Mathematical Programming 30 (1984) 176-195
North-Holland

A WEIGHTED GRAM-SCHMIDT METHOD FOR CONVEX
QUADRATIC PROGRAMMING*

Philip E. GILL, Nicholas .M. GOULD,** Walter MURRAY,
Michael A. SAUNDERS and Margaret H. WRIGHT

Systems Optimization Laboratory, Department of Operations Research, Stanford University,
Stanford. CA 94305. USA

Received 16 September 1983
Revised manuscript received 12 January 1984

Range-space methods for convex quadratic programming improve in efficiency as the number
of constraints active at the solution decreases. In this paper we describe a range-space method
based upon updating a weighted Gram-Schmidt factorization of the constraints in the active set.
The updating methods described are applicable to both primal and dual quadratic programming
algorithms that use an active-set strategy.

Many quadratic programming problems include simple bounds on all the variables as well as
general linear constraints. A feature of the proposed method is that it is able to exploit the
structure of simple bound constraints. This allows the method to retain efficiency when the number
of general constraints active at the solution is small. Furthermore, the efficiency of the method
improves as the number of active bound constraints increases.

Key words: Convex Quadratic Programming, Range-Space Methods, Active-Set Methods.
Updated Orthogonal Factorizations, Bound Constraints.

1. Introduction

The problem of concern in this paper is the convex quadratic programming (QP)
probiem with a mixture of bounds and general constraints:

minimize ¢ x+3x* Hx

xeR”

bject t l<{ x}<u
subjectto [< < u,

) Ax

where c is a constant n-vector and H is a constant n X n symmetric positive-definite
matrix. The matrix & is m X n, where m may be zero. The constraints involving &
will be called the general constraints; the remaining constraints will be called simple
bounds or just bounds.

* This research was supported by the U.S. Department of Energy Contract DE-AC03-76SF00326,
PA No. DE-AT03-76 ER72018; National Science Foundation Grants MCS-7926009 and ECS-8012974;
the Office of Naval Research Contract NO0014-75-C-0267; and the U.S. Army Research Office Contract
DAAG29-79-C-0110. The work of Nicholas Gould was supported by the Science and Engineering
Research Council of Great Britain.

** Present address: Department of Combinatorics and Optimization, University of Waterloo, Ontario,
Canada.

176

Philip E. Gill et al. / A weighted Gram—Schmidt method 177

Apart from the requirement of feasibility, the optimality conditions for QP involve
only the constraints active (exactly satisfied) at the solution. Active-set methods
are based on developing a prediction of the active set (the working ser), which
includes the constraints exactly satisfied at the current point (see, e.g., Gill, Murray
and Wright, 1981). Let x denote the current iterate, and g(x) its gradient vector
(g(x) =c+ Hx); the t rows of the matrix C are defined as the coefficients of the
constraints in the working set, and the vector b is composed of the corresponding
components of / and u (so that Cx = b). Note that x satisfies the constraints in the
working set exactly. The search direction p is chosen so that x+p is the solution
of a quadratic programming subproblem with the original objective function, subject
to the equality constraints of the working set. Let A denote the Lagrange multiplier
vector of the subproblem. With this definition, p and A are the solution of the system

T
(e 5)D-() 0
cC 0 A 0
Having solved (1.1) at a given iteration, it is necessary at the next iteration to solve
a neighboring system in which C, x and g are replaced by related quantities C, ¥
and g Usually, C is just C with a single row either added or deleted, ¥=x+ap
for a nonnegative scalar o, and g =g(x).

It is useful to classify active-set QP methods as either range-space or null-space
methods. This terminology arises because the working set can be viewed as defining
two complementary subspaces: the range space of vectors that can be expressed as
linear combinations of the rows of C, and the null space of vectors orthogonal to
the rows of C. In many cases the work required in an iteration is directly proportional
to the dimension of either the range space or the null space. For example, the
methods of Murray (1971), Gill and Murray (1978), Bunch and Kaufman (1980)
and Powell (1981) are null-space methods, and are most efficient when the number
of constraints in the working set is close to n, since the dimension of the null space
is then relatively small. By contrast, the methods of Dax (1981) and Gill et al.
(1982) are range-space methods, and are most efficient when there are few con-
straints. (Some methods cannot be categorized as either range-space methods or
null-space methods. See, for example, the methods proposed by Bartels, Golub and
Saunders, 1970; Fletcher, 1971; and Goldfarb and Idnani, 1983.)

The method described in this paper is a range-space method. A feature of the
method is that it is able to exploit the structure of simple bound constraints. This
is important for many practical problems in which all but a few of the constraints
are bounds, and many bounds are active at the solution. The method wiil retain
the efficiency of a range-space approach when the number of general constraints
active at the solution is small, as well as the advantages of a null-space method
when the number of active bound constraints is large.

We shall discuss primarily details of how to compute p and A, and not the various
strategies for altering the working set. The techniques described may be applied in
the implementation of primal, dual and primal-dual quadratic programming
algorithms that use an active-set strategy.

