84 30 1.04 15 1.08 
Beaconfd 173 28 0.61 28 0.62 28 0.63 22 0.83 
Bore3d 233 12 0.19 10 0,20 22 0.24 18 0.63 
Brandy 220 28 0.31 22 0.33 17 0.37 8 0.83 
Capri 271 70 0.22 27 0.27 23 0,36 13 1.43 
Etamacro 400 45 0.34 37 0.39 37 0.45 32 1.37 
E226 223 21 0.43 16 0.44 14 0.47 10 0.98 
Forplan 161 35 1.02 31 1.25 24 1.35 15 1.97 
Ganges 1309 181 1.17 146 1.13 132 1.31 116 3.78 
Gfrd-pnc 616 12 0.36 12 0.36 12 0.40 7 0.79 
Grow7 140 0 0.22 0 0.21 0 0.21 0 0.25 
Growl5 300 0 0.46 0 0.46 0 0.47 0 0.56 
Grow22 440 0 0,68 0 0.68 0 0.70 0 0.85 
Israel 174 16 0.34 3 0.34 1 0.37 0 0.66 
Nesm 662 123 2.03 107 2.15 92 2.62 65 8.49 
Pilot.ja 940 144 2.41 113 2.15 108 2.97 94 12.54 
Pilotnov 975 179 2.45 165 6.12 161 12.82 156 8.54 
Pilot.we 722 116 1.43 104 1.54 104 2.02 I00 15.42 
Pilot4 410 33 0.70 29 0.73 27 0.79 25 1.67 
Recipe 91 0 0.06 0 0.06 0 0.07 0 0.09 
Scagr7 129 19 0.06 6 0.08 6 0.11 4 0.29 
Scagr25 471 73 0.23 24 0.31 24 0.42 24 2.09 
Scfxml 330 51 0.32 46 0.35 46 0.42 37 1.30 
Scfxm2 660 103 0.71 95 0.78 91 2.85 77 2.98 
Scfxm3 990 153 1.10 143 1.25 137 1.44 116 4.35 
Scorpion 388 80 0.18 31 0.23 32 0.28 34 1.37 
Scrs8 490 16 0.51 14 0.54 14 0.67 14 1.99 
Scsdl 77 0 0.42 0 0.42 0 0.43 0 0.45 
Scsd6 147 0 0.73 0 0.74 0 0.74 0 0.81 
Scsd8 397 0 1.26 0 1.24 0 1.26 0 1.45 
Sctapl 300 32 0.34 7 0.36 7 0.42 7 1.16 
Sctap2 1090 51 2.61 7 2.66 7 2.76 1 4.28 
Sctap3 1480 62 3.76 3 3.80 3 3.98 0 5.76 
Sc205 205 0 0.11 0 0.11 0 0.12 0 0.18 
Seba 515 2 0.75 2 0.74 2 0.77 2 0.98 
Sharelb 117 29 0.11 28 0.13 23 0.16 11 0.48 
Share2b 96 12 0.07 10 0.09 8 0.11 8 0.98 
Ship041 402 5 1.73 5 1.73 5 1.78 5 2.09 
Ship04s 402 8 0.98 8 0.97 8 1.00 8 1.28 
Ship081 778 7 4.68 7 4.67 7 4.69 7 5.21 
Ship08s 778 12 1.72 12 1.76 12 1.81 12 2.30 
Shipl21 1151 14 6.25 14 6.24 14 6.26 11 7.14 
Shipl2s 1151 15 2.56 15 2.55 15 2.59 12 3.24 
Sierra 1227 163 1,41 138 1.57 107 1.76 84 5.37 
Standata 359 7 2.22 6 2.22 6 2.22 6 2.67 
Standgub 361 7 2.24 6 2.24 6 2.26 6 2.71 
Standmps 467 31 2.34 30 2.34 30 2.48 17 4.31 
Vtp.base 198 17 0.13 12 0.15 12 0.17 10 0.51 
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Table 6.6 

Additional test problems using p5 tearing with t = 5, Reid, and MINOS algorithms 

493 

Problem No. pS tearing Reid MINOS 
name rows 

No. Time Time to No Time Time to No. 
infeas. (secs) match Reid infeas. (secs) match tearing infeas. 

