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In this paper we propose efficient new linesearch algorithms for solving large scale 
unconstrained optimization problems which exploit any local nonconvexity of the ob- 
jective function. Current algorithms in this class typically compute a pair of search 
directions at every iteration: a Newton-type direction, which ensures both global and fast 
asymptotic convergence, and a negative curvature direction, which enables the iterates to 
escape from the region of local non-convexity. A new point is generated by performing a 
search along a line or a curve obtained by combining these two directions. However, in 
almost all i f  these algorithms, the relative scaling of the directions is not taken into 
account. 

We propose a new algorithm which accounts for the relative scaling of the two 
directions. To do this, only the most promising of the two directions is selected at any 
given iteration, and a linesearch is performed along the chosen direction. The appro- 
priate direction is selected by estimating the rate of decrease of the quadratic model 
of the objective function in both candidate directions. We prove global convergence 
to second-order critical points for the new algorithm, and report some preliminary 
numerical results. 
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76 N. I. M. GOULD et al. 

1. INTRODUCTION 

We consider the unconstrained minimization problem 

where f is a real valued function on Rn. We assume throughout that 
both the gradient g(x) = Ox f(x) and the Hessian matrix H(x) = 
V,, f(x) off exist and are continuous. Our aim is to define a robust 
and efficient algorithm able to handle large scale problems. 

Many algorithms have been proposed for solving this class of 
problems. In this paper we intend to concentrate on a particular aspect 
which we believe to play an important role in designing efficient 
algorithms, namely the effective use of the second order information 
contained in the Hessian matrix. It is now accepted that computing 
second derivatives for a large class of optimization problems is not 
only feasible but relatively inexpensive. As a result, more information 
about the problem is available than simply from the gradient, and one 
would like to exploit it. To these ends, we intend to exploit negative 
curvature directions, (i.e., directions d such that d T ~ ( x ) d  < 0), when 
they exist. Along these directions, the quadratic model of the objective 
function is unbounded from below, and this indicates the potential 
for a large reduction of the objective function. Algorithms which use 
such negative curvature directions can be made to converge globally 
to a second-order critical point using either a linesearch (see, e.g. 
[4,7,8, 13,15 - 171) or a trust region (see, e.g. [5 ,  181) approach. 

In what follows we concentrate on linesearch algorithms. At each 
iteration, such algorithms determine a pair of descent directions, 
(sk, dk) where, loosely speaking, sk represents a direction calculated 
from positive curvature information given by the Hessian matrix, and 
dk is a negative curvature direction. These two directions are corn- 
bined to define trajectories of the form 
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NEGATIVE CURVATURE DIRECTIONS 77 

[7,8]. A new point is determined by taking a "suitable" step along the 
relevant trajectory. Unfortunately, the relative scaling of sk and dk is 
not taken into account when defining these trajectories. This may be 
a serious drawback as, for example, too little weight may be given to 
the direction of negative curvature, despite t h s  direction being the 
more significant for the minimization process. Indeed, ideally the two 
directions sk and dk should be exploited in different ways. A unit step 
along the Newton-type sk is normally sought, while the step along dk 
typically requires a more sophisticated linesearch. 

The aim of this paper is to propose a new algorithmic framework 
which tries to overcome - or at least to reduce - the above-mentioned 
drawbacks while at the same time still ensuring global convergence 
towards second order critical points. Our framework is based on the 
simple idea of using only one of the two directions sk or dk at any given 
iteration. This enables us to separate the contributions from the two 
directions, and to determine the steplength using a linesearch pro- 
cedure appropriate for the particular direction selected. A standard 
backtracking Armjio-type linesearch might be used along the Newton- 
type direction, while one which steps forward as well as backward 
along the the negative curvature direction may be useful in escaping 
rapidly from regions of nonconvexity - the latter strategy helps to limit 
problems which arise because, unlike for the Newton-type direction sk, 
we do not know of any natural scaling for the negative curvature dk. 

The crucial issue is then which direction to use at each iteration. It is 
evident that an efficient strategy should be based on the attempt to 
determine which is the most promising direction or, equivalently, to 
deduce whether the positive curvature information is more significa- 
tive than the negative curvature information or vice versa. The rule we 
adopt is based on the rate of decrease of the quadratic model of the 
objective function and it is able to guarantee the global convergence 
of the algorithm towards second order critical points. In particular 
we compare the decrease of the quadratic model along the negative 
curvature direction by performing a unit steplength along a normal- 
ized dk, with the rate of decrease that we would obtain by performing 
a unit steplength along the Newton direction. 
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78 N. I. M. GOULD et al. 

