
Comput Optim Appl (2007) 36: 249–270
DOI 10.1007/s10589-006-9004-x

Using constraint preconditioners with regularized
saddle-point problems

H.S. Dollar · N.I.M. Gould · W.H.A. Schilders ·
A.J. Wathen

Published online: 22 February 2007
© Springer Science+Business Media, LLC 2007

Abstract The problem of finding good preconditioners for the numerical solution
of a certain important class of indefinite linear systems is considered. These systems
are of a 2 by 2 block (KKT) structure in which the (2,2) block (denoted by −C) is
assumed to be nonzero.

In Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal.
Appl. 21 (2000), Keller, Gould and Wathen introduced the idea of using constraint
preconditioners that have a specific 2 by 2 block structure for the case of C being zero.
We shall give results concerning the spectrum and form of the eigenvectors when a
preconditioner of the form considered by Keller, Gould and Wathen is used but the
system we wish to solve may have C �= 0. In particular, the results presented here

H.S. Dollar (�) · N.I.M. Gould
Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,
Oxfordshire, OX11 0QX, England, UK
e-mail: s.dollar@rl.ac.uk

N.I.M. Gould
e-mail: n.i.m.gould@rl.ac.uk

N.I.M. Gould · A.J. Wathen
Numerical Analysis Group, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD, UK
e-mail: nick.gould@comlab.ox.ac.uk

A.J. Wathen
e-mail: andy.wathen@comlab.ox.ac.uk

W.H.A. Schilders
Design Methods and Solutions, NXP Semiconductors, High Tech Campus–48,
5656 AE Eindhoven, The Netherlands
e-mail: wil.schilders@nxp.com

W.H.A. Schilders
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven, The Netherlands



250 H.S. Dollar et al.

indicate clustering of eigenvalues and, hence, faster convergence of Krylov subspace
iterative methods when the entries of C are small; such a situations arise naturally
in interior point methods for optimization and we present results for such problems
which validate our conclusions.

Keywords Preconditioning · Indefinite linear systems · Krylov subspace methods

1 Introduction

The solution of systems of the form[
A BT

B −C

]
︸ ︷︷ ︸

A
C

[
x

y

]
=
[

c

d

]
︸︷︷︸

b

(1.1)

where A ∈ R
n×n, C ∈ R

m×m are symmetric and B ∈ R
m×n, is often required in op-

timization and other various fields, Sect. 1.1. We shall assume that 0 < m ≤ n and B

is of full rank. Various preconditioners which take the general form

P
C

=
[
G BT

B −C

]
(1.2)

where G ∈ R
n×n is some symmetric matrix, have been considered (for example, see

[3–5, 8, 18, 23].) When C = 0, (1.2) is commonly known as a constraint precondi-
tioner [2, 16, 17, 19]. In practice C is often positive semi-definite (and frequently
diagonal).

As we will observe in Sect. 1.1, in interior point methods for constrained opti-
mization a sequence of such problems are solved with the entries in C generally
becoming small as the optimization iteration progresses. That is, the regularization is
successively reduced as the iterates get closer to the minimum. For the Stokes prob-
lem, the entries of C are generally small since they scale with the underlying mesh
size and so reduce for finer grids. This motivates us to look at the spectral properties
of P−1A

C
, where

P =
[
G BT

B 0

]
, (1.3)

but C �= 0 in (1.1), Sect. 2. We will analyze both the cases of C having full rank and C

being rank deficient. We note that when there are equality constraints in the nonlinear
programming problem, the corresponding diagonal of C will be identically zero, and
thus C will be (trivially) rank deficient.

The obvious advantage in being able to use such a constraint preconditioner is as
follows: if B remains constant in each system of the form (1.1), and we choose G in
our preconditioner to remain constant, then the preconditioner P will be unchanged.
Any factorizations required to carry out the preconditioning steps in a Krylov sub-
space iteration will only need to be done once and then used during each execution
of the chosen Krylov subspace iteration, instead of carrying out the factorizations at
the beginning of each execution.
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For symmetric (and in general normal) matrix systems, the convergence of an
applicable iterative method is determined by the distribution of the eigenvalues of
the coefficient matrix. It is often desirable for the number of distinct eigenvalues
to be small so that the rate of convergence is rapid. For non-normal systems the
convergence is not so readily described, see [14, page 6].

1.1 Applications requiring the solution of regularized saddle-point problems

In this section we indicate two application areas that require the solution of a reg-
ularized saddle-point problems. A comprehensive list of further applications can be
found in [2].

Example 1.1 (Nonlinear Programming) Consider the convex nonlinear optimization
problem

minimize f (x) such that c(x) ≥ 0, (1.4)

where x ∈ R
n, and f : Rn �→ R and −c : Rn �→ R

m̂ are convex and twice differen-
tiable. Primal–dual interior point methods [24] for this problem aim to track solutions
to the (perturbed) optimality conditions

∇f (x) = BT (x)y and Yc(x) = μe (1.5)

where y are Lagrange multipliers (dual variables), e is the vector of ones,

B(x) = ∇c(x) and Y = diag{y1, y2, . . . , ym̂},
as the positive scalar parameter μ is decreased to zero. The Newton correction
(�x,�y) to the solution estimate (x, y) of (1.5) satisfy the equation [3]:

[
A(x,y) −BT (x)

YB(x) C(x)

][
�x

�y

]
=
[−∇f (x) + BT (x)y

−Yc(x) + μe

]

where

A(x,y) = ∇xxf (x)−
m̂∑

i=1

yi∇xxci(x) and C(x) = diag{c1(x), c2(x), . . . , cm̂(x)}.