Adlittle 56 2 0.05 8 0.04 0.09 8 
Afiro 27 0 0.01 0 0.02 0.04 1 
Bandm 305 31 0.84 69 0.19 1.32 78 
Beaconfd 173 28 0.62 0.83 24 0.12 30 
Bore3d 233 10 0.20 0.37 8 0.12 10 
Brandy 220 22 0.33 52 0.16 0.64 68 
Capri 271 27 0.27 61 0,18 0.79 76 
Etamacro 400 37 0.39 50 0.28 0.85 67 
E226 223 16 0.44 31 0.17 0.47 38 
Forplan 161 31 1.25 2.35 13 0.21 
Ganges 1309 146 1.13 6.50 0 1.03 204 
Gfrd-pnc 616 12 0.36 1.81 2 0.66 2 
Grow7 140 0 0,21 0 0.16 0.16 0 
Growl5 300 0 0.46 0 0.43 0.43 0 
Grow22 440 0 0.68 0 0.87 0.87 0 
Israel 174 3 0.34 7 0.09 0.12 8 
Nesm 662 107 2.15 436 2.16 44.77 410 
Pilot.ja 940 113 2.15 129 1.84 2.73 314 
Pilotnov 975 165 6.12 11.03 133 2.29 
Pilot.we 722 104 1.54 9.92 69 2.36 131 
Pilot4 410 29 0.73 80 0.55 2.20 92 
Recipe 91 0 0.06 20 0.05 0.11 21 
Scagr7 129 6 0.08 14 0.05 0.18 24 
Scagr25 471 24 0.31 32 0.29 1.86 78 
Scfxml 330 46 0.35 59 0.23 0.52 58 
Scfxm2 660 95 0.78 118 0.69 1.18 122 
Scfxm3 990 143 1.25 177 1.35 2.36 186 
Scorpion 388 31 0.23 52 0.17 0.37 37 
Scrs8 490 14 0.54 33 0.61 1.09 38 
Scsdl 77 0 0.42 7 0.19 0.35 5 
Scsd6 147 0 0.74 14 0.42 0.79 34 
Scsd8 397 0 1.24 17 2.26 3.15 103 
Sctapl 300 7 0.36 33 0.19 0.86 51 
Sctap2 1090 7 2.66 51 2.02 6.16 72 
Scrap3 1480 3 3.80 61 3.53 11.54 86 
Sc205 205 0 0.11 0 0.07 0.07 0 
Seba 515 2 0.74 8 0.44 5.77 133 
Sharelb 117 28 0.13 31 0.08 0.11 73 
Share2b 96 10 0.09 0.19 4 0.04 4 
Ship041 402 5 1.73 4.37 3 1.06 14 
Ship04s 402 8 0.97 8 0.70 0.70 18 
Ship081 778 7 4.67 7.02 6 3.77 17 
Ship08s 778 12 1.76 13 1.89 1.91 25 
Shipl21 1151 14 6.24 33 6.79 7.81 51 
Ship12s 1151 15 2.55 35 2.85 3.57 52 
Sierra 1227 138 1.57 207 2.71 5.43 210 
Standata 359 6 2.22 11 0.53 0.59 29 
Standgub 361 6 2.24 11 0.59 0.66 
Standmps 467 30 2.34 51 0.69 1.52 
Vtp.base 198 12 0.15 51 0.09 1.30 59 
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m a y  a l so  r e q u i r e  less  t i m e  to  get  to  t h e  s a m e  n u m b e r  o f  i n feas ib i l i t i e s  even  w h e n  

the  t i m e  f o r  s i m p l e x  i t e r a t i o n s  is i n c l u d e d .  T h u s  t h e  R e i d  a l g o r i t h m  is m o r e  eff ic ient  

ove ra l l  in  20 o f  t he  cases .  Th i s  c a m e  to  us as a s u r p r i s e ;  we  e x p e c t e d  to  f ind  e v i d e n c e  

f o r  a b a n d o n i n g  the  R e i d  a l g o r i t h m  in f a v o u r  o f  t he  t e a r i n g  a l g o r i t h m ,  b u t  r a t h e r  

f o u n d  t h a t  b o t h  are  w o r t h y  a l g o r i t h m s .  