178 Philip E. Gill et al./ A weighted Gram-Schmidt method

2. The weighted Gram-Schmidt (WGS) method

If C and H have full rank, p and A satisfy the following range-space equations:

CH™'C"A=CH'g; (2.1)
and
Hp=C"A—g (2.2)

Following Bartels, Golub and Saunders (1970), we note that the range-space
equations may be solved using the factorizations

H=R'R and C=(L 0)Q'R, (2.3)

where R is the n X n Cholesky factor of H, L is a ¢ X t lower-triangular matrix, and
Q is an n X n orthogonal matrix.

The factorizations (2.3) provide a solution to the range-space equations (2.1) and
(2.2) in the form:

L'A=Y'R g, (2.4)

Rp=-ZZ'R g, (2.5)
where Y and Z are the n Xt and n X (n—1) sections of the matrix Q, i.e.

Q=(Y 2).

A variant of (2.3)-(2.5) has been used by Goldfarb and Idnani (1983), who recur
the matrix Q"R™".

We now propose a method that uses equations similar to (2.3)-(2.5), in which
we take advantage of the identity ZZ"=1— YY" in order to avoid storing Z. In
place of the orthogonal factorization in (2.3), we utilize the weighted Gram—Schmidt
(WGS) factorization

C=LY'R, (2.6)

where L is easily invertible but not necessarily lower triangular.
Given R, L and Y, we define the three auxiliary vectors u, v and w by

R'u=g, v=Y"wu and w=Yv—u 2.7

(Note that Y w =0.) Substitution into (2.4) and (2.5) allows A and p to be defined
from

LTh=0v (2.8)
and

Rp=w. (2.9)

At each iteration of an active-set method, a constraint is added to or deleted
from the working set after a move of the form £ =x+ ap. (Note that if p= 0, more

Philip E. Gill et al./ A weighted Gram—Schmidt method 179

than one constraint may be added or deleted at the same point.) These changes
lead to updates of the factorizations H = R™R,C=LY'R.In practice, initial values
for the vectors u, v and w are defined from (2.7) in terms of an initial feasible point
and initial working set. Thereafter, the vectors u, v and w can be updated at
negligible cost, as we show below. The principal computational effort per iteration
lies in updating the factorization (2.6) as the working set changes, and in computing
p (and A when needed) from (2.8) and (2.9).

2.1. Special form of the working set

At a typical iteration of an active-set method applied to problem QP, the working
set will include a mixture of general constraints and bounds. If the working set
contains any simple bounds, those variables will be fixed on the corresponding
bounds during the given iteration; all other variables may be considered as free to
vary (and will be called simply ‘free variables’). We use the suffices ‘F* (‘fixed’) and
‘V’ (‘varying’) to denote items associated with the two types of variable.

We denote by C the matrix whose ¢ rows are constraints in the current working
set, and assume that C contains ng bounds and m, general constraints (where ‘L’
denotes ‘linear’), so that t = ng+m;. Let A denote the matrix whose rows are the
m general constraints in the working set, and let ny denote the number of free
variables (ny=n—ng). (If bounds are not treated separately, n-=0, ny,=n, and
m_=1t)

We assume that the variables are ordered so that the last np variables are fixed,
with all other relevant vectors and matrices ordered accordingly. In practice, the
order of the variables is indicated by lists of indices, so there is no loss of generality
in making this assumption. However, we shall see that this assumption has important
imphications for the update procedures.

The Hessian matrix H is partitioned as

H, K
H=("Y
(e)

where Hy and Hg are nyXny and ngXne symmetric matrices. Similarly, the
upper-triangular matrix R (the Cholesky factor of the Hessian) may be partitioned

as
Ry S)
= s A1
R (0 R.) (2.11)

(2.10)

where Ry and Ry are ny X ny and s X ni: upper-triangular matrices. (Note that Ry
is the Cholesky factor of Hy.)

The ordering of the variables assumed above means that the matrix of constraints
in the working set can be written as

{0\ _ [0 I
C‘(A)'(Av AF)’ (212

180 Philip E. Gill et al. / A weighted Gram-Schmidt method

where Ay is an my X ny, matrix, and I denotes the ng-dimensional identity matrix.
Assume that the Gram-Schmidt factorization of Ay RV' is known, i.e.,

Ay=LyYyRy, (2.13)

where Ly is an m; X m lower-triangular matrix, and Yy is an ny X m orthonormal
matrix whose columns form a basis for the row space of AyR+' (see Daniel et al.,
1976, and Gill et al., 1982). The matrix C (2.12) then has the factorization

0 N\/YL o
C=LY'R=)(M)R, 2.14
(LV M/\ 0o I (2.14)

where N and M are matrices of order ngX ng and my X ng respectively. (We shall
show that it is unnecessary to store the matrices N and M.) Note that the matrix
L in (2.14) is not lower-triangular, but that the columns of the n Xt orthonormal

matrix
Yv O
Y= , 2.15
(5) 2.15)

form a basis for the row space of CR™'.