It is common to eliminate the variables �y from the Newton system. Since this may
introduce unwarranted ill conditioning, it is often better [11] to isolate the effects of
poor conditioning by partitioning the constraints so that the values of those indexed
by I are “large” while those indexed by A are “small”, and instead to solve
[

A + BT
I C−1

I YIBI BT
A

BA −CAY−1
A

][
�x

−�yA

]
=
[

−∇f + BT
AyA + μBT

I C−1
I e

−cA + μY−1
A e

]

where, for brevity, we have dropped the dependence on x and y. The matrix CAY−1
A

is symmetric and positive definite; as the iterates approach optimality, the entries of
this matrix become small. The entries of BT

I C−1
I YIBI also become small when close

to optimality.
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Example 1.2 (Stokes) Mixed finite element (and other) discretizations of the Stokes
equations

−∇2	u + ∇p = 	f in Ω

∇ · 	u = 0 in Ω,

for the fluid velocity 	u and pressure p in the domain Ω ⊂ R
2 or R

3 yields linear sys-
tems in the saddle-point form (1.1) (for derivation and the following properties of this
example see [7]). The symmetric block A arises from the diffusion terms −∇2 	u and
BT represents the discrete gradient operator whilst B represents its adjoint, the (neg-
ative) divergence. When (inf-sup) stable mixed finite element spaces are employed,
C = 0, however for equal order and other spaces which are not inherently stable,
stabilized formulations yield symmetric and positive semi-definite matrices C which
typically have a large-dimensional kernel—for example for the famous Q1–P 0 el-
ement which has piecewise bilinear velocities and piecewise constant pressures in
2-dimensions, C typically has a kernel of dimension m/4.

2 Preconditioning AC by P

Suppose that we precondition A
C

by P , where P is defined in (1.3). The decision
to investigate this form of preconditioner is motivated in Sect. 1. We shall use the
following assumptions in our theorems:

A1 B ∈ R
m×n (m ≤ n) has full rank,

A2 C has rank p > 0 and is factored as EDET , where E ∈ R
m×p and has orthonor-

mal columns, and D ∈ R
p×p is non-singular,

A3 If p < m, then F ∈ R
m×(m−p) is such that its columns form a basis for the

nullspace of C and N ∈ R
n×(n−m+p) is such that its columns form a basis of

the nullspace of FT B ,
A4 If p = m, then N = I ∈ R

n×n.

Theorem 2.1 Assume that A1–A4 hold, then the matrix P−1A
C

has:

• at least 2(m − p) eigenvalues at 1,
• its non-unit eigenvalues defined by the finite (and non-unit) eigenvalues of the

quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT (G + 2BT ED−1ET B)Nwn1

+ NT (A + BT ED−1ET B)Nwn1.

Proof We shall consider the cases of p = m and 0 < p < m separately.

Case p = m. The generalized eigenvalue problem takes the form

[
A BT

B −C

][
x

y

]
= λ

[
G BT

B 0

][
x

y

]
. (2.1)
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Expanding this out we obtain

Ax + BT y = λGx + λBT y, (2.2)

Bx − Cy = λBx. (2.3)

From (2.3) we deduce that either λ = 1 and y = 0, or λ �= 1. If the former holds,
then (2.2) implies that x must satisfy

Ax = Gx.

Thus, the associated eigenvectors will take the form

[xT 0T ]T ,

where x �= 0 satisfies Ax = Gx. There is no guarantee that such an eigenvector will
exist, and therefore no guarantee that there are any unit eigenvalues.

If λ �= 1, then Eq. (2.3) and the non-singularity of C gives

y = (1 − λ)C−1Bx, x �= 0.

By substituting this into (2.2) and rearranging we obtain the quadratic eigenvalue
problem

(λ2BT C−1B − λ(G + 2BT C−1B) + A + BT C−1B)x = 0. (2.4)

The non-unit eigenvalues of (2.1) are therefore defined by the finite (non-unit) eigen-
values of (2.4).

Now, assumption A2 implies that

C−1 = ED−1ET ,

and, hence, letting wn1 = x we complete our proof for the case p = m.

Case 0 < p < m. Any y ∈ R
m can be written as y = Eye + Fyf . Substituting this

into (2.1) and premultiplying the resulting generalized eigenvalue problem by
⎡
⎣I 0

0 ET

0 FT

⎤
⎦ ,

we obtain⎡
⎣ A BT E BT F

ET B −D 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦= λ

⎡
⎣ G BT E BT F

ET B 0 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦ . (2.5)

Noting that the (3,3) block has dimension (m − p) × (m − p) and is a zero matrix in
both coefficient matrices, we can apply Theorem 2.1 from [16] to obtain:

• P−1A
C

has an eigenvalue at 1 with multiplicity 2(m − p),
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• the remaining n − m + 2p eigenvalues are defined by the generalized eigenvalue
problem

N
T
[

A BT E

ET B −D

]
Nwn = λN

T
[

G BT E

ET B 0

]
Nwn (2.6)

where N is an (n + p) × (n − m + 2p) basis for the nullspace of [FT B 0].
One choice for N is

N =
[
N 0
0 I

]
.

