
Appendix
A. Simplified statement of the Algorithm

In order to simplify the proofs given in the appendix, we give them in the case of a particular

instance of Algorithm 3.1. This simplified algorithm corresponds to choosing parameters ηs =

ωs = αω = βω = 1, αη = 5
6
, βη = 1

6
and αλ = 1

2
.

For proofs that correspond to the more general statements the interested reader is referred to

the technical report, Conn et al. [12]. However, the choice of parameters in practice appears to

be significantly more critical than for augmented Lagrangian approaches. Thus the choice given

here, which is just for convenience of exposition, should not be taken as an indication of suitable

values.

Algorithm A.1 [Outer Iteration Algorithm]

step 0 : [Initialization] Choose the strictly positive constants

ωs, ηs, µ0 < 1, τ < 1,, and define ω0 = ωsµ0 and η0 = ηsµ
5
6
0 .(A.1)

An initial estimate of the solution, x−1 ∈ B, and vector of positive Lagrange multiplier

estimates, λ0, for which ci(x−1) + µ0
√
λ0,i > 0 are specified. Set k = 0.

In addition set

ω∗ � 1 and η∗ � 1.(A.2)

step 1 : [Inner iteration] Compute shifts

sk,i = µk
√
λk,i,(A.3)

for i = 1, ...,m. Find xk ∈ B such that

‖P (xk,∇Ψk)‖ ≤ ωk(A.4)

and

ci(xk) + sk,i > 0 for i = 1, ...,m.(A.5)

step 2 : [Test for convergence] If

‖P (xk,∇Ψk)‖ ≤ ω∗ and ‖[ci(xk)λ̄k,i]mi=1‖ ≤ η∗,(A.6)

stop. If ∣∣∣∣∣
∣∣∣∣∣
[
ci(xk)λ̄k,i√

λk,i

]m
i=1

∣∣∣∣∣
∣∣∣∣∣ ≤ ηk,(A.7)

execute step 3. Otherwise, execute step 4.
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step 3 : [Update Lagrange multiplier estimates] Set

λk+1 = λ̄k,

µk+1 = µk,

ωk+1 = µk+1ωk,

ηk+1 = µ
1
6
k+1ηk.

(A.8)

Increase k by one and go to step 1.

step 4 : [Reduce the penalty parameter] Set

λk+1 = λk,

µk+1 = τµk,

ωk+1 = ωsµk+1,

ηk+1 = ηsµ
5
6
k+1.

(A.9)

Increase k by one and go to step 1.

end of Algorithm A.1

B. Details of proofs from §4

B.1. An auxiliary lemma. We require the following lemma in the proof of global convergence

of our algorithm. The lemma is the analog of Conn et al. [11, Lemma 4.1]. In essence, the result

shows that the Lagrange multiplier estimates generated by the algorithm cannot behave too

badly.

Lemma B.1 Suppose that µk converges to zero as k increases when Algorithm A.1 is executed.

Then the product µk(λk,i)
3
2 converges to zero for each 1 ≤ i ≤ m.

Proof. If µk converges to zero, step 4 of the algorithm must be executed infinitely often. Let

K = {k0, k1, k2, ...} be the set of the indices of the iterations in which step 4 of the algorithm is

executed and for which

µk ≤ ( 1
2
)6.(B.1)

We consider how the ith Lagrange multiplier estimate changes between two successive iter-

ations indexed in the set K. First note that λkp+1,i = λkp,i. At iteration kp + j, for kp + 1 <

kp + j ≤ kp+1, we have

λkp+j,i = λkp+j−1,i −

ckp+j−1,iλkp+j,i√
λkp+j−1,i

 1

µkp+j−1
,(B.2)

from (2.5), (A.3) and (A.8) and

µkp+1 = µkp+j = µkp+1 = τµkp .(B.3)
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Hence summing (B.2) and using the fact that λkp+1,i = λkp,i, we get

λkp+j,i = λkp,i −
j−1∑
l=1

ckp+l,iλkp+l+1,i√
λkp+l,i

 1

µkp+1
(B.4)

where the summation in (B.4) is null if j = 1.

Now suppose that j > 1. Then for the set of iterations kp+l, 1 ≤ l < j, step 3 of the algorithm

must have been executed and hence, from (A.5), (B.3) and the recursive definition of ηk, we must

also have ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ckp+l,iλkp+l+1,i√

λkp+l,i

m
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ ηsµ

5
6

+ 1
6

(l−1)

kp+1 .(B.5)

Combining equations (B.1) to (B.5), we obtain the bound

‖λkp+j‖ ≤ ‖λkp‖+
∑j−1
l=1

∣∣∣∣∣∣
∣∣∣∣∣∣
ckp+l,iλkp+l+1,i√

λkp+l,i

m
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣ · 1
µkp+1

≤ ‖λkp‖+ 2ηs/µ
1
6
kp+1.