In the following, we show how (2.12) and (2.14) may be used to simplify the
calculation of p and A using the auxiliary vectors (2.7). The amount of work required
for each computation will be given as the highest-order terms in the expression for
the number of multiplications.

2.2. Calculation of the search direction

Let g and u be partitioned as

g:<§v) and u=(ZV). (2.16)
F i

The form (2.11) of R implies that gy = Ryuy. The special form of Y in (2.15)
implies that the f-vector v is given by

e ()
0 I/\ue U ug) tng

Similarly, the vector w can be written as

_ Sy — YV 0 28 _ Uy _ Y\/U]__uv _ Wy
w=vomu=(T D) (0)-(2) (") =() e

(Note that Y4 wy, =0.) The s zero elements of the right-hand side of (2.17) and
the upper-triangular form of R imply that the search direction has the form
p=(py 0)". This confirms that the elements of p corresponding to the fixed variables

Philip E. Gill et al./ A weighted Gram-Schmidt method 181

are zero. The vector py is given by the solution of
Rypyv=wy,

and may be computed in order 313 multiplications.

2.3. Calculation of the Lagrange multipliers

When bounds are treated separately, the constraints in the working set are
naturally partitioned into bound constraints and general constraints. Let A be
partitioned into an ng-vector Ag (the multipliers corresponding to the bound con-
straints) and an my -vector A, (the multipliers corresponding to the general con-
straints). Substitution of (2.12) and the partitioned form of A into (1.1) gives, after
rearrangement,

ALA =gy+Hypy (2.18)
and

Ap=gr—AFA,, (2.19)

where gr is the gradient with respect to the fixed variables at the point x+p.
We simplify (2.18) by using the factorization (2.13) of Ay and the relations
Hy=R{Ry, R{uy =gy, Rypy=wy, and Yy, — uy = wy to obtain

Y\’L]\;AL = UV+ Wy = Y\/ V.

Hence, A, is the solution of
L.\l;/\L= Up, (2.20)

and may be computed in order sm{ multiplications.

A significant difference that arises when bounds are treated separately is the need
to compute multipliers specifically for the bound constraints (otherwise, A; includes
the multipliers for all the constraints). Therefore, we must consider how to compute
Ar efficiently. Calculation of A from (2.19) requires nym,; multiplications to form
AfAL, plus the work needed to obtain g.

2.4. Storage options

Calculation of g from scratch involves a term of order nng, and hence would be
very expensive when n; is large. Fortunately, this expense can be avoided using
one of two storage options (the details are given in Section 5). With the first storage
arrangement, the entire matrix R (2.11) will be stored (recall that Ry is a partition
of R), and R will be overwritten on H. When R is available, gr may be updated
using ngny multiplications. With the second storage option, the original matrix H
is stored in addition to Ry. In this case, an auxiliary vector is recurred so that gg
may be computed when necessary. again at a cost of npny multiplications.

182 Philip E. Gill et al./ A weighted Gram—Schmidt method

In the next two sections, we describe the update procedures associated with
performing an iteration of the WGS method. With either storage option, only the
vectors uy, v and wy need be recurred. Barred quantities will denote those
associated with the new working set. We have assumed the three-multiplication
form of a plane rotation (see Gill et al., 1974).

3. Changes in the status of general constraints
3.1. Adding a general constraint to the working set

When a general constraint is added to the working set at the point ¥=x+ap, a
new row is added to A+. Thus, the row dimension of Ay, the column dimension
of Yv, and the dimension of Ly in (2.13) will increase by one. In practice, the
ordering of the general constraints is indicated by a list of indices, and the index of
the new constraint is placed at the end of the list. Hence, we may assume without
loss of generality that the row a" is added in the last position. In this case, Yy is
given by

Yy=(Yy z). (3.1)
The new column z is a multiple of the vector Ry'a orthogonalized with respect
to the orthonormal set of columns of Yy, i.e. z=1r(I— Yy Y{)q, where g satisfies
Ryg=a and 7 is a normalizing factor. The matrix L, is obtained by adding a new
row to L. For complete details of the updating algorithm, including the use of
reorthogonalization to ensure sufficient accuracy in z, the reader is referred to
Daniel et al. (1976) and Gill et al. (1982).

The following theorem describes how the quantities v, v, and wy, may be updated
following the addition of a general constraint.

Theorem 1. Let p denote the vector that satisfies the range-space equation (2.2) at
the point x. Let % (X = x+ ap) be a point at which the row a' is added to Ay. Assume
that the updated factors Ly, and Y+, of Ay = Ly YRy have been computed, and that
z, the new last column of Yv, is available. The veciors uy, vy and wy are updated
as follows:

(i) Uy = Uyt awy; (3.2)
(ii) B = (?), where v=(1—a)z uy; (3.3)
(iii) wy=(1—a)wy+rz (3.4)

Proof. Using the relations, § =g+ aHp, VRyv=H, and Rypy = wy, we have
Rydy=gy=gv+aHypy=Riuy+aRyRypy=Ryuy+aRywy,

and (i) follows immediately.