Substituting this into (2.6) we obtain the generalized eigenvalue problem

[
NT AN NT BT E

ET BN −D

][
wn1
wn2

]
= λ

[
NT GN NT BT E

ET BN 0

][
wn1
wn2

]
. (2.7)

This generalized eigenvalue problem resembles that of (2.1) in the first case consid-
ered in this proof. Therefore, the non-unit eigenvalues of P−1A

C
are equal to the

finite (and non-unit) eigenvalues of the quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT (G + 2BT ED−1ET B)Nwn1

+ NT (A + BT ED−1ET B)Nwn1. (2.8)

Since NT BT ED−1ET BN has a nullspace of dimension n−m, this quadratic eigen-
value problem has 2(n − m + p) − (n − m) = n − m + 2p finite eigenvalues [22].�

The following numerical examples illustrate how the rank of C dictates a lower
bound on the number of unit eigenvalues. In particular, Example 2.2 demonstrates
that there is no guarantee that the preconditioned matrix has unit eigenvalues when C

is nonsingular.

Example 2.2 (C nonsingular) Consider the matrices

A
C

=
⎡
⎣1 0 1

0 1 0
1 0 −1

⎤
⎦ , P =

⎡
⎣2 0 1

0 2 0
1 0 0

⎤
⎦ ,

so that m = p = 1 and n = 2. The preconditioned matrix P−1A
C

has eigenvalues at
1
2 , 2−√

2 and 2+√
2. The corresponding eigenvectors are [0 1 0]T , [1 0 (

√
2 − 1)]T

and [1 0 −(
√

2 + 1)]T respectively. The preconditioned system P−1A
C

has all non-
unit eigenvalues, but this does not go against Theorem 2.1 because m − p = 0.

With our choices of A
C

and P , and setting D = [1] and E = [1] (C = EDET ),
the quadratic eigenvalue problem (2.8) is

(
λ2
[

1 0
0 0

]
− λ

[
4 0
0 2

]
+
[

2 0
0 1

])[
u1
u2

]
= 0.
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This quadratic eigenvalue problem has three finite eigenvalues which are λ = 1
2 , λ =

2 − √
2 and λ = 2 + √

2.

Example 2.3 (C semidefinite) Consider the matrices

A
C

=

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 −1

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣

2 0 1 0
0 2 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

so that m = 2, n = 2 and p = 1. The preconditioned matrix P−1A
C

has two unit
eigenvalues and a further two at λ = 2 − √

2 and λ = 2 + √
2. There is just one lin-

early independent eigenvector associated with the unit eigenvector; specifically this is
[0 0 1 0]T . For the non-unit eigenvalues, the eigenvectors are [0 1 0 (

√
2 − 1)]T and

[0 1 0 −(
√

2 + 1)]T respectively.
Since 2(m−p) = 2, we correctly expected there to be at least two unit eigenvalues,

Theorem 2.1. The remaining eigenvalues will be defined by the finite eigenvalues of
the quadratic eigenvalue problem (2.8):

(
λ2
[

0 0
0 1

]
− λ

[
2 0
0 4

]
+
[

1 0
0 2

])[
u1
u2

]
= 0

where D = [1] and E = [0 1]T are used as factors of C. This quadratic eigenvalue
problem has three finite eigenvalues which are λ = 2 − √

2 and λ = 2 + √
2; the

corresponding eigenvectors have u1 = 0.

2.1 Analysis of the quadratic eigenvalue problem

We note that the quadratic eigenvalue problem (2.8) can have negative and complex
eigenvalues, see [22]. The following theorem gives sufficient conditions for general
quadratic eigenvalue problems to have real and positive eigenvalues.

Theorem 2.4 Consider the quadratic eigenvalue problem

(λ2K − λL + M)x = 0, (2.9)

where M,L ∈ R
n×n are symmetric positive definite, and K ∈ R

n×n is symmetric
positive semidefinite. Define γ (M,L,K) to be

γ (M,L,K) = min{(xT Lx)2 − 4(xT Mx)(xT Kx) :‖x‖2 = 1}.
If γ (M,L,K) > 0, then the eigenvalues λ are real and positive, and there are n lin-
early independent eigenvectors associated with the n largest (n smallest) eigenvalues.

Proof From [22, Sect. 1] we know that under our assumptions the quadratic eigen-
value problem

(μ2M + μL + K)x = 0
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has real and negative eigenvalues. Suppose we divide this equation by μ2 and set
λ = −1/μ. The quadratic eigenvalue problem (2.9) is obtained, and since μ is real
and negative, λ is real and positive. �

We would like to be able to use the above theorem to show that, under suitable
assumptions, all the eigenvalues of P−1A

C
are real and positive. Let

D̃ = NT BT ED−1ET BN (2.10)

where D and E are as defined in assumption A2, and N is as defined in assump-
tion A3. If we assume that NT AN + D̃ is positive definite, then we may write
NT AN + D̃ = RT R for some nonsingular matrix R. If we premultply-multiply the
quadratic eigenvalue problem (2.8) by R−T and substitute in z = Rwn1, then we find
that it is similar to the quadratic eigenvalue problem

(
λ2R−T D̃R−1 − λR−T (NT GN + 2D̃)R−1 + I

)
z = 0.

Thus, if we assume that NT AN + D̃, NT GN + 2D̃ are positive definite and D̃ is
positive semi-definite, and can show that

γ
(
I,R−T (NT GN + 2D̃)R−1,R−T D̃R−1)> 0,

where γ (·, ·, ·) is as defined in Theorem 2.4, then we can apply the above theorem to
show that (2.8) has real and positive eigenvalues.