The idea of selecting either a Newton-type direction or a direction 
which contains negative curvature information of the objective func- 
tion, at each iteration, is not new. In particular the algorithms pro- 
posed in [6] and [17] are similar in aim to our approach. Both these 
algorithms use as criterion for selecting a Newton-type direction or 
an alternative the simple fact that a negative curvature direction exists 
(or that the Newton-type direction can not be computed). 

More specifically, Fletcher and Freeman [6] use a simple negative 
curvature direction in preference to the Newton direction whenever 
the former can be found, but give no convergence details. Mukai and 
Polak 1171 propose that a combination of the steepest descent and an 
eigenvector corresponding to the minimum eigenvalue of the Hessian 
matrix is used, whenever the Hessian matrix is indefinite. The use of 
this combination allows [17] to ensure global convergence to second 
order stationary points, but of course suffers from the arbitrary scal- 
ing of these two directions. As far as we are aware, the algorithm 
described in this paper is the first linesearch-type algorithm which 
is globally convergent to second order stationary points and which 
is free to choose between a gradient related Newton-type direction 
and a pure negative curvature direction (not necessarily gradient 
related). 

Since we are interested in solving large scale problems, and thus 
cannot rely on matrix factorizations, we concentrate on iterative meth- 
ods to compute the search directions. In particular, we consider the 
preconditioned conjugate gradient and Lanczos methods, and exploit 
the fact that they are closely related. 

The proposed algorithm has been tested on a set of test functions 
from CUTE collection [I]. Its numerical behaviour has been compared 
with the one of an algorithm based on the curve (1.2) which has been 
shown to be very efficient in [I31 and [14] when solving large scale 
unconstrained problems. The preliminary numerical testing we report 
here shows that the approach proposed in this paper is promising. 

The paper is organized as follows. In Section 2 we describe the 
details of the algorithm we propose, and we prove the convergence 
of the iterates to second order points in Section 3. In Section 4 we 
describe how we compute the search directions used in our algorithm 
and finally report in Section 5 the results of our numerical 
experiments. 
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NEGATIVE CURVATURE DIRECTIONS 79 

2. THE ADAPTIVE LINESEARCH ALGORITHM 

In this section we describe our new algorithmic framework, and state 
the conditions required on the search directions in order to ensure the 
global convergence of the algorithm to second-order critical points, 
that is points where the gradient of the objective function is zero and 
where its Hessian matrix is positive semidefinite. We first state the 
required conditions on the search directions used in our algorithm. 

Let sk be a gradient-related descent direction, that is a direction for 
which the following conditions are satisfied. 

CONDITION 1 There exist positive numbers cl and c2 such that 

where gk = g  (xk )  and I /  . 1 1  is the Euclidean norm. Furthermore, let dk be 
a direction of suficient negative curvature, that is a direction for which 
the following conditions are satisfied. 

CONDITION 2 The directions idk )  are such that, for some 19 E (0, I ) ,  

where 77 : R+ + R+ is a function such that ~ ( t )  + 0 as t 4 0 and Xmin(Hk) 
is the leftmost eigenvalue of the Hessian matrix Hk= H(xk). 

Condition 1 is standard condition on the Newton-type directions. 
The last inequality of Condition 2 is needed to ensure the second-order 
global convergence of the algorithm and, roughly speaking, it requires 
that the direction dk has some resemblance to an eigenvector of the 
Hessian matrix corresponding to its leftmost eigenvalue. This require- 
ment was introduced in [13] and is an extension of the assumption 
usually required to obtain second order convergence (see [16]). It 
indicates that the contribution of a direction dk which has a strict 
connection with an eigenvector of the Hessian matrix corresponding 
to the most negative eigenvalue is essential only when the gradient 
is small. 

We now describe the details of our algorithm. We denote the 
quadratic model of the function f ( x )  - f ( x k )  by m(xk + w) = 
(1/2)wTHkw + g i ~ .  
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80 N. I. M. GOULD el al. 

2.1. Adaptive Linesearch Algorithm 

Step 0 Initialisation The initial point xo E Rn and the constants 
/3 E (0, I), 7 > 0 and p E (0, (112)) are given. Set k = 0 

Step 1 Test for convergence Compute g ( x k )  If 1 1  g (xk)  1 1  = 0 stop. 