Philip E. Gill et al. / A weighted Gram—Schmidt method 183

To prove (ii), we use the definition of ¥y, (3.1) and (3.2) to give

- OT-~- _ Y'{I _ Y\?le'*"inW\/
UL_Y\/UV— ZT Uy = .

ZTllv+ aZTW\/

Since Y{wy =0, z'wy=—2z"uy and v, = YV uy, this proves (ii). Similarly,
> - _ v
wy =Yy —iv=(Yy z) . —(uy+awy),
which reduces to (iii) after substituting Yyo, —uy=wy. O

Note that in a dual QP algorithm that retains dual feasibility, the steplength o =1
will usually be taken when a constraint is added to the working set; cases (i)—(iii)
then simplify. If further constraints are added at the same point, Theorem 1 remains
true with a =0.

The number of multiplications required to update Ly and Yy following addition
of a general constraint is of order 3n%+2(k + 1)nym,, where k is the number of
reorthogonalization steps {for well conditioned problems, k is usually zero). The
updates of uy, v, and wy require negligible work.

3.2. Deleting a general constraint from the working set

When a general constraint is deleted from the working set at the point x+ap,
the row dimension of A+, the column dimension of Yy, and the dimension of Ly
are all decreased by one. In this case, the relationship between Yy and Yy is given
by

YyPy=(Yy Z), (3.5)

where Py is an orthonormal matrix representing a sequence of plane rotations (see
Gill et al., 1982, for further details).

The following theorem indicates how the quantities uy, v, and wy may be updated
in this case.

Theorem 2. Suppose that a constraint is deleted from the working set at the point
%= x+ap, where p satisfies (2.2). Assume that the updated factors Ly and Yy of

=L, YLR, have been computed, so that the relationship between the old and new
orthogonal factors is given by (3.5). Then

(1) Oy =uy+awy; (3.6)
(ii) (ljj) =Plou; (3.7)
(iii) wy=(1—a)wy— vz (3.8)

Proof. Result (i) follows as in Theorem 1. To prove (ii), note that, since 7, = Yy,

184 Philip E."Gill et al. / A weighted Gram-Schmidt method

we may write

(ﬁL) _ (Y$) _
v zT v
where v = z"iZy. Using (3.5) and (3.6) gives

3]
(L) =Py Y (uy+awy).
14
Since Yywy=0 and YLuy = v, this gives the desired result.

Finally, to prove (iii), we use the definition of wy to write the identity

Wy = le_)L— avz(?\/ z_)(lij) —Uy—vz

Using (3.5), (3.6) and (3.7) gives
WV = YVPVP€UL_ Uy — Wy, — vz,

Since Py is orthonormal and Yy v, — uy = wy, this expression simplifies to (iii), as
required. [J

Note that a primal QP algorithm will usually delete a constraint only when a =1,
in which case (i) and (iii) simplify. If more than one constraint is deleted at the
same point, the theorem remains true with a« =0, p, =0 and wy, =0.

The number of multiplications required to update Ly and Y+ after deleting the
ith constraint is of order 3(m; —i)*+ 3ny(m; —i); the updates of uy, v, and wy
require negligible extra work.

4. Changes in the status of bound constraints

When the status of a bound constraint changes, in general the variables must be
reordered to maintain the convention given in Section 2.1. This leads to several
differences from the update procedures given in Section 3, since reordering the
variables alters the Hessian H (and hence the Cholesky factor Ry).

4.1. Adding a bound constraint to the working set

When a bound constraint is added to the working set, a previously free variable
becomes fixed on its bound. Thus, the column dimension of Ay, the dimension of
Ry, and the row dimension of Yy in (2.13) are decreased by one. The dimension
of L is unaltered.

In order to clarify the explanation of the update procedures, we shall first assume
that the last free variable (variable ny) is to be fixed. This corresponds to deleting
the last column (say, a) of Ay, so that Ay =(Ay a). In this case, Ry is simply a

Philip E. Gill et al. / A weighted Gram-Schmidt method [85

submatrix of Ry, i.e.

RV r _
(0 p)—RV, (4.1)

The weighted Gram-Schmidt factorization (2.13) of Ay is computed as follows.
First, note that for any vector z, it holds that

Ay=(Ay a)=(Ly 0)(Yy 2z)'Ry. (4.2)

We shall choose a special unit vector z that is the result of orthogonalizing the
ny-th coordinate vector ey, with respect to the columns of Yy, i.e. z=7(I - Yy Yi)ey
for some normalization factor 7. (Note that z is orthogonal to all the columns of
Y..) Daniel et al. (1976) show that, if Y+ is partitioned as

Y
YV:(;T)’

then z is of the form
¥y
= 4.3)
‘ (1/7) (

where 7=(1—-7"y) /2

The crucial property of the vector (4.3) is that a sequence of plane rotations that
transforms the last column of (Yv z) to ey will simultaneously produce ey as its
last row. Hence, if P denotes an (m, +1)-dimensional orthonormal matrix that
represents an appropriate sequence of plane rotations, we have