Let us assume that ‖z‖2 = 1, then

(
zT R−T

(
NT GN + 2D̃

)
R−1z

)2 − 4zT zzT R−T D̃R−1z

= (
zT R−T NT GNR−1z + 2zT R−T D̃R−1z

)2 − 4zT R−T D̃R−1z

= (zT R−T NT GNR−1z)2

+ 4zT R−T D̃R−1z
(
zT R−T NT GNR−1z + zT R−T D̃R−1z − 1

)
= (wT

n1N
T GNwn1)

2 + 4wT
n1D̃wn1

(
wT

n1N
T GNwn1 + wT

n1D̃wn1 − 1
)

(2.11)

where 1 = ‖z‖2 = ‖Rwn1‖2 = ‖wn1‖NT AN+D̃ . Clearly, we can guarantee that (2.11)
is positive if

wT
n1N

T GNwn1 + wT
n1D̃wn1 > 1 for all wn1 such that ‖wn1‖NT AN+D̃ = 1,

that is

wT
n1N

T GNwn1 + wT
n1D̃wn1

wT
n1(N

T AN + D̃)wn1
>

wT
n1(N

T AN + D̃)wn1

wT
n1(N

T AN + D̃)wn1
for all wn1 �= 0.

Rearranging we find that we require

wT
n1N

T GNwn1 > wT
n1N

T ANwn1
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for all wn1 �= 0. Thus we need only scale any positive definite G such that
wT

n1N
T GNwn1/(w

T
n1N

T Nwn1) > ‖A‖2
2 for all Nwn1 �= 0 to guarantee that (2.11)

is positive for all wn1 such that ‖wn1‖NT AN+D̃ = 1. For example, we could choose
G = αI , where α > ‖A‖2

2.
Using the above in conjunction with Theorem 2.1 we obtain the following result:

Theorem 2.5 Suppose that A1–A4 hold and D̃ is as defined in (2.10). Further, as-
sume that A+ D̃ and G+2D̃ are symmetric positive definite, D̃ is symmetric positive
semidefinite and

min
{
(zT Gz)2 + 4(zT D̃z)(zT Gz + zT D̃z − 1) :‖z‖A+D̃ = 1

}
> 0, (2.12)

then all the eigenvalues of P−1A
C

are real and positive. The matrix P−1A
C

also has
m − p + i + j linearly independent eigenvectors. There are

1. m − p eigenvectors of the form [0T yT
f ]T that correspond to the case λ = 1,

2. i (0 ≤ i ≤ n) eigenvectors of the form [wT 0T yT
f ]T arising from Aw = Gw for

which the i vectors w are linearly independent, and λ = 1, and
3. j (0 ≤ j ≤ n−m+2p) eigenvectors of the form [0T wT

n1 wT
n2 yT

f ]T corresponding

to the eigenvalues of P−1A
C

not equal to 1, where the components wn1 arise from
the quadratic eigenvalue problem

0 = λ2NT BT ED−1ET BNwn1 − λNT (G + 2BT ED−1ET B)Nwn1

+ NT (A + BT ED−1EB)Nwn1,

with λ �= 1, and wn2 = (1 − λ)D−1ET BNwn1.

Proof It remains for us to prove the form of the eigenvectors and that they are linearly
independent. We will consider the case p = m and 0 < p < m separately.

Case p = m. From the proof of Theorem 2.1, when λ = 1 the eigenvectors must
take the form [xT 0T ]T , where Ax = σGx for which the i vectors x are linearly in-
dependent, σ = 1. Hence, any eigenvectors corresponding to a unit eigenvalue fall
into the second statement of the theorem and there are i (0 ≤ i ≤ n) such eigenvec-
tors which are linearly independent. The proof of Theorem 2.1 also shows that the
eigenvectors corresponding to λ �= 1 take the form [xT yT ]T , where x corresponds to
the quadratic eigenvalue problem (2.4) and y = (1−λ)C−1Bx = (1−λ)D−1EBNx

(since we can set D = C and E = I ). Clearly, there are at most n + m such eigen-
vectors. By our assumptions, all of the vectors x defined by the quadratic eigenvalue
problem (2.4) are linearly independent. Also, if x is associated with two eigenvalues,
then these eigenvalues must be distinct [22]. By setting wn1 = x and wn2 = y we
obtain j (0 ≤ j ≤ n + m) eigenvectors of the form given in statement 3 of the proof.
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It remains for us to prove that the i + j eigenvectors defined above are linearly
independent. Hence, we need to show that

[
x

(1)
1 . . . x

(1)
i

0 . . . 0

]⎡⎢⎢⎣
a

(1)
1
...

a
(1)
i

⎤
⎥⎥⎦+

[
x

(2)
1 . . . x

(2)
j

y
(2)
1 . . . y

(2)
j

]⎡⎢⎢⎣
a

(2)
1
...

a
(2)
j

⎤
⎥⎥⎦=

⎡
⎢⎣

0
...

0

⎤
⎥⎦ (2.13)

implies that the vectors a(1) and a(2) are zero vectors. Multiplying (2.13) by P−1A
C

,
and recalling that in the previous equation the first matrix arises from λl = 1 (l =
1, . . . , i) and the second matrix from λl �= 1 (l = 1, . . . , j) gives

[
x

(1)
1 . . . x

(1)
i

0 . . . 0

]⎡⎢⎢⎣
a

(1)
1
...

a
(1)
i

⎤
⎥⎥⎦+

[
x

(2)
1 . . . x

(2)
j

y
(2)
1 . . . y

(2)
j

]⎡⎢⎢⎣
λ

(2)
1 a

(2)
1

...

λ
(2)
j a

(2)
j

⎤
⎥⎥⎦=

⎡
⎢⎣

0
...

0

⎤
⎥⎦ . (2.14)

Subtracting (2.13) from (2.14) we obtain

[
x

(2)
1 . . . x

(2)
j

y
(2)
1 . . . y

(2)
j

]⎡⎢⎢⎣
(λ

(2)
1 − 1)a

(2)
1

...

(λ
(2)
j − 1)a

(2)
j

⎤
⎥⎥⎦=

⎡
⎢⎣

0
...