Step 2 Computation and choice of the search direction Compute the 
search directions sk and dk. If dk = 0, execute Step 3. Otherwise, rescale 
dk such that 1 1  dk(l 1. If 

then execute Step 3, otherwise execute Step 4. 

Step 3 Linesearch in a gradient-related direction Set pk=sk and 
compute ak=,@ where e is the smallest nonnegative integer such 
that 

Step 4 Linesearch in a negative curvature direction Set pk=dk and 
choose ak > 0. If 

compute ak=@ak, where l is the largest non-positive integer such 
that 

and 

Otherwise compute a k  =,@ak, where l is the smallest positive integer 
such that (2.4) holds. 

Step 5 New iterate Set xk+ I = xk + akpk, k = k + 1 and go to Step 1. 
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NEGATIVE CURVATURE DIRECTIONS 81 

Following [4,6- 8,13,15 - 171, at each iteration we compute a pair 
of descent directions (sk,dk).  The distinguishing feature of our new 
approach is that, instead of producing the new trial point along a 
combination of these directions, we select only one of the two direc- 
tions (see Step 2),  and the new point is chosen as 

where pk is the direction sk or dk/ 1 1  dk 1 1 .  We aim to select the best 
of these two directions by considering the rate of decrease of the 
model along both directions. In other words, we intend to choose sk 
whenever 

If we assume that sk is exactly the Newton direction then we know that 

On the other hand, the scaling of the problem along dk is unknown, 
and we may as well choose to normalize dk, as in Step 2. Using this 
normalization, and substituting (2.7) in (2.6), we obtain our test (2.1) 
with T = 2. 

The reason behind our choice of this particular test derives from the 
possibility of ensuring good global convergence properties for the 
algorithm even if a nongradient-related negative curvature direction 
is used. Classical approaches to unconstrained optimization indicate 
that global convergence towards a first order stationary point can be 
guaranteed by taking "suitable" steps along good descent directions, 
namely directions which ensure, at least locally, a sufficient decrease of 
the objective function. This property is ensured by all the directions 
which guarantee a significant decrease of a local model of the objective 
function at any nonstationary point. In fact, the widely used gradient- 
related directions sk are defined in a way that a unit steplength along 
their normalization sk/ll sk 1 1  produces a sufficient decrease of the linear 
model of the objective function. The role of a negative curvature 
direction is not related to the linear model of the function, but instead 
aims to exploit the local nonconvexity of the objective function. Its 
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82 N. I. M. COULD et al. 

usefulness must be evaluated by considering the quadratic model of 
the objective function. Therefore, in our algorithm, we select the 
normalized negative curvature direction dk if the decrease of the 
quadratic model obtained by performing a unit steplength along this 
direction is at least a fraction of the decrease of the linear model 
obtained by performing a unit steplength along sk/ ( 1  sk (1. This test, 
recalling that sk is a gradient-related direction, implies that the 
negative curvature direction produces a significant reduction of the 
quadratic model of the objective function and guarantees that it can be 
used as search direction without preventing the global convergence 
towards first order stationary points. Furthermore the structure of this 
test and the assumptions on the direction dk are able also to ensure 
the convergence towards second-order critical points 

If there is no negative curvature direction or if the gradient-related 
direction looks more profitable, we perform a backtracking linesearch 
(Step 3). This linesearch is of the Armijo variety, but includes a 
second-order term to encourage convergence to second-order critical 
points. On the other hand, if the negative curvature direction appears 
more attractive, then we perform a specialized linesearch (Step 4) that 
allows forward (k 5 0) or backward (e > 0) stepping, starting from a 
guess uk. We allow forward steps because our guess Q may not reflect 
the local scaling of the problem, and because of the potential for a 
large decrease of the objective function along negative curvature 
directions. For future reference, we note from (2.4), (2.5) and (2.2) 
that, in all cases, we obtain a steplength a k  for which 

The flexibility in choosing ffk may be exploited for improving numeri- 
cal performance. For instance, we may choose uk as the steplength 
9 that was computed at the previous linesearch along a negative 
curvature direction, in the hope that, in the mean time, the problem's 
scaling has not significantly changed. 

We also emphasize that the test (2.1) is scale invariant, that is it 
does not depend on the actual length of sk (nor dk, since this latter 
direction is normalized before the test). 