(Yv 2)P= (5 (1)) (4.4)

Substituting (4.1) and (4.4) into (4.2), and using the orthogonality of P gives

ot ommer (% - onf 0)
(Ay a)=(L,)PP (Y z)(O p) (Lyv O)P 0) 0o p)

The rotations represented by P take linear combinations of the columns of (Yy, z)
in the order (m;, m; +1), (m_—1, m +1),...,(1, m +1). Thus, P does not alter
the lower-triangular structure of the first m columns of Ly, and we have

(Lv 0)P=(Ly v),

where Ly is lower-triangular (v is a reconstituted version of the column of AvRY!
that is being deleted). Clearly

Av = Ev Y—\l}Rv»

as required.

186 Philip E. Gill et al. / A weighted Gram-Schmidt method

Now we turn to the general case in which the j-th variable (j= ny) is to be fixed
on a bound. Because of the ordering convention defined in Section 2, the variables
must be reordered so that the first ny—1 variables will be free during the next
iteration. This is accomplished formally through a permutation matrix that reorders
the variables so that variable j is in position #y (note that the last ny variables are
not reordered, and hence the permutation matrix affects only components 1 through
ny).

Let II denote a suitable ny-dimensional permutation matrix, such that the re-
ordered Hessian with respect to the first ny variables is IT' HyIl. The Cholesky
factor Ry of ITTHI] is given by

Ry= ORI,

where the ny X ny orthonormal matrix Q represents a sequence of plane rotations
that make Ry II upper triangular. To verify that Ry is indeed the Cholesky factor,
observe that

MH I =T"RYRJI=IT"RIQYQR T = RVR,,.

The Hessian H,, with respect to the new (smaller by one) set of free variables is
ITVH,IT with its last row and column deleted, i.e.

7 T
HTHVH=(HV h)
h
This implies that the (ny — 1)-dimensional matrix R, satisfies
R R
(v r) =Ry = ORI (4.5)
0 »p

The number of multiplications required to compute R, is of order %(nv —j)z. (When
all of R (2.11) is stored, a further 3ng(n, —j) multiplications are required to apply
the plane rotations in Q to the rows of S.)

When Ry is defined by (4.5), Yy and Ly may be obtained by a generalization
of the procedure described at the beginning of the section. The major difference in
the results is that the relationship between Yy and Yv changes from (4.4) to
Yy o)

4.
0 1) (4.6)

Q(Yy z)P= <
The number of multiplications required to update L, and Yy when the j-th variable
is fixed on a bound is of order 4nym +3my (ny—j)+3mi.
The following theorem indicates how to update the vectors uy, v; and wy following
addition of a bound to the working set.

Theorem 3. Let the j-th free variable be fixed on a bound at the point x + ap. Assume
that the updated factors Ry, Ly, and Yy of Ay =Ly YURy, have been computed, and
that z, the vector defined in (4.3), is available. The quantities uy, v, and wy are

Philip E. Gill et al. / A weighted Gram—Schmidt method 187

updated as follows:

0 (%)= owran (4.7)
(ii) (”L> =PT< L;) with v=(1—a)z uy; (4.8)
(iii) (”g‘) =Q((1—a)wy+vz). (4.9)

Proof. To prove (i), observe that g+, the (reordered) gradient with respect to the
old set of free variables at the new point is given by

gv= (g;) = HT(8V+ aHypy),

where v is the component of the gradient with respect to the variable to be fixed
on a bound (the value of y is not needed to perform the updates). Using the relations
Riuy =gy, Hy,=RyRy, and Rypv = wy, we obtain

(gyv) = IT"RT(uy + awy). (4.10)

Since RViiy = gy, we may write

(7)-(5)

' p/\e y/

Substituting from (4.5) and (4.10), we have

HTRL'QT(uV) =IT"Ru(uy + awy)

w

and therefore

O"(uv) = Uy + awy. (4.11)

w

Since Q is orthonormal, (i) follows from (4.11).
In order to prove (ii), we begin with the definition &, = Y Viiy, and note that

(2)-(5 D)
@ 0 1/ \w/
Substituting from (4.6) and (4.11) gives
= T — T
(5)=r () ()= Juwrama=r().
w z w z v

where the last expression was obtained using the relations Yiuy=r0, Yiwy =0,
wy=Yyy,—uyand Yoz=0.

188 Philip E. Gill et al. /| A weighted Gram—Schmidt method

Finally, since wy = Yy D — fiy, it also holds that
(5)-(o DE)-(2)
0 0 1/\w w
v
=Q(Yv Z)(:) = Quytawy)=Q(Yyu +rvz—uy—awy),

using (4.6), (4.7) and (4.8). Since Y, v_—uy = wy, we have the desired result
4.9). O

Comparison of (3.2)-(3.4) with (4.7)-(4.9) shows that the updates to uy, v, and
wy associated with adding a bound to the working set are very similar to those
needed when adding a general constraint; the difference is that further plane rotations
must be applied to certain vectors. This means that the updates can be implemented
with very little additional programming complexity.