7. Using alternative algorithms 

W e  s h o w  in Tab l e s  7.1 to  7.4 t he  resu l t s  on  o u r  tes t  p r o b l e m s  o f  u s i n g  t h e  n o r m a l  

e q u a t i o n s  r e o r d e r i n g  a l g o r i t h m  i n s t e a d  o f  t he  p5 a l g o r i t h m .  T h e y  c o r r e s p o n d  to  

T a b l e s  6.1, 6.2, 6.4, 6.5, r e spec t i ve ly .  

Table 7.1 

The Harwell test problem attributes, using normal matrix algorithm 

Problem No. rows Block sizes 
(m) m . . . . . .  m, 

Sc50a 50 
Sc50b 50 
Blend 74 
Sc105 105 
Boeing2 t66 
Boeingl 351 
Stair 356 
Finnis 497 
Shell 536 
Perold 625 
BP 821 
GUB 929 

44 (1), 3 (2) 
41 (1), 3 (2), 1 (3) 
48 (1), 5 (2), 1 (4), 1 (5), 1 (7) 
91 (1), 7 (2) 
162 (1), 2 (2) 
345 (l), 3 (2) 
278 (1), 24 (2), 1 (3), 3 (4), 1 (6), 1 (9) 
483 (1), 7 (2) 
504 (1), 11 (2), 2(3), 1 (4) 
490 (1), 45 (2), 11 (3), 1 (4), 1 (8) 
625 (1), 49 (2), 15 (3), 8 (4), 3 (5), ! (6) 
903 (1), 1 (26) 

Legend: k(l) means k blocks of I rows. 

Table 7.2 

Harwell test problem results for the normal matrix algorithm without and with backtracking 

Problem No, Without t = 5 t = 10 t = 50 
name rows 

No. Time No. Time No. Time No. Time 
infeas. (secs) infeas. (secs) infeas. (secs) infeas. (secs) 

Sc50a 50 7 0.02 4 0.02 2 0.03 0 0.07 
Sc50b 50 4 0.02 4 0.02 2 0.02 0 0.06 
Blend 74 0 0.04 0 0.05 0 0.05 0 0.05 
Sc105 105 14 0.04 9 0.05 8 0.07 1 0.19 
Boeing2 166 20 0.11 11 0.13 10 0.17 5 0.56 
Boeingl 351 50 0.30 28 0.53 27 0.60 19 1.69 
Stair 356 156 0.31 145 0.40 122 0.54 81 2.19 
Finnis 497 56 0.28 35 0.32 32 0.40 19 1.58 
Powell 524 144 0.54 146 0.64 132 0.85 136 23.15 
Shell 536 62 0.29 38 0.33 35 0.42 26 1.85 
Perold 625 129 0.46 105 0.56 106 0.71 66 3.15 
BP 821 184 0.81 161 0.96 140 1.18 111 5.63 
GUB 929 27 0.79 27 0.81 22 0.87 22 0.83 



N.LM. Gould, J.K. Reid / Crash procedures 495 

Table 7.3 

Netlib test problem attributes, using normal equations algorithm 

Problem No. rows Block sizes 
( m )  m . . . . . .  m ,  

Adlittle 56 
Afiro 27 
Bandm 305 
Beaconfd 173 
Bore3d 233 
Brandy 220 
Capri 271 
Etamacro 400 
E226 223 
Forplan 161 
Ganges 1309 
Gfrd-pnc 616 
Grow7 140 
Growl5  300 
Grow22 440 
Israel 174 
Nesm 662 
Pilot.ja 940 
Pilotnov 975 
Pilot.we 722 
Pilot4 410 
Recipe 91 
Scagr7 129 
Scagr25 471 
Scfxml 330 
Scfxm2 660 
Scfxm3 990 
Scorpion 388 
Scrs8 490 
Scsdl 77 
Scsd6 147 
Scsd8 397 
Sctapl 300 
Sctap2 1090 
Sctap3 1480 
Sc205 205 
Seba 515 
Share lb  117 
Share2b 96 
Ship041 402 
Ship04s 402 
Ship081 778 
Ship08s 778 
Shipl21 1151 
Shipl2s 1151 
Sierra 1227 
Standata 359 
Standgub 361 
Standmps 467 
Vtp.base 198 