We now prove that the linesearch procedures are well defined. 
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NEGATIVE CURVATURE DIRECTIONS 83 

LEMMA 2.1 Assume that sk is a descent direction and that dk is a 
normalized descent negative curvature direction. Suppose furthermore 
that f is bounded below on the level set Ro = { x  E Rn If ( x )  I f (xo)) .  
Then there exists an a k  > 0 such that (2.8) is satisfied. 

Proof Whenever pk = sk we distinguish two cases: 

(i) scHksk 2 0; 
(ii) s,THksk < 0. 

In Case (i), (2.8) becomes 

which is the standard Armijo rule, while in Case (ii) (2.8) becomes 

In order to show that there exists an a k >  0 satisfying (2.10) we 
proceed by contradiction; if this inequality (2. 10) were never satisfied, 
then there exists a sequence ai converging to 0 as j +  cc such that 

Using the mean-value theorem, and dividing both sides by cq (2.1 1) 
can be rewritten as 

where hj E (0,l). Therefore we have 

which, for j  + cc, yields 

contradicting the fact that p E (0, (112)) and glsk < 0. 
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84 N. I. M. GOULD et a1 

Whenever pk = dk, (2.8) becomes 

If test (2.3) is satisfied, the existence of a finite e is implied by (2.12) 
and the assumption that f is bounded below. Assume now that (2.3) 
fails. In order to show that there exists an a k  > 0 satisfying (2.12), 
we again proceed by contradiction. If the inequality (2.12) is never 
satisfied, then there exists a sequence aj converging to 0 as j--+ cm 
such that 

By the mean-value theorem, (2.13) can be rewritten as 

where 6,. E (0,l). Dividing both sides by aj we obtain 

Therefore we have that 

Hence it follows that 

where ( Y ~ - +  0 as j+ oo. This contradicts the fact that the left hand 
side of (2.14) is positive, since p E (0, (112)) and dkHkdk < 0. W 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
3
:
3
1
 
3
 
D
e
c
e
m
b
e
r
 
2
0
1
0



NEGATIVE CURVATURE DIRECTIONS 85 

3. CONVERGENCE ANALYSIS 

In this section we study the convergence properties of our algorithm. 
In particular we prove that, under Conditions 1 and 2 the iterates 
converge to second-order critical points. 

THEOREM 3.1 Let f be twice continuously diferentiable, let xo be given 
and suppose that the level set Ro = {x E Rn I f  (x) 5 f (xo)) is compact. 
Assume that the directions sk and dk satisfy Conditions 1 and 2. Let 
{xk) be the points produced by the Algorithm. Then, every limit point 
x, of {xk} belongs to Ro and satisfy g(x,) = 0. Moreover H(x,) is 
positive semidefinite. 

Proof Because of the compactness of RO, we know that the sequence 
of iterates {xk) admits at least one limit point, and that all limit points 
belong to Ro. Suppose now that x, is a limit point. Let K, and Kd be 
index sets of two subsequences of iterates converging to x, such that 

(i) for all k E K,, (2.1) holds and hence 

and 
(ii) for all k E Kd, (2.1) fails and hence 

Note that one of these index sets may be finite, but not both. 

In order to prove that g(x,)=O we proceed by contradiction. 
Suppose that 1 1  gk I/ > E for all k E K, U Kd, 

Suppose first that K, is infinite. Then we have 

for each k~ K,, and hence that 
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b 

It follows that a k  (g;sk 1 -1 0, as k -1 CQ, k E K,. Therefore either 
ak+O or lg;skI -+ 0 as k + m ,  ~ E K , .  

Suppose first that ak -+ 0 as k -+ CO, k E K,. Since 

then by the mean-value theorem we have, for k E K,, 

for some Sk E ( 0 , l ) .  Dividing by ak/P and by 1 )  sk 1 )  , we obtain 

for k E K,. Now, we can extract a subsequence whose indices lie in the 
set K[, K, such that 

Sk xk -' X ,  and - 
llskll -1 

for ~ E K : .  From (3.3), taking the limit as k--, CQ, k~ Ki we obtain 
that 

Since 1 - p  > 0 and g[sk < 0 for all k E K[, we have that gT(x,)s, = 0 
which implies, by using Condition 1, g ( x J  = 0 and this contradicts the 
fact that I(gk 1) > E .  Hence a k  cannot tend to zero for k c  K,. This 
implies that there exists a subsequence K: E K, such that lg;skI -1 0 as 
k -1 m, k E K f .  Condition 1 and the continuity of the gradient imply 
that g(x, )  = 0, which again contradicts the assumption that 1 1  gk 1 1  > E .  