4.2. Deleting a bound constraint from the working set

When a bound constraint is deleted from the working set, a previously fixed
variable becomes free. In this case, the column dimension of A., the row and
column dimensions of R+ in (2.13), and the row dimension of Yy are increased by
one; and the dimension of L. remains unaltered.

In order to maintain the convention defined in Section 2, the new free variable
will become variable ny+ 1. Thus, the Hessian Hy, with respect to the new set of
free variables and its Cholesky factor Ry will be such that

HV=(IZ¥ :) and RV=(R;V ;) (4.12)
When R is available, r is obtained from the update of S and Re. Assuming that
variable ny+J is released from its bound, this update requires of order %_j(j—l)
multiplications. When H is available, r is computed (after reordering) from one
further step of the column-wise Cholesky factorization of Hy, which requires of
order 3n3, multiplications.

Deletion of a bound from the working set as described above adds a new column
at the end of Av; let a denote the new column of Ay. From (2.13), the augmented
matrix Ay may be written as

T
Ay= (Av a)=(Ly U)(Yy O>§w
0 1
with v=Ayq. The vector ¢ is the solution of the triangular system Ryq=ey.,,
where ey, denotes the (ny+ 1)-th coordinate vector.

The matrix (Ly) is lower-triangular except for the ‘vertical spike’ v, and may
be reduced to lower-triangular form by a sequence of plane rotations in the planes
(I,me+1), 2,m +1),...,(m_,m_+1). If we let P denote the (m +1)-dimens-

Philip E. Gill et al. / A weighted Gram-Schmidt method 189

ional orthonormal matrix of plane rotations, we may write

- Yy 0\ - - YT 0\ -
Ay=(Ly v)PPT< v)sz(Lv 0)PT< v)RV.
0 1 0 1
The effect of the application of P on the€ columns of the augmented orthogonal
factor is to fill in the zero elements of the last row and column. Thus

(YV 0)P=(YfV z). (4.13)

0 1

The matrix Yy is the orthogonal factor associated with Ay, and Ry, and the vector

Z lies in the null space of AyRY'. The updates of Ly and Yy following deletion of

a bound from the working set require of order 3ny+4ny,m, +3m; multiplications.
Following the changes described above, the updates to the vectors vy, v and wy,

are given in the following theorem.

Theorem 4. Assume that a bound is to be deleted from the working set at the point
% = x + ap, and that the updated factors Ry, Ly and Y of A.,= Ly Y{Ry have been
computed. Then

() av=(”V+"‘WV), (4.14)
e

where w can be calculated from uy, gr and the elements of Ry;

(ii) (”L) =PT(UL); (4.15)
v M

_ (I—a)wy =

(11]) Wy = — 2.

Proof. When a bound has been deleted from the working set, we have

Bv = (gv)
g\/_ s
Y

where gy is the new gradient vector with respect to the old (smaller) set of free
variables, and vy is the component of the gradient with respect to the newly freed
variable. With the first storage option, y will be available after the update of g
(see Section 5.2); with the second storage option, y may be computed directly
from H.

It follows from the definition of the quadratic function, the form (2.10) of H and
the form of p that

gv =gv+aHypy.

Using the relations gy=RVuy, Hy=RURy, and Rypy=wy, this expression

190 Philip E. Gill et al./ A weighted Gram—-Schmidt method
becomes
> _ T
8v=Ry(uy+awy). (4.16)

Let us partition the (ny+ 1)-vector iy as

_ (ﬁv)
Uy = ’
M

where dy is an ny-vector. Then, from the expression (4.12) for R, we have
Ry 0\/a 2
(% G)-(5) 417
rop/\u Y
The expression (4.16) and the first ny equations in (4.17) give

R.\r'ﬁ\/ =gv= RI/(“V‘*‘ awy),

from which it follows that iy = u, + awy. The scalar u may then be obtained from
the last equation in (4.17), i.e.

'}’_rT’jv
.

o=

This proves (i).
To prove (ii), we use the definition &, = YLy to write

(£)-(%)

where v = 7"y, Substituting from (4.13) and (4.14) gives

(ﬁ]_) — PT(Y€ 0) (Uy, + CYWV)
v 0 1 u '

The desired result then tollows from the relations Yvuy =, and Yowy, =0.
Finally, by definition, wy = Yy #, — iy, and hence
WV:(Y\/ 2)(DL) _av_ vZ.

14

Substituting from (4.13), (4.14) and (4.15) and using the orthogonality of P, we

obtain
WV:<YV O)PPT(UL> _(uv+awv> _VZ_Z(YVDL_MV_QWV) s
0 1 7 v 0

=((1_a)wv>—vi
0 3

which is the desired result. O

Philip E. Gill et al. / A weighted Gram-Schmidt method 191

One of the most important implications of Theorems 1-4 is that the only difference
between a change in working set involving a bound constraint and a change involving
a general constraint is that some of the relevant vectors must be transformed by
an additional sweep of rotations.