41 (1), 3 (2), 3 (3) 
23 (1), 2 (2) 
209 (I), 31 (2), 10 (3), 1 (4) 
115 (1), 16 (2), 5(3) ,  1 (4), 1 (7) 
155 (1), 17 (2), 3 (3), 1 (4), 2 (5), 1 (6), 1 (15) 
117 (1), t5 (2), 6(3) ,  1 (6), 1 (8), 1 (19), 1 (22) 
193 (1), 17 (2), 5 (3), 4 (4), 1 (13) 
319 (1), 29 (2), 5 (3), 2 (4) 
200 (1), 6 (2), 2 (3), 1 (5) 
127 (1), 7 (2), 1 (3), 1 (4), 1 (13) 
1056 (1), 31 (2), 13 (3), 6 (4), 1 (5), 9 (12), 1 (15) 
560 (1), 25 (2), 2 (3) 
140 (1) 
300 (1) 
440 (I) 
174(1) 
652 (1), 5 (2) 
705 (1), 69 (2), 14 (3), 5 (4), 1 (5), 1 (6), I (7), 1 (17) 
719 (1), 79 (2), 13 (3), 2 (4), 1 (5), 1 (6), 1 (7), 1 (8), I (25) 
564 (1), 47 (2), 12 (3), 1 (4), 2 (5), 1 (6), 1 (8) 
332 (1), 26 (2), 3 (3), 3 (4), 1 (5) 
69 (1), 7 (2), 2 (4) 
105 (1), 12 (2) 
348 (1), 60 (2), 1 (3) 
261 (1), 21 (2), 4(3) ,  1 (4), 1 (5), 1 (6) 
508 (1), 44 (2), 9(3) ,  3(4) ,  1 (5), 2(6),  1 (8) 
752 (1), 62 (2), 14 (3), 7 (4), 1 (5), 4 (6), 1 (7), 1 (8) 
175 (1), 18 (2),6 (3), 8 (4), 6 (5), 1 (6),2 (7), 2 (9), 1 (11), 2 (14), 1 (20) 
412 (1), 39 (2) 
6 4 ( 1 ) , 5 ( 2 ) ,  1(3) 
117 (1), 11 (2), 1 (3), 1 (5) 
319 (1), 39 (2) 
300 (1) 
1o9o (1) 
1480 (1) 
175 (1), 15 (2) 
513 (1), 1 (2) 
64(1),  6(2),  9(3) ,  1 (4), 2(5)  
83 (1), 5 (2), 1 (3) 
278 (1), 1 (2), 1 (3), 1 (4), 1 (23), 1 (43), 1 (49) 
304(1), 4(2),  1 (3), 2(5),  2 (17), 1 (43) 
507 (1), 9 (2), 3 (9), 3 (16), 3 (18), 3 (19), 1 (67) 
641 (l) ,  8 (2), 3 (8), 3 (10), 1 (67) 
957 (1), 8 (2), 1 (3), 1 (5), 1 (60), 1 (110) 
992 (1), 9 (2), 1 (6), 2 (7), 1 (11), 1 (110) 
1004 (1), 75 (2), 23 (3), 1 (4) 
335 (1), 9 (2), 2 (3) 
335 (1), 10(2), 2 (3) 
446 (1), 4(2),  3 (3), 1 (4) 
160(1), 17 (2), 1 (4) 

Legend: k(I) means k blocks of 1 rows. 
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Table 7.4 

Netlib test problem results for the normal equations algorithm without and with backtracking 

Problem No. Without t = 5 t = 10 t = 50 

name rows 

No. Time No. Time No. Time No. Time 

infeas. (secs) infeas. (secs) infeas. (secs) infeas. (secs) 

Adlittle 56 7 0.03 8 0.03 5 0.04 0 0.19 
Afiro 27 0 0.01 0 0.01 0 0.01 0 0.01 

Bandm 305 67 0.21 54 0.25 41 0.32 30 1.22 

Beaconfd 173 30 0.20 29 0.21 28 0.23 23 0.80 
Bore3d 233 4 0.13 4 0.13 4 0.14 4 0.24 

Brandy 220 49 0.15 45 0.16 43 0.20 36 0.76 

Capri 27t 84 0.17 62 0.21 60 0.26 48 1.20 

Etamacro 400 64 0.23 61 0.27 56 0.35 30 1.29 
E226 223 28 0.19 17 0.20 15 0.24 7 1.13 