0

⎤
⎥⎦ . (2.15)

Some of the eigenvectors x defined by the quadratic eigenvalue problem (2.4) will
be associated with two (non-unit) eigenvalues; let us assume that there are k such
eigenvectors. By our assumptions, these eigenvalues must be distinct. Without loss
of generality, assume that x

(2)
l = x

(2)
k+l for l = 1, . . . , k. The vectors x

(2)
l (l = k +

1, . . . , j) are linearly independent and λ
(2)
l �= 1 (l = 2k + 1, . . . , j), which gives rise

to a
(2)
l = 0 for l = 2k + 1, . . . , j . Equation (2.15) becomes

[
x

(2)
1 . . . x

(2)
k x

(2)
1 . . . x

(2)
k

y
(2)
1 . . . y

(2)
k y

(2)
k+1 . . . y

(2)
2k

]⎡⎢⎢⎣
(λ

(2)
1 − 1)a

(2)
1

...

(λ
(2)
j − 1)a

(2)
2k

⎤
⎥⎥⎦=

⎡
⎢⎣

0
...

0

⎤
⎥⎦ . (2.16)

The vectors x
(2)
l (l = 1, . . . , k) are linearly independent. Hence

(λ
(2)
l − 1)a

(2)
l x

(2)
l + (λ

(2)
l+k − 1)a

(2)
l+kx

(2)
l = 0, l = 1, . . . , k,

and

a
(2)
l = −a

(2)
l+k

1 − λ
(2)
l+k

1 − λ
(2)
l

, l = 1, . . . , k.

Now y
(2)
l = (1 − λ

(2)
l )C−1Bx

(2)
l for l = 1, . . . ,2k. Hence, we require

(λ
(2)
l − 1)2a

(2)
l C−1Bx

(2)
l + (λ

(2)
l+k − 1)2a

(2)
l+kC

−1Bx
(2)
l = 0, l = 1, . . . , k.
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Substituting in a
(2)
l = −a

(2)
l+k(1 − λ

(2)
l+k)/(1 − λ

(2)
l ) and rearranging gives (λ

(2)
l −

1)a
(2)
l = (λ

(2)
l+k − 1)a

(2)
l+k for l = 1, . . . , k. Since these eigenvalues are non-unit and

λ
(2)
l �= λ

(2)
l+k for l = 1, . . . , k, we conclude that a

(2)
l = 0 (l = 1, . . . , j).

We also have linear independence of x
(1)
l (l = 1, . . . , i), which implies that a

(1)
l =

0 (l = 1, . . . , i).

Case 0 < p < m. From the proof of Theorem 2.1, the generalized eigenvalue prob-
lem can be expressed as

⎡
⎣ A BT E BT F

ET B −D 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦= λ

⎡
⎣ G BT E BT F

ET B 0 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦ . (2.17)

The first part of the proof for this case follows similarly to that of Theorem 2.3
in [16]. Let [M N ][RT

0]T be an orthogonal factorization of [FT B 0], where R ∈
R

(m−p)×(m−p) is upper triangular, M ∈ R
(n+p)×(m−p), and N ∈ R

(n+p)×(n−m+2p) is
a basis for the nullspace of [FT B 0]. Premultiplying (2.17) by the nonsingular and
square matrix ⎡

⎢⎣
M

T
0

N
T

0
0 I

⎤
⎥⎦ ,

substituting in ⎡
⎣ x

ye

yf

⎤
⎦=

[
M N 0
0 0 I

]⎡⎣wm

wn

yf

⎤
⎦ ,

and expanding out gives

M
T
ÂMwm + M

T
ÂNwn + Ryf = λ

[
M

T
ĜMwm + M

T
ĜNwn + Ryf

]
, (2.18)

N
T
ÂMwm + N

T
ÂNwn = λ

[
N

T
ĜMwm + N

T
ĜNwn

]
, (2.19)

R
T
wm = λR

T
wm (2.20)

where

Â =
[

A BT E

ET B −D

]
and Ĝ =

[
G BT E

ET B 0

]
.

From (2.20), it may be deduced that either λ = 1 or wm = 0. In the former case,
(2.18) and (2.19) may be simplified to

QT

[
A BT E

ET B −D

]
Qw = QT

[
G BT E

ET B 0

]
Qw (2.21)
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where Q = [M N ] and w = [wT
m wT

n ]. Since Q is orthogonal, the general eigenvalue
problem (2.21) is equivalent to considering

[
A BT E

ET B −D

][
w1
w2

]
= σ

[
G BT E

ET B 0

][
w1
w2

]
(2.22)

where [wT
1 wT

2 ]T �= 0 if and only if σ = 1, and w1 ∈ R
n, w2 ∈ R

p . As in the first
case of this proof, nonsingularity of D and σ = 1 implies that w2 = 0. There are
m − p linearly independent eigenvectors [0T 0T uT

f ]T corresponding to w1 = 0, and
a further i (0 ≤ i ≤ n) linearly independent eigenvectors corresponding to w1 �= 0
and σ = 1.

Now suppose that λ �= 1, in which case wm = 0. Equations (2.18) and (2.19) yield

N
T
[

A BT E

ET B −D

]
Nwn = λN

T
[

G BT E

ET B 0

]
Nwn, (2.23)

M
T
[

A BT E

ET B −D

]
Nwn + Ryf = λ

[
M

T
[

G BT E

ET B 0

]
Nwn + Ryf

]
. (2.24)

The generalized eigenvalue problem (2.24) defines n − m + 2p eigenvalues, where
j (0 ≤ j ≤ n − m) of these are not equal to 1 and for which two cases have to be
distinguished. If wn = 0, then (2.23) and λ �= 1 imply that yf = 0. In this case no
extra eigenvalues arise. Suppose that wn �= 0, then, from the proof of Theorem 2.1,
the eigenvalues are equivalently defined by (2.8) and

wn =
[

wn1

(1 − λ)D−1ET BNwn1

]
.