5. Computing the multipliers corresponding to the fixed variables

In order to delete a bound constraint from the working set, the vector Ax must
be computed. As noted in Section 2.3, Ap is defined by (2.19), which involves the
two terms gr and AfA,. The second term is obtained by solving (2.20) for A.;
forming AfA, then requires npm, multiplications. We now discuss how to obtain
&r with the two available storage options.

5.1. Change in the gradient after a change in x

The change in the gradient may be viewed as two separate parts, corresponding
respectively to the move from x to % and to the change in the working set. The
first change is independent of the type of constraint to be added or deleted; the
second change is just a reordering.

From the definition of the quadratic function, the gradient g at the point ¥ = x+ ap
is given by

§=g+aHp (5.1)

With the first storage option, the Cholesky factor R (2.11) of H is available. We
may therefore substitute (2.11) and the definition Rp=w from (2.1) into (5.1),

giving
g=g+aRw. (5.2)

The forms (2.11) of R and (2.17) of w imply that

T - R(;WV)
R'w (STWV . (5.3)

Thus, using (5.2), (5.3) and the partitioned form (2.16) of g, we have
gv=gvt+aRiwy (5.4)
and
gr=grtaS wy. (5.5)

Equation (5.5) shows that g¢ may be updated with ngny multiplications when all
of R is stored.

192 Philip E. Gill et al. /] A weighted Gram-Schmidt method

With the second storage option, all of H is available. In this case, it follows from
(2.10) and the partitioned form (2.16) of g that g may be written as

gF=HFx-F+Kva+CF
=m+K %y, (5.6)
where /m denotes the vector HgXg+ cg. Thus, for the second storage option, the

vector m (m = Hgxp+cg) is recurred, and gr may be computed when necessary
from (5.6), at a cost of ngny multiplications.

5.2. Change in status of a general constraint

When a general constraint changes status, the ordering of the variables is not
altered, and hence gr = g¢. Thus, the update (5.5) may be used to obtain g with

the first storage option. The change in status of a general constraint does not
alter m.

5.3. Change in status of a bound constraint

Following the change in status of a bound constraint, the variables are reordered
as described in Sections 4.1 and 4.2. The reordering is expressed formally through
a suitable permutation matrix II. The gradient is also reordered using II; thus, at
x+ap we have

g=II"g=M"(g+aHp).

Storage Option 1. The update to gr depends on whether a bound constraint is added
or deleted. When the j-th bound variable is added to the working set, a scalar vy
(the component of the gradient with respect to the newly fixed variable) is added
at the front of gr to give

o~(2)

The value of vy is one of the components of gv; since gy is not updated, y may be
computed using R as follows. The relationship gy = R3{uy and (5.4) imply that

gv=Ry(uy+awy). (5.7)

Since v is the j-th component of gy, it can be computed using (5.7) by multiplying
the j-th row of RY by the vector uy + awy before any updates are performed.

When a bound is deleted from the working set, (5.5) gives the updated gradient
with respect to the old set of fixed variables. The reordering in this case simply
removes the component of g corresponding to the variable to be freed. This value,
¥, is then used to update u, (see Theorem 4), and the remaining np—1 elements
of gr form gr.

In either case, updating gr involves negligible work beyond that required to obtain
g from (5.5).

Philip E. Gill et al./ A weighted Gram-Schmidt method 193

Storage Option 2. With the second storage option, Ry and H are available. In this
case, gr is computed from (5.6), where the vector m is updated (m = Hex;:-+ cp).

When a bound is added to the working set, a new component is added at the
front of xg, and we have

_ h*
x;‘:(xé:>, C—r:(cg) and Hrz(;z H)
F F F

Thus, = may be written as

o~ (m h\(¢ 2\ _ n§+thF+§>
m_HFxF”*‘"(h HF>(xF>+(cF)‘(m+en) (58)

The formula (5.8) gives the update for m.
When deleting a bound, the reordering of the last ne components of x is defined
by a permutation matrix /[such that

O xe= (_5) and HTCF=(_§>.
XF (‘F

The Hessian Hy with respect to the reduced set of free variables is given by

hT
" Hell = (ot)
F h He
Applying the permutation to m gives

. . hT
Hrm=H'(prF+CF)=HTHFHHTxF+HTcF=(17)(§>+<{)

h He/\xe
=§(n)+(?T_er_g).
h Hpxe+cp

Thus, we may update m from
(’f) =11Tm—§(">.
m h

6. Summary and discussion

In Table 1, we summarize the number of multiplications required to perform the
calculations associated with an iteration of the WGS method, for both storage
options. The word ‘Same’ in the column for the second storage option means that
the procedure requires the same number of multiplications as with the first storage
option; the entry ‘—’ in a column means that the given procedure is not executed
with that storage option.