Forplan 161 14 0.21 7 0.21 7 0,23 6 4.40 
Ganges 1309 116 0.74 90 0.80 76 0.94 48 2.90 
Gfrd-pnc 616 3 0.27 2 0.28 2 0.30 2 0.53 

Grow7 140 0 0.12 0 0.13 0 0.13 0 0.16 
Growl5  300 0 0.27 0 0.27 0 0.28 0 0.36 

Grow22 440 0 0.40 0 0.40 0 0.42 0 0.54 

Israel 174 8 0.32 6 0.33 6 0.35 13 0.64 

Nesm 662 123 0.66 60 0.77 75 1.04 37 4.16 

Pilot.ja 940 163 0.98 145 1.10 136 1.35 140 7.45 
Pilotnov 975 208 0.91 196 1.04 190 1.33 170 5.95 
Pilot.we 722 130 0.52 115 0.60 114 0.76 88 4.48 
Pilot4 410 69 0.37 46 0.41 49 0.50 35 2.29 

Recipe 91 1 0.05 0 0.05 0 0.05 0 0.07 

Scagr7 129 17 0.06 16 0.07 15 0.09 3 0.40 

Scagr25 471 76 0.21 70 0.25 69 0.34 20 1.52 
Scfxml 330 44 0.23 37 0.26 35 0.34 26 1.17 

Scfxm2 660 101 0.45 89 0.51 83 0.66 47 2.39 

Scfxm3 990 146 0.68 129 0.75 120 0.96 69 3.56 

Scorpion 388 57 0.15 80 0.19 72 0.25 57 1.04 
Scrs8 490 25 0.26 16 0.28 16 0.32 6 0.79 
Scsdl 77 1 0.09 1 0.09 1 0.10 0 0.47 

Scsd6 147 6 0.16 5 0.16 3 0.18 4 0.42 

Scsd8 397 2 0.37 1 0.37 0 0.39 0 0.79 

Sctapl  300 33 0.15 32 0.17 31 0.22 23 0.73 

Sctap2 1090 51 0.65 50 0.70 50 0.80 50 2.41 

Sctap3 1480 61 0.93 53 0.98 54 1.10 54 2.90 
Sc205 205 32 0.08 18 0.10 16 0.13 1 0.61 

Seba 515 9 1.57 9 1.58 9 1.61 9 1.94 
Sharelb  117 49 0.07 31 0.09 15 0.13 6 0.72 

Share2b 96 15 0.06 15 0.07 14 0.09 2 0.93 
Ship041 402 71 0.30 70 0.31 61 0.37 69 1.01 

ShipO4s 402 34 0.26 33 0.26 23 0.30 32 0.78 

Ship081 778 60 0.63 59 0.64 54 0.71 37 1.59 
ShipO8s 778 20 0.48 17 0.48 21 0.53 19 1.08 

Shipl21 1151 52 0.98 52 0.99 46 1.04 t2 2.07 

Shipl2s  1151 27 0.69 27 0.70 24 0.76 24 1.36 

Sierra 1227 274 0.75 217 0.97 197 1.31 165 6.45 
Standata 359 14 0.22 11 0.25 10 0.29 10 0.87 

Standgub 361 14 0.23 l 1 0.25 10 0.30 10 0.90 

Standmps 467 22 0.32 17 0.33 17 0.38 6 1.80 
Vtp.base 198 51 0.13 39 0.16 32 0.22 22 0.84 
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It may be seen from Tables 7.1 and 7.3 (when compared with Tables 6.1 and 6.4) 
that the normal equations algorithm is not quite so successful in obtaining small 
blocks, though the vast majority of them still have order less than 5. Note that the 
block sizes are not those of the bidiagonal form (5.1), but those of the form (5.2) 
obtained after applying row and column permutations to A. 

The data in Tables 7.2 and 7.4 shows that, as with the p5 algorithm, some 
backtracking is worthwhile and that any value of t between 5 and 10 would be 
suitable. We have again chosen to recommend 5. 

I f  the times without backtracking are compared (Table 6.2 with Table 7.2 and 
Table 6.5 with Table 7.4), it may be seen that the two algorithms usually take about 
the same time, but that occasionally p5 is much slower. This may be a quirk of  the 

Harwell implementation, which was designed for square matrices. Examples illus- 
trating this slowness are GUB, Standgub, and Standmps. In the case of  Standgub 
and Standmps, the proport ion of the total time taken by this part of the calculation 
is quite high (see Table 8.1). 