Hence this latter assumption is itself impossible and we conclude 
that g(x , )  = 0 whenever K, is infinite. 

Now, suppose that Kd is infinite. In this case, it follows from (3.2) 
that 
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for k E Kd, and hence that 

Therefore, either 

gidk - 0 and d l ~ k d k  -+ 0 (k -+ oo, k € Ki) (3.4) 

or ak-+Owhen k -m,  k€Kd. I fak+O,  k-m, k€Kd, we have 

which, by the mean-value theorem, can be rewritten as 

for some 6 ~ ( 0 ,  l), k~ Kd, and where Hk = H 
From (3.5) and Condition 2 we obtain 

and 

for k~ Kd. By (3.6) we have that, for k~ Kd, gidk + 0 and by (3.7) 
we have d;Hkdk - 0, as k+ m, k E Kd. Therefore, we can conclude 
that (3.4) holds even when ak-10. But, as k E  Kd, and therefore 
that gl~k/ll~kll 2 rm(xk + dk), we have, from Condition 1, that 

which contradicts (3.4). Thus our assumption that Jl gk 11  > E is again 
impossible and we conclude that g(x,) = 0 whenever Kd is infinite. 

Hence, we have proved that any limit point of the sequence is a 
stationary point. In order to complete the proof we proceed again by 
contradiction and assume that there exists x, limit point of (xk) such 
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that g (x,) = 0 and H(x,) is not positive semidefinite. If we define K, to 
be the set of indices of a subsequence of iterates {xk} converging to 
x,, we have, by Condition 2, that dlHkdk < - E for sufficiently large 
k~ K,. As gk converges to zero, we have that gl~k/ll~kll and gidk 
tend to zero when k -+ m, k E K,, and hence that 

for k E K, sufficiently large. Therefore for k E K, sufficiently large, 
condition (2.1) fails and the points xk are generated by the algorithm 
by using the direction dk. By repeating the same argument used before 
for the case where Kd is infinite, we obtain (3.4) again, which together 
with the fact that gk -+ 0 and Condition 2 yields 

This contradicts the fact that limk+, H(xk) = H(x,) and H(x,) not 
positive semidefinite. Hence this latter assumption is false, which 
concludes the proof. 

4. COMPUTATION OF THE SEARCH DIRECTIONS 

We are interested in solving large scale problems. Therefore we focus 
our attention on iterative methods, and in particular on the pre- 
conditioned conjugate gradient (CG) and Lanczos methods. The CG 
algorithm is the most popular method for computing Newton-type 
directions. It is most effective when truncated, that is the iteration is 
terminated short of optimality (see [3,20]). If the Hessian is indefinite, 
the CG procedure may fail or may prove to be unstable, and the 
equivalent Lanczos process is to be preferred [19]. Recently [13,14] 
have used the Lanczos method in conjunction with a curvilinear 
linesearch. In practice, this produces both a good Newton-type direc- 
tion and an efficient negative curvature direction after few iterations. 
We prefer the CG method here since, despite the drawbacks men- 
tioned above, it is slightly less expensive. 
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NEGATIVE CURVATURE DIRECTIONS 89 

As regards the Newton-type direction, if we denote by pi the 
conjugate directions generated by CG method, a truncated Newton 
direction is given by 

whenever Hk is positive definite. The stopping (truncation) rule is to 
stop at iteration rn which is the first iteration for which the gradient 
of the model falls below min((l/2) 1) gk 1) , )I gk 11  2, if k 5 5 and below 
min((l/lO) 1 1  gk ( 1  , I 1  gk 1 1  2, otherwise. This choice allows the iterates to 
"settle down" for a few iterations before one really starts to require 
more accuracy. It is a compromise between a conceptually preferable 
strategy totally independent of k, and the observably efficient tech- 
nique used in [3,12], where the required accuracy increases linearly 
with k. 

Here we allow for the possibility that Hk is indefinite by including 
only those terms corresponding to directions of positive curvature. 
That is if 

we pick the direction 

If 1, =0 or if this direction is not gradient-related, we simply take 
the negative gradient. When negative curvature is encountered, the 
stopping test is uniquely determined by the quality of the approxima- 
tion of the Ritz values, as explained below. 

We also considered the choice 

where 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
3
:
3
1
 
3
 
D
e
c
e
m
b
e
r
 
2
0
1
0



90 N. I. M. GOULD et al. 

(see [12]), but this alternative did not prove to be globally as effective 
in practice. 