194 Philip E. Gill et al./ A weighted Gram-Schmidt method

Table 1
Summary of calculations in the WGS method

Computation Storage option 1 Storage option 2
Compute py ind Same
Compute A, imi Same
Update g nphy —
Compute Ag nEhy np{ny +my)
Update Ly and Y, Add general Ind+2nym, Same
Add bound | Anym +3my (ny—j)+3m? Same
Delete i-th general Ingim— D +3m —0)? Same
Delete bound i +dnymy +3m7 Same
Update R Add bound j Hny—)2+ 3nplny ~j) —
Delete bound ny+; 2j(j—1) —
Update R, Add bound j — Hny—j)?
Delete bound — Ini

Note that substantial savings in work are achieved by taking advantage of bounds
as ng increases (nv decreases). (We have assumed that no reorthogonalization is
required when adding a general constraint to the working set.)

Because of the extra work needed to compute the multipliers for bound constraints,
it is recommended for primal methods that bound constraints be considered for
deletion only when no general constraint is suitable for deletion. With this strategy,
the multipliers for the bound constraints need not be computed until they are
required. (However, g must be updated at every iteration with the first storage
option.)

With the first storage option, the major storage requirements for dense problems
are sn® elements for the Cholesky factor R (since it is assumed that the Cholesky
factors of H are stored in place of H itself, this storage is necessary to store the
definition of the problem), and i + m; Ay elements for the matrices Ly and Yy,
where 71, denotes the maximum number of general constraints in the working set,
and A, denotes the maximum number of free variables at any iteration.

The first storage option is particularly useful when the Cholesky factors of H are
available rather than H itself. For instance, the QP problem may be a subproblem
within a nonlinear programming algorithm that performs quasi-Newton updates to
the Hessian H of the Lagrangian function (see, e.g., Schittkowski, 1982). The
updates are often expressed in terms of the Cholesky factor R of the Hessian. In
order to begin the method, the variables must be ordered as described in Section
2. In general, this could involve several modifications to R to reflect the reordering
of its columns. However, the expectation would be that the set of free variables at
the solution of one subproblem will eventually be the same as for the next.

In the dense case, the storage requirements for the second option include an
additional 7% locations to store Ry. (We assume that storing H is equivalent to
storing R.) The second option would have an advantage in storage for problems in

Philip E. Gill et al./ A weighted Gram—Schmidt method 195

which H is sparse, but substantial fill-in occurs when computing the Cholesky factor
R. In this case, the storage required for H and R might be significantly less than
that required to store all of R.

Acknowledgements

The authors would like to thank the referee and Associate Editor for a number
of helpful suggestions.

References

R.H. Bartels, G.H. Golub and M.A. Saunders, “Numerica! techniques in mathematical programming”,
in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear programming (Academic Press,
London and New York. 1970) pp. 123-176.

J.R. Bunch and L.C. Kaufman, “A computational method for the indefinite quadratic programming
problem”, Linear Algebra and its Applications 34 (1980) 341-370.

J.W. Daniel, W.B. Gragg, L.C. Kaufman and G.W. Stewart, “'Reorthogonalization and stable algorithms
for updating the Gram-Schmidt QR factorization, Mathematics of Computation 30 (1976) 772-795.

A. Dax, “An active set algorithm for convex quadratic programming”, Technical Report, Hydrological
Service (Jerusalem, Israel. 1981).

R. Fletcher, A general quadratic programming algorithm®. Journal of the Institute of Mathematics and
its Applications 7 (1971) 76-91.

P.E. Gill and W. Murray, “Numerically stable methods for quadratic programming”, Mathematical
Programming 14 (1978) 349-372.

P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, ‘Methods for modifying matrix factorizations™.
Mathematics of Computation 28 (1974) 505-535.

P.E. Gill. N.LM. Gould, W. Murray, M.A. Saunders and M.H. Wright, “Range-space methods for
convex quadratic programming”’, Technical Report SOL 82-14, Department of Operations Research,
Stanford University (Stanford, CA, 1982).

P.E. Gill. W. Murray and M.H. Wright, Practical optimization (Academic Press, London and New York,
1981).

D. Goldfarb, “*Matrix factorizations in optimization of nonlinear functions subject to linear constraints’,
Mathematical Programming 10 (1976) 1-31.

D. Goldfarb and A. Idnani, “A numerically stable dual method for solving strictly convex quadratic
programs”, Mathematical Programming 27 (1983) 1-33.

W. Murray, “An algorithm for finding a local minimum of an indefinite quadratic program”, Report
NAC 1, National Physical Laboratory (Teddington, England, 1971).

M.J.D. Powell, “An upper-triangular matrix method for quadratic programming”, in: O.L. Mangasarian,
R.R. Meyer and S.M. Robinson, eds., Nonlinear programming 4 (Academic Press, London and New
York, 1981) pp. 1-24.

K. Schittkowski, “On the convergence of a sequential quadratic programming method with an augmented
Lagrangian line scarch function”, Report SOL 82-4, Department of Operations Research, Stanford
University (Stanford, CA, 1982).