Taken as a whole, we view the two algorithms as comparable.  In terms of 
the number  of  infeasibilities, the p5 algorithm is usually superior but this must 

be counterbalanced by its greater times. Some overall comparisons are made in 
Section 8. 

Other variants that we have tried have been less successful. Modifying the p5 
algorithm to favour sparse columns early (see the second paragraph of Section 5) 

on the whole gave poorer  results. We also tried to make the backtracking algorithm 
with high t values competitive by limiting such backtracking to once every ½t rows, 
but found that this lost too much of the gains that are available from backtracking. 

8. Comparison between the new algorithms 

Finally, we use the bases generated by our crash algorithms as an initial basis for 

the solution of the linear programming problems (6.1) and (6.2). We report on the 
progress of the linear programming code LA04 in Tables 8.1, 8.2 and 8.3; we give 

details of  the number  of iterations and timings to obtain a feasible point and an 
optimal solution for the problems along with the optimal objective function value 
obtained. LA04 is a standard simplex code, maintaining and updating a sparse 
triangular factorization of the basis (see Reid, 1982) and using complete pricing 

together with a steepest-edge strategy (see Goldfarb and Reid, 1977) as a pricing 
mechanism. We selected and solved a subset of  the larger problems from our two 
test sets and solved the unscaled versions of  the problems. 

A direct comparison is also made between the three methods in the tables. Any 
entry prefixed by * is the best of the three or within 20% of the best, any entry 
prefixed by ? is within a factor of 2 of the best, and the remainder are not labelled. 
The numbers of cases in these categories for the four columns of Table 8.1 are 

18-5-5, 10-11-7, 17-10-1, 15-11-2; for Table 8.2 they are 6-8-14, 13-8-7, 18-7-3, 21-6-1; 
and for Table 8.3 they are 12-3-13, 13-7-8, 10-10-8, 10-8-10. Thus both the p5 tearing 
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Table 8.1 

Details of LP run on test problems using the p5 tearing crash algorithm with t = 5 backtracking 

Problem Feasibility phase Feasibility and optimality phase 

Iterations Time Iterations Time Optimal value 
(secs) (secs) obtained 

BP * 531 * 28.65 * 1858 * 119.92 5501.8494 
Capri * 56 * 0.86 * 101 * 1.47 2690.0120 
Etamacro * 94 * 1.59 * 492 t 8.17 -310.1144 
Finnis * 187 t 3.35 * 374 * 6.47 112447.8754 
Forplan 129 3.70 t 208 t 5.02 -605.1331 
Ganges 222 6.50 t 511 t 1 6 . 3 5  -109586.2817 
Gffd-pnc 39 t 1.17 t 611 t 9.66 6902236.5352 
GUB * 493 t 25.11 * 1007 t 52.48 2185196.7563 

Nesm 686 35.57 t 2232 t 1 2 4 . 0 8  14076041.1386 
Pilot4 * 213 * 5.98 * 931 * 35.78 -2581.1403 
Powell t 160 4.93 * 263 * 7.10 553329.0897 
Scagr25 * 43 * 1.02 * 212 * 3 .61  -14753431.8152 
Scfxm2 * 354 * 8.69 * 630 * 1 5 . 7 1  36660.2603 
Scfxm3 t 554 t 18.68 * 956 * 32.39 54901.2525 
Scorpion * 43 t 0.81 * 103 * 1.59 1878.1234 
Scrs8 t 219 t 4.66 * 421 * 9.68 904.2970 
Scsd8 * 1 t 3.08 t 582 t 25.00 905.0000 
Sctap2 * 7 * 4.11 t 542 t 1&22 1724.8071 
Sctap3 * 3 * 6.08 t 706 t 30.55 1424.0000 
Seba * 77 * 2.82 * 650 * 9.63 15711.6009 
Shell t 72 t 2.24 * 302 * 5.82 1208825346.0000 
Ship081 * 14 7.55 t 572 t 28.68 1909055.1849 
Ship08s t 20 t 3.51 * 262 * 9.39 1920098.1832 
Shipl21 * 22 t 11.67 * 283 * 24.49 1470187.9323 
Shipl2s * 24 t 5.19 * 234 * 1 1 . 6 5  1489236.1478 
Sierra * 246 * 10.79 t 676 t 23.59 15394363.5594 
Standgub * 6 2.68 102 3.87 1257.6995 
Standmps 184 5.15 t 298 6.69 1406.0175 