Turning now to the required negative curvature direction, we again 
use the CG/Lanczos algorithm. In fact, in our algorithm, the negative 
curvature direction is computed via the strict connections between 
the CG and Lanczos methods (see Section 2 of [I91 and [ll]). To be 
more precise, we recall that after m iterations, the Lanczos algorithm 
generates m vectors 91,. . . , q,, the Lanczos vectors, and the scalars 
71,. . . , 7, and 61,. . . ,6,- 1. If we define the m x n matrix Q, whose 
columns are the Lanczos vectors, that is, 

and the m x m tridiagonal symmetric matrix T, given by 

the fundamental Lanczos relationship (see [2,10]) can be written as 

where em = (O,O,. . . , o , ~ ) ~ E  Rm. Therefore, if (A,, v,) is an 
eigenvalue-eigenvector (Ritz) pair of T,, we have that 

As a consequence, (X,,Q,v,) can be used as approximate 
eigenvalue-eigenvector pair of Hk whenever the right-hand side of 
(4.4) is small. As the tridiagonal matrix T, and the Lanczos vectors 
can be easily recovered from the CG method (see [ l l ,  19]), so long as 
this iteration does not break down, the eigenvalue-eigenvector pair 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
3
:
3
1
 
3
 
D
e
c
e
m
b
e
r
 
2
0
1
0



NEGATIVE CURVATURE DIRECTIONS 9 1 

of the Hessian matrix Hk may be estimated directly from the CG it- 
eration. However, in computing the approximate eigenvector Q,v,, 
the storage of the matrix Q, is avoided by discarding the vectors qk 
and by rerunning the recurrences to regenerate them; more in detail, 
during this second pass, at each iteration a vector qk is computed 
and the eigenvector estimate is updated until the required accuracy 
is obtained, similarly to the truncated Lanczos approach described 
in Section 5 of [ll]. Note that if CG iteration breaks down, it is 
easy to continue the process by using the Lanczos method itself, 
as all the vectors required to continue the Lanczos iteration are 
available. 

To compute the required negative curvature direction dk, we 
therefore use the leftmost eigenvalue Xmin of the tridiagonal matrix T, 
as an approximation of the leftmost eigenvalue of Hk and Qmvmin (i.e., 
the eigenvector of the matrix T, corresponding to Xmin pre-multiplied 
by Q,) as an approximation of the corresponding eigenvector. If Xmin 

is negative, we select dk as 

where dk = Qmvmin, and choose dk = 0 otherwise. One drawback of the 
Lanczos process is that it is impossible to guarantee the last part of 
Condition 2, simply because the Krylov space investigated may not 
contain any eigenvector corresponding to the leftmost eigenvalue. 
However this happens with probability zero in exact arithmetic, and 
we don't expect it to happen in presence of rounding. The leftmost 
Ritz value found is determined to within lo%, and thus 0 in Condi- 
tion 2 is effectively 0.1. 

5. NUMERICAL EXPERIENCE 

In order to evaluate the behaviour of our new algorithm, we tested it 
on a set of 34 large-scale unconstrained test problems selected from the 
CUTE collection [l] where negative curvature has been reported. All 
the tests were performed on an IBM RISC System/6000 375. The 
codes are double precision Fortran 90 compiled under xlf9O with the 
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optimization compiling option. We used the settings 

As indicated above, we chose the initial step for the linesearch along 
negative curvature directions as CTk = 011, where j < k is the index of 
the last iteration at which the test (2.1) fails. The function q(gk) in 
Condition 2 is chosen to be identically zero. All tests reported below 
are performed without preconditioning the CG/Lanczos algorithm, 
but of course preconditioning is possible (and may well be essential 
for more difficult examples). 

We compare the new algorithm with an algorithm which uses the 
:urvilinear path (1.2) in which sk and dk are computed as in our 
algorithm, and the stepsize a k  is determined by a simple backtracking 
strategy along the arc (1.2), starting from an initial step of one (see 
[13-151). In [13,14] it has been shown that this strategy can pro- 
duce very efficient algorithms for solving large scale unconstrained 
problems. Note that taking a k  > 1 is unnatural by using (1.2) since the 
step dk would then likely be dominated by its gradient-related 
component, for which a stepsize larger than one is not expected 
to provide a good reduction in the objective function. Also note 
that the two algorithms are identical when no negative curvature is 
found. 