Hence, the j (0 ≤ j ≤ n−m+ 2l) eigenvectors corresponding to the non-unit eigen-
values of P−1A

C
take the form [0T wT

n1 wT
n2 yT

f ]T .
Proof of the linear independence of these eigenvectors follows similarly to the case

of p = m. �

Observing that the coefficient matrices in (2.5) are of the form of those considered
by Gould, Hribar and Nocedal [12], we could apply a projected preconditioned con-
jugate gradient method to solve (1.1) if all the eigenvalues of P−1A

C
are real and

positive and we have a decomposition of C as in A2. Theorem 2.5 therefore gives
conditions which allow us to use such a method. Dollar gives a variant of this method
in which no decomposition of C is required, see [6, Sect. 5.5]. The derivation of such
a method bears close resemblance to that of a nullspace method. The nullspace N

is required in the derivation but, as in [12], we can rewrite the algorithm in such a
manner that there is no need for N to be known explicitly.

3 Convergence

In the context of this paper, the convergence of an iterative method under precondi-
tioning is not only influenced by the spectral properties of the coefficient matrix, but
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also by the relationship between m, n and p. We can determine an upper bound on
the number of iterations of an appropriate Krylov subspace method by considering
minimum polynomials of the coefficient matrix.

Definition 3.1 Let A ∈ R
(n+m)×(n+m). The monic polynomial f of minimum degree

such that f (A) = 0 is called the minimum polynomial of A.

Krylov subspace theory states that iteration with any method with an optimality
property, e.g. GMRES, will terminate when the degree of the minimum polynomial is
attained, [21]. In particular, the degree of the minimum polynomial is equal to the di-
mension of the corresponding Krylov subspace (for general b), [20, Proposition 6.1].

Theorem 3.2 Suppose that the assumptions of Theorem 2.5 hold. The dimension of
the Krylov subspace K(P−1A

C
, b) is at most min{n − m + 2p + 2, n + m}.

Proof Suppose that 0 < p < m. As in the proof to Theorem 2.1, the generalized
eigenvalue problem can be written as

⎡
⎣ A BT E BT F

ET B −D 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦= λ

⎡
⎣ G BT E BT F

ET B 0 0
FT B 0 0

⎤
⎦
⎡
⎣ x

ye

yf

⎤
⎦ . (3.1)

Hence, the preconditioned matrix P−1A
C

can be written as

P̂−1Â
C

=
[
Θ1 0
Θ2 I

]
, (3.2)

where the precise forms of Θ1 ∈ R
(n+p)×(n+p) and Θ2 ∈ R

(m−p)×(n+p) are irrele-
vant.

From the earlier eigenvalue derivation, it is evident that the characteristic polyno-
mial of the preconditioned linear system (3.2) is

(P−1A
C

− I )2(m−p)

n−m+2p∏
i=1

(P−1A
C

− λiI ).

In order to prove the upper bound on the Krylov subspace dimension, we need to
show that the order of the minimum polynomial is less than or equal to min{n − m +
2p + 2, n + m}. Expanding the polynomial (P−1A

C
− I )

∏n−m+2p

i=1 (P−1A
C

− λiI )

of degree n − m + 2p + 1, we obtain

[
(Θ1 − I )

∏n−m+2p

i=1 (Θ1 − λiI ) 0

Θ2
∏n−m+2p

i=1 (Θ1 − λiI ) 0

]
.

Since the assumptions of Theorem 2.5 hold, Θ1 has a full set of linearly indepen-
dent eigenvectors and is diagonalizable. Hence, (Θ1 − I )

∏n−m+2p

i=1 (Θ1 − λiI ) = 0.
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We therefore obtain

(P−1A
C

− I )

n−m+2p∏
i=1

(P−1A
C

− λiI ) =
[

0 0

Θ2
∏n−m+2p

i=1 (Θ1 − λiI ) 0

]
. (3.3)

If Θ2
∏n−m+2p

i=1 (Θ1 − λiI ) = 0, then the order of the minimum polynomial of

P−1A
C

is less than or equal to min{n − m + 2p + 1, n + m}. If Θ2
∏n−m+2p

i=1 (Θ1 −
λiI ) = 0, then the dimension of K(P−1A

C
, c) is at most min{n−m+2p+2, n+m}

since multiplication of (3.3) by another factor (P−1A
C

− I ) gives the zero matrix.
If p = m, then trivially K(P−1A

C
, b) has dimension at most min{n − m +

2p + 2, n + m}. �

3.1 Clustering of eigenvalues when ‖C‖ is small

When using interior-point methods to solve optimization problems, the matrix C is
generally diagonal and of full rank. In this case, Theorem 3.2 would suggest that
there is little advantage of using a constraint preconditioner of the form P over any
other preconditioner. However, in interior-point methods the entries of C also become
small as we get close to optimality and, hence, ‖C‖ is small. In the following we shall
assume that the norm considered is the 	2 norm, but the results can be generalized to
other norms.