* Best of the three algorithms or within 20% of the best. 
t Within factor 2 of the best. 

a l g o r i t h m  a n d  t h e  R e i d  a l g o r i t h m  a p p e a r  to  b e  " w i n n e r s " ,  b u t  e a c h  a l g o r i t h m  

o u t p e r f o r m s  t h e  o t h e r s  in  a s i g n i f i c a n t  n u m b e r  o f  c a s e s .  U n f o r t u n a t e l y ,  t h e r e  d o e s  

n o t  s e e m  to  b e  a n y  p a r t i c u l a r  p a t t e r n  to  e x p l a i n  t h i s  b e h a v i o u r .  T i m i n g s  p r o v i d e  a 

f a i r e r  c o m p a r i s o n  b e c a u s e  t h e  t e a r i n g  a l g o r i t h m ,  p a r t i c u l a r l y  w i t h  t h e  p5 a l g o r i t h m  

in  u s e ,  is s l o w e r  a n d  d o e s  n o t  p r o d u c e  a n  in i t i a l  b a s i s  t h a t  is a p e r m u t a t i o n  o f  a 

t r i a n g u l a r  m a t r i x  ( t h o u g h  in  p r a c t i c e  it is n e a r l y  s o ) .  T h i s  in t u r n  i m p l i e s  t h a t  e x t r a  

c o m p u t a t i o n  is r e q u i r e d  to  c a l c u l a t e  t h e  in i t i a l  s t e e p e s t - e d g e  w e i g h t s .  
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Table 8.2 

Details of LP run on test problems using Reid's crash algorithm 
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Problem Feasibility phase Feasibility and optimality phase 

Iterations Time Iterations Time Optimal value 
(secs) (secs) obtained 

BP t 785 t 44.94 * 2010 * 134.89 5501.8494 
Capri 159 t 1.36 t 184 * 1.71 2690.0119 
Etamacro 216 t 2.58 * 486 * 6.42 -310.1161 
Finnis t 275 t 3.84 * 430 * 6.28 112447.8805 
Forplan 78 1.49 * 162 * 2.96 -605.1328 
Ganges * 1 * 0.90 * 400 * 14.62 -109586.5268 
Gfrd-pnc 210 3.22 * 421 * 6.71 6902236.5352 

GUB * 451 * 16.18 * 957 * 41.98 2185196.7563 
Nesm 1257 59.04 t 2755 t 129.10 14076032.7917 
Pilot4 t 272 * 6.36 * 995 * 37.52 -2583.0383 
Powell * 108 * 2,20 * 312 * 6.73 520039.4539 
Scagr25 194 3,42 t 351 t 6.24 -14753431.8152 
Scfxm2 t 393 t 9A8 * 691 * 17.50 36660.2603 
Scfxm3 t 579 t 18.03 * 982 * 33.30 54901.2525 
Scorpion t 65 * 0.67 251 t 2.65 1878.1247 
Scrs8 333 6.10 t 537 * 11.28 904.2970 
Scsd8 18 * 2.43 1078 43.80 905.0000 
Sctap2 188 t 6.29 * 329 * 10.29 1724.8071 
Sctap3 266 t 11.74 * 444 * 18.07 1424.0000 
Seba 393 8.62 t 949 t 13.43 15711.6009 
Shell * 50 * 1.36 t 442 i 7.73 1208825346.0000 
Ship081 * 13 * 3.43 * 428 * 19.44 1909055.1849 
Ship08s t 27 * 2.09 * 249 * 8.02 1920098.1832 
Shipl21 47 * 7.17 767 t 43.28 1470187.9323 
Ship12s 51 * 3.61 t 366 * 13.80 1489236.1478 
Sierra * 252 * 9.46 * 510 * 17.22 15402297.4208 
Standgub t 12 * 0.62 * 46 * 1.07 1257.6995 
Standmps 145 2.74 * 168 * 3.13 1406.0175 

* Best of the three algorithms or within 20% of the best. 
t Within factor 2 of the best. 