The complete results are reported in the Appendix. Here we 
summarize the results obtained by the two algorithms on only 20 test 
problems where negative curvature directions have been encountered. 
In particular, in Table I we report time results obtained by the two 
algorithms on those test problems where they converge to the same 
local minima. These results are reported in terms of the numbers of 
gradient and function evaluations, the number of CG iterations, the 
CPU time (in seconds); in boldface we indicate the better of the two 
algorithms in terms of CPU time (we consider two results a tie when 
they differ by at most 5%); in the last row the totals (excluding 
problem MSQRTBLS) are reported. These results, although far from 
exhaustive, indicate that the new algorithm is normally more efficient 
than the curvilinear variant. In particular, in terms of CPU time, 
our new algorithm wins eight times and only on problem the curvil- 
inear search algorithm performs better. Moreover, the curvilinear 
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TABLE I Comparison between the two algorithms 

New algorithm Curvilinear search algorithm 

Problem n NG NF CG-it Time NG NF CG-it Time 

COSINE 1000 9 19 44 0.44 7 8 40 0.32 
CURLY10 1000 15 23 8298 39.53 15 30 9013 42.51 
CURLY20 1000 16 28 8332 58.37 17 46 9080 66.26 
CURLY30 1000 17 22 8104 73.22 18 55 8438 76.52 
EIGENALS 930 45 60 1037 83.33 56 147 1249 95.91 
FLETCHCR 1000 1482 1744 16774 123.46 1481 1752 16764 118.68 
GENHUMPS 1000 1128 3096 25927 296.68 1263 5182 28468 303.18 
GENROSE 1000 592 1234 13340 114.79 555 2910 13351 117.41 
MSQRTALS 1024 46 83 20051 2829.96 116 881 42636 6134.60 
MSQRTBLS 1024 35 56 10240 1449.91 * + + >18000 
NCB20B 1000 20 35 2430 216.77 20 125 2766 263.58 
SINQUAD 1000 79 147 203 4.94 85 195 212 4.71 
SPARSINE 1000 19 34 5751 78.05 14 19 3236 43.52 
VAREIGVL 1000 17 22 1618 16.74 33 129 9489 102.02 

Total 3485 6547 117660 3936.28 3680 11479 144742 7369.22 

search algorithm is not able to locate a local minimizer of problem 
MSQRTBLS. 

On the remaining 6 test problems where negative curvature direc- 
tions have been encountered the performance of the two algori- 
thms are not directly comparable as the two methods converge to 
different local minima. For these problems, in Table I1 we report the 
complete results obtained by the two algorithms where we evidenced 
in boldface the best optimal value obtained. As it can be observed 
form this table, in most cases the new algorithm is able to converge 
towards "better points", i.e., points where the objective function value 
is lower. 

In conclusion, on the basis of these results, the new algorithm 
proposed in this paper presents an overall better behaviour with respect 
to the one based on the curvilinear search. The main reason for this 
improvement appears to lie that forward stepping in such directions is 
very effective. Remarkably, the difference in performance does not 
appear to be linked to the number of negative curvature directions 
found or used, but substantial differences in numerical efficiency and 
reliability may result from the use of a few, presumably highly sig- 
nificant, negative curvature directions (see MSqRTALS, MSQRTBLS and 
VAREIGVL). We also note that the new algorithm use most of the 
negative curvature directions found, which confirms our intuition that 
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TABLE I1 Comparison of the optimal objective function values (n = 1000) 

New algorithm Curvilinear search algorithm 

Problem NG NF CG-it Time F NG NF CG-it Time F 

BROYDN7D 55 107 2260 18.67 3 M l l E  + 02 45 246 1503 13.33 5.43078 + 02 
CHAINWOO 445 803 19589 183.42 3.65968 + 01 327 1435 14916 141.81 2.11718 + 02 
FREUROTH 13 26 50 0.96 1.2147E + 05 16 46 96 1.45 1.2136E + 05 
NONCVXUN 230 498 15500 146.88 2.33466 + 03 124 852 1 1477 104.62 2.3280E + 03 
NONCVXU2 250 546 9446 99.03 2.31868 + 03 145 1059 6268 64.18 2.31936 + 03 
SPMSRTLS 14 22 325 4.27 4.41898- 16 277 11 16 19442 255.21 3.2814E + 00 
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these directions should be exploited when present (see Tabs. I11 and IV 
reported in the Appendix). We finally note that other tests using values 
of T other than 2 did not prove to be numerically as effective. 