Theorem 3.3 Let ζ > 0, δ ≥ 0, ε ≥ 0 and δ2 + 4ζ(δ − ε) ≥ 0 then the roots of the
quadratic equation

λ2ζ − λ(δ + 2ζ ) + ε + ζ = 0

satisfy

λ = 1 + δ

2ζ
± μ, μ ≤ √

2 max

{
δ

2ζ
,

√
|δ − ε|

ζ

}

Proof The roots of the quadratic equation satisfy

λ = δ + 2ζ ±√
(δ + 2ζ )2 − 4ζ(ε + ζ )

2ζ

= 1 + δ

2ζ
±
√

δ2 + 4ζ(δ − ε)

2ζ

= 1 + δ

2ζ
±
√(

δ

2ζ

)2

+ δ − ε

ζ
.

If δ−ε
ζ

≥ 0, then

√(
δ

2ζ

)2

+ δ − ε

ζ
≤
√√√√2 max

{(
δ

2ζ

)2

,
δ − ε

ζ

}
= √

2 max

{
δ

2ζ
,

√
δ − ε

ζ

}
.
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If δ−ε
ζ

≤ 0, then the assumption δ2 + 4ζ(δ − ε) ≥ 0 implies that

(
δ

2ζ

)2

≥ ε − δ

ζ
≥ 0.

Hence, √(
δ

2ζ

)2

+ δ − ε

ζ
≤ δ

2ζ
<

√
2 max

{
δ

2ζ
,

√
ε − δ

ζ

}
. �

Remark 3.4 The important point to notice is that if ζ  δ and ζ  ε, then λ ≈ 1 in
Theorem 3.3.

Theorem 3.5 Assume that the assumptions of Theorem 2.5 hold, then the eigenvalues
λ of (2.8) subject to ET BNu �= 0, will satisfy

|λ − 1| = O
(
max

{‖C‖,‖G − A‖√‖C‖})

for small values of ‖C‖.

Proof Suppose that C = EDET is a reduced singular value decomposition of C,

where the columns of E ∈ R
m×p are orthogonal and D ∈ R

p×p is diagonal with
entries dj that are non-negative and in non-increasing order.

In the following, ‖.‖ = ‖.‖2, so that

‖C‖ = ‖D‖ = d1.

Premultiplying the quadratic eigenvalue problem (2.8) by uT gives

0 = λ2uT D̃u − λ(uT NT GNu + 2uT D̃u) + (uT NT ANu + uT D̃u). (3.4)

Assume that v = ET BNu and ‖v‖ = 1, where u is an eigenvector of the above
quadratic eigenvalue problem, then

uT D̃u = vT D−1v

= v2
1

d1
+ v2

2

d2
+ · · · + v2

m

dm

≥ vT v

d1

= 1

‖C‖ .

Hence,

1

uT D̃u
≤ ‖C‖.

Let ζ = uT D̃u, δ = uT NT GNu and ε = uT NT ANu, then (3.4) becomes

λ2ζ − λ(δ + 2ζ ) + ε + ζ = 0.
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From Theorem 3.3, λ must satisfy

λ = 1 + δ

2ζ
± μ, μ ≤ √

2 max

{
δ

2ζ
,

√
|δ − ε|

ζ

}
.

Now δ ≤ c‖NT GN‖, ε ≤ c‖NT AN‖, where c is an upper bound on ‖u‖ and u

are eigenvectors of (2.8) subject to ‖ET BNu‖ = 1. Hence, the eigenvalues of (2.8)
subject to ET BNu �= 0 satisfy

|λ − 1| = O
(
max

{‖C‖,‖G − A‖√‖C‖})

for small values of ‖C‖. �

The results of this theorem are not very surprising, but basic eigenvalue perturba-
tion theorems such as Theorem 7.7.2 in [10] in conjunction with Theorem 2.3 of [16]
are weaker than what we have established. Specifically, the structure of our coeffi-
cient matrix and preconditioner means that we are still guaranteed to have 2(m − p)

unit eigenvalues, whereas the more general eigenvalue perturbation theorems would
only imply that these eigenvalues will be close to 1.

Example 3.6 (C with small entries) Suppose that A
C

and P are as in Example 2.2,
but C = [10−a] for some positive real number a. Setting D = [10−a] and E = [1]
(C = EDET ), the quadratic eigenvalue problem (2.8) is

(
λ2
[

10a 0
0 0

]
− λ

[
2 + 2 × 10a 0

0 2

]
+
[

1 + 10a 0
0 1

])[
xy

xz

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues: λ = 1
2 ,

λ = 1 + 10−a ± 10−a
√

1 + 10a.

For large values of a, λ ≈ 1 + 10−a ± 10− a
2 ; the eigenvalues will be close to 1.

This clustering of part of the spectrum of P−1A
C

will often translate into a speed-
ing up of the convergence of a selected Krylov subspace method, [1, Sect. 1.3].

3.2 Numerical examples

We will carry out several numerical tests to verify that, in practice, our theoretical
results translate to a speeding up in the convergence of a selected Krylov subspace
method as the entries of C converge towards 0.

Example 3.7 The CUTEr test set [13] provides a set of quadratic programming prob-
lems. We shall use the problem CVXQP2_M in the following two examples. This
problem has n = 1000 and m = 250. “Barrier” penalty terms (in this case α, where
α is defined below) are added to the diagonal of A to simulate systems that might
arise during an iteration of an interior-point method for such problems. We shall set
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G = diag(A) (ignoring the additional penalty terms), and C = αI , where α is a posi-
tive, real parameter that we will change.

All tests were performed on a dual Intel Xeon 3.20 GHz machine with hyper-
threading and 2 GByte of RAM. It was running Fedora Core 2 (Linux kernel 2.6.8)
with MATLAB® 7.0. We solve the resulting linear systems with unrestarted GMRES
[10], the Projected Preconditioned Conjugate Gradient (PPCG) method [6, Algo-
rithm 5.5.2] and the Simplified Quasi-Minimal Residual (SQMR) method [9].1 We
terminate the iteration when the value of residual is reduced by at least a factor of
10−8 and always use P and P

C
as left preconditioners. We emphasize that for the

PPCG method knowledge of the eigenvalues is all you need to describe convergence
whereas Greenbaum, Pták and Strakoš show that this is not generally the case with
GMRES [15].