9. Conclusions 

W e  h a v e  p r o p o s e d  t h r e e  c r a s h  a l g o r i t h m s ,  o n e  b a s e d  o n  f i n d i n g  a b a s i s  m a t r i x  t h a t  

is a p e r m u t a t i o n  o f  a n  u p p e r - t r i a n g u l a r  m a t r i x  a n d  t h e  o t h e r s  b a s e d  o n  r e s t r u c t u r i n g  

t h e  r e c t a n g u l a r  se t  o f  e q u a t i o n s  to  a b l o c k  l o w e r - t r i a n g u l a r  f o r m  a n d  t h e n  u s i n g  a 

t e a r i n g  t e c h n i q u e .  F o r  t h e  t e a r i n g  t e c h n i q u e s ,  w e  f o u n d  t h a t  a m o d e s t  a m o u n t  o f  

b a c k t r a c k i n g  is w o r t h w h i l e .  O u r  e x p e r i m e n t a l  r e s u l t s  i n d i c a t e  t h a t  e a c h  o f  t h e  

a l g o r i t h m s  is s u p e r i o r  t o  t h e  o t h e r s  a b o u t  a t h i r d  o f  t h e  t i m e .  I n  t e r m s  o f  t h e  n u m b e r  

o f  i n f e a s i b i l i t i e s ,  t h e y  s h o w  b e t t e r  p e r f o r m a n c e  t h a n  t h e  s i m p l e  c r a s h  a l g o r i t h m  in  
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Table 8.3 

Details of LP run on test problems using the normal equations crash algorithm with t = 5 backtracking 

Problem Feasibility phase Feasibility and optimality phase 

Iterations Time Iterations Time Optimal value 
(secs) (secs) obtained 

BP t 887 t 51.16 * 2193 * 142.15 5501.8494 
Capri 140 t 1.44 329 3.42 2690.0019 
Etamacro * 112 * 1.77 t 622 t 9.81 -310.1146 
Finnis * 158 * 2.69 * 392 * 6.52 112447.8804 
Forplan * 13 * 0,54 371 7.28 -605.1331 
Ganges 69 3,67 t 683 t 2 7 . 6 1  -109586.5124 
Gfrd-pnc * 5 * 0.81 * 434 * 7.13 6902236.5352 
GUB * 458 * 17.17 * 916 * 41.18 2185196.7563 
Nesm * 229 * 8.83 * 1710 * 78.47 14076041.2188 
Pilot4 1230 50.35 2231 97.34 -2581.1402 
Powell 344 7.78 680 1 6 . 9 8  555678.5230 
Scagr25 155 2.54 t 304 t 4.74 -14753431.8152 
Scfxm2 * 324 * 7.47 * 619 * 1 4 . 6 6  36660.2603 
Scfxm3 * 399 * 12.44 * 1062 * 33.84 54901.2525 
Scorpion 89 1.36 221 t 2.89 178.1247 
Scrs8 * 116 * 2.48 * 446 * 9.57 904.2970 
Scsd8 t 2 * 2.13 * 378 * 14.50 905.0000 
Sctap2 208 10.13 t 569 21.63 1724.8071 
Sctap3 299 20.68 ? 783 40.29 1424.0000 
Seba 463 12.15 t 1010 t 1 7 . 6 1  15711.6009 
Shell 101 t 2.44 * 323 * 5.81 1208825346.0000 
Ship081 59 t 5.94 t 823 39.25 1909055A849 
Ship08s * 17 * 2.47 t 363 t 1 2 . 7 1  1920098,1832 
Shipl21 52 ? 8.77 986 52.78 1470187.9323 
Shipl2s * 27 * 3.81 t 415 t 1 5 . 6 3  1489236.1478 
Sierra t 374 t 13.67 1172 36.53 15394362.5804 
Standgub 15 t 0.90 128 2.24 1257.6995 
Standmps * 36 * 1.27 t 245 t 4.11 1406.0175 

* Best of the three algorithms or within 20% of the best. 
t Within factor 2 of the best. 

M i n o s  o n  m o s t  ( b u t  n o t  a l l )  o f  o u r  t e s t  p r o b l e m s .  B a s e d  o n  t h i s  s a t i s f a c t o r y  

e x p e r i e n c e ,  w e  p r o p o s e  to  p l a c e  c o d e  f o r  t h e  t h r e e  a l g o r i t h m s  in  t h e  H a r w e l l  

S u b r o u t i n e  L i b r a r y .  
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