6. CONCLUSIONS 

We have proposed a linesearch method that exploits negative cur- 
vature directions without explicitly combining them with Newton- 
type directions to define a curvilinear path. This has the advantage 
that the relative scaling of these directions no longer matters. We have 
proved that all limit points of the sequence of iterates produced by 
the new algorithm are second-order critical. Preliminary numerical 
experiments indicate that the new algorithm is an improvement over 
the curvilinear search variant, particularly on harder problems. 
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APPENDIX 

In this appendix we report the complete results of the numerical 
experience. The results are reported in Tables I11 and IV in terms of 
the numbers of gradient and function evaluations, the number of CG 
iterations, the CPU time (in seconds), the final objective function 
value, the number of directions of negative curvature used (that is 
along which a linesearch is performed), and the number of negative 
curvature directions found. These two last numbers are identical for 
the curvilinear variant because the curvilinear arc is used whenever 
negative curvature is detected. 
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TABLE 111 Results for the new algorithm 
- - 

Problem n NG NF CG-it Time F d used d found 

BROYDN7D 
BRYBND 
CHAINWOO 
COSINE 
CRAGGLW 
CURLY 10 
CURLY20 
CURLY30 
DIXMAANA 
DIXMAANE 
DQRTIC 
EIGENALS 
FLETCHCR 
FMINSURF 
FREUROTH 
GENHUMPS 
GENROSE 
MANCINO 
MSQRTALS 
MSQRTBLS 
NCB2OB 
NONCVXUN 
NONCVXU2 
NONDIA 
NONDQUAR 
POWER 
SCHMVETT 
SINQUAD 
SPARSINE 
SPMSRTLS 
SROSENBR 
TESTQUAD 
TRIDIA 
VAREIGVL 
-p - -- - - 

TABLE IV Results for the curvilinear search algorithm 
-- - - 

Problem n NG NF CG-it Time F d used d found 
- - 

BROYDN7D 
BRYBND 
CHAINWOO 
COSINE 
CRAGGLW 
CURLY 10 
CURLY20 
CURLY30 
DIXMAANA 
DIXMAANE 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
3
:
3
1
 
3
 
D
e
c
e
m
b
e
r
 
2
0
1
0



N. I. M. COULD et al. 

TABLE IV (Continued) 
- - - -- 

Problem n NG NF CG-it Time F d used d found 

DQRTIC 1000 31 31 30 0.34 2.7446E-07 0 0 
EIGENALS 930 56 147 1249 95.91 4.1574E- 14 16 16 
FLETCHCR 1000 1481 1752 16764 118.68 9.4380E-15 2 2 
FMINSURF 1024 37 318 15937 142.05 1.0000E+ 00 0 0 
FREUROTH 1000 16 46 96 1.45 1.21366 + 05 4 4 
GENHUMPS 1000 1263 5182 28468 303.18 1.3985E-12 1215 1215 
GENROSE 1000 555 2910 13351 117.41 1.0000E+ 00 412 412 
MANCINO 100 11 11 11 10.96 6.05908-22 0 0 
MSQRTALS 1024 116 881 42636 6134.60 4.6202E- 14 79 79 
MSQRTBLS 1024 * * * > 18000 * * * 
NCB20B 1000 20 125 2766 263.58 1.6760E+ 03 9 9 
NONCVXUN 1000 124 852 11477 104.62 2.3280E+ 03 109 109 
NONCVXU2 1000 145 1059 6268 64.18 2.3193E+ 03 135 135 
NONDIA 1000 7 7 8 0.24 5.3285E-12 0 0 
NONDQUAR 1000 108 430 127227 363.11 1.70626-08 0 0 
POWER 1000 32 32 776 2.78 1.3384E-09 0 0 
SCHMVETT 1000 8 8 47 0.94 -2.9940E + 03 0 0 
SINQUAD 1000 85 195 212 4.71 3.2131E-08 9 9 
SPARSINE 1000 14 19 3236 43.52 4 .4309E-3  2 2 
SPMSRTLS 1000 277 1116 19442 255.21 3.2814E 00 82 82 
SROSENBR 1000 9 9 11 0.14 2.9456E-18 0 0 
TESTQUAD 1000 14 14 1022 3.03 6.3707E-15 0 0 
TRIDIA 1000 12 12 586 1.66 4.97806- 15 0 0 
VAREIGVL 1000 33 129 9489 102.02 2.13886- 10 8 8 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
3
:
3
1
 
3
 
D
e
c
e
m
b
e
r
 
2
0
1
0