In Fig. 1 we compare the performance (in terms of iteration count) between using a
preconditioner of the form P and one of the form P

C
, Eqs. (1.3) and (1.2) respectively

for the three different iterative methods. Although the SQMR method doesn’t have
an optimality property as was assumed in Sect. 3, as α becomes smaller, we hope that
the difference between the number of iterations required by the two preconditioners
decreases. We observe that, for this example, once α ≤ 10−4 there is little benefit in
reproducing C in the preconditioner in any of the iterative methods tested. However,
the SQMR method requires around 900 iterations when α � 1, whilst PPCG and
GMRES require just 500 iterations to reach the desired tolerance. We would expect
the PPCG and GMRES methods to take around 500 iterations because the precondi-
tioned system has 500 unit eigenvalues and a further 500 clustered about one when
α � 1; the remaining 500 eigenvalues lie away from the unit eigenvalues. The SQMR
method does not satisfy an optimality condition and, in this and the following exam-
ple, this results in substantially more than 500 iterations being required to reach the
desired tolerance when α � 1.

In this example, when α ≈ 1 and the preconditioned system P−1A
C

has additional
eigenvalues clustered around 1 above those 2m − p guaranteed to lie at 1. However,
as α decreases, this eigenvalues move away from 1 which results in the number of
iterations to increase.

Example 3.8 In this example we again use the CVXQP2_M problem from the
CUTEr test set. The only difference to the above example is that we shall set
C = α × diag(0, . . . ,0,1, . . . ,1), where rank(C) = �m/2�.

In Fig. 2 we compare the performance (in terms of iteration count) between using a
preconditioner of the form P and one of the form P

C
, Eqs. (1.3) and (1.2) respectively

for our chosen iterative methods. We observe that if α ≈ 1, then fewer iterations are
required in Fig. 2 than in Fig. 1 to reach the required tolerance — this is as we
would expect because of there now being a guarantee of at least 250 unit eigenvalues
in the preconditioned system compared to the possibility of none. However, as α

approaches 0, the number of eigenvalues clustered around 1 will converge to be the
same as in Example 3.7. We observe from Figs. 1 and 2 that the number of iterations
to reach the required tolerance is, as expected, converging to be the same as α → 0.

1MATLAB® code for SQMR can be obtained from the MATLAB® Central File Exchange at http://www.
mathworks.fr/matlabcentral/.
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Fig. 1 Comparison of number
of iterations required when
either (a) P or (b) P

C
are used

as preconditioners for C = αI

with GMRES, PPCG and
SQMR on the CVXQP2_M
problem
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Fig. 2 Comparison of number
of iterations required when
either (a) P or (b) P

C
are used

as preconditioners for
C = α×diag(0, . . . ,0,1, . . . ,1),
where rankC = �m/2�, with
GMRES, PPCG and SQMR on
the CVXQP2_M problem
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Example 3.9 AUG2DQP is another test problem from the CUTEr test set. This prob-
lem has n = 3280 and m = 1600. “Barrier” penalty terms (in this case α, where α is
defined below) are added to the diagonal of A to simulate systems that might arise
during an iteration of an interior-point method for such problems. We shall set G =
diag(A) (ignoring the additional penalty terms), and C = αI , where α is a positive,
real parameter that we will change. In Fig. 3 we observe that once α ≤ 10−4 there is
little benefit in reproducing C in the preconditioner for the PPCG method. Similarly,
when C = α×diag(0, . . . ,0,1, . . . ,1), where rank(C) = �m/2�, there is little benefit
in reproducing C in the preconditioner for the PPCG method when α ≤ 10−4, Fig. 4.

These examples suggest that during premultply-asymptotic iterations of an interior
point method for a nonlinear programming problem, we may need to use a precon-
ditioner of the form P

C
, but as the method proceeds there will be a point at which

we will be able to swap to using a preconditioner of the form P . From this point

Fig. 3 Number of PPCG
iterations when either (a) P or
(b) P

C
are used as

preconditioners for C = αI on
the AUG2DQP problem

Fig. 4 Number of PPCG
iterations when either (a) P or
(b) P

C
are used as

preconditioners for
C = α×diag(0, . . . ,0,1, . . . ,1),
where rankC = �m/2�, on the
AUG2DQP problem
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onwards, we’ll be able to use the same preconditioner during each iterative solve of
the resulting sequence of saddle-point problems.

4 Conclusion and further research

In this paper, we have investigated a class of preconditioners for indefinite linear sys-
tems that incorporate the (1,2) and (2,1) blocks of the original matrix. These blocks
are often associated with constraints. We have shown that if C has rank p > 0, then
the preconditioned system has at least 2(m − p) unit eigenvalues, regardless of the
structure of G. In addition, we have shown that if the entries of C are very small,
then we will expect an additional 2p eigenvalues to be clustered around 1 and, hence,
for the number of iterations required by our chosen Krylov subspace method to be
dramatically reduced. These later results are of particular relevance to interior point
methods for optimization.

The practical implications of the analysis of this paper in the context of solving
nonlinear programming problems will be the subject of a follow-up paper. We will
investigate the point at which the user should switch from using a preconditioner of
the form P

C
to that of P during an interior point method, and how the sub-matrix G

in the preconditioner should be chosen.
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