(B.6)

Thus, multiplying (B.6) by µ
2
3
kp+j and using (B.3), we obtain that

µ
2
3
kp+j‖λkp+j‖ ≤ (τµkp)

2
3 ‖λkp‖+ 2ηs

√
τµkp .(B.7)

Equation (B.7) is also satisfied when j = 1, as equations (A.8) and (B.3) give

µ
2
3
kp+j‖λkp+j‖ = (τµki)

2
3 ‖λkp‖.(B.8)

Hence from (B.7),

µ
2
3
kp+1
‖λkp+1‖ ≤ (τµkp)

2
3 ‖λkp‖+ 2ηs

√
τµkp .(B.9)

We now show that (B.9) implies that µ
2
3
kp
‖λkp‖ converges to zero as k increases. For, if we define

αp
def
= µ

2
3
kp
‖λkp‖ and βp

def
= 2ηs

√
µkp ,(B.10)

equations (B.3), (B.9) and (B.10) give that

αp+1 ≤ τ
2
3αp +

√
τβp and βp+1 =

√
τβp(B.11)

and hence that

0 ≤ αp ≤ τ
2
3
pα0 + τ

p
2

p−1∑
l=0

τ
l
6β0.(B.12)

It now follows that

0 ≤ αp ≤ τ
2
3
pα0 +

τ
p
2

1− τ l
6

β0.(B.13)

But both α0 and β0 are finite. Thus, as p increases, αp converges to zero; the second part

of equation (B.11) implies that βp converges to zero. Therefore, as the right-hand side of (B.7)
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converges to zero, so does µ
2
3
k ‖λk‖ for all k. The truth of the lemma is finally established by

raising µ
2
3
k ‖λk,i‖ to the power 3

2
. 2

We note that Lemma B.1 may be proved under much weaker conditions on the sequence {ηk}
than those imposed in Algorithm A.1. All that is needed is that, in the proof just given,

j−1∑
l=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ckp+l,iλkp+l+1,i√

λkp+l,i

m
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

in (B.6) should be bounded by some multiple of a positive power of µkp+1.

B.2. Proof of Theorem 4.2. In order to prove (i), (ii) and (iii), we consider each constraint

in turn and distinguish two cases:

1. constraints for which c∗,i 6= 0; and

2. constraints for which c∗,i = 0.

For the first of these cases, we need to consider the possibility that

a. the penalty parameter µk is bounded away from zero; and

b. the penalty parameter µk converges to zero.

Case 1a. As µk is bounded away from zero, test (A.7) must be satisfied for all k sufficiently

large and hence |ck,iλ̄k,i/
√
λk| converges to zero. Thus, as {ck,i} converges to c∗,i 6= 0, for

k ∈ K, λ̄k,i/
√
λk converges to zero. Hence, using (2.3) and (A.3), we have that

λ̄k,i√
λk,i
≡ µλk,i
ck,i + µ

√
λk,i

=
√
λk,i

µ
√
λk,i

ck,i + µ
√
λk,i
→ 0.(B.14)

We aim to show that λ̄k,i converges to zero and that c∗,i > 0.

Suppose first that λk,i does not converge to zero. It follows directly from (2.5) and (A.3)

that

ck,iλ̄k,i/
√
λk,i = µk(λk,i − λ̄k,i).(B.15)

Then, as the left-hand side of (B.15) converges to zero and µk and λk,i are bounded away

from zero, we deduce that

λ̄k,i = λk,i(1− εk,i),(B.16)

for some {εk,i}, k ∈ K, converging to zero. But then, by definition (2.3),

µ
√
λk,i

ck,i + µ
√
λk,i

= 1− εk,i.(B.17)

However, as λk,i is bounded away from zero, (B.17) contradicts (B.14). Thus λk,i converges

to zero, for k ∈ K.

It now follows that, as λ̄k,i/
√
λk,i converges to zero, so does λ̄k,i. It also follows from (A.5)

that ck,i +µk
√
λk,i > 0. As µk is bounded and λk,i converges to zero, we have that c∗,i ≥ 0.

But as c∗,i 6= 0, we conclude that c∗,i > 0, λ̄k,i converges to λ∗,i = 0, for k ∈ K, and

c∗,iλ∗,i = 0.
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Case 1b. As µk converges to zero, Lemma B.1 shows that µk(λk,i)
3
2 and hence µkλk,i and

µk
√
λk,i converges to zero. It follows immediately that the numerator of (2.3) converges

to zero while the denominator converges to c∗,i and hence that λ̄k,i converges to zero for

k ∈ K. Furthermore, it follows from (A.5) that ck,i + µk
√
λk,i > 0: as µk

√
λk,i converges

to zero, we have that c∗,i ≥ 0. But as c∗,i is, by assumption, nonzero, c∗,i > 0. Hence we

may conclude that c∗,i > 0, λ̄k,i converges to λ∗,i = 0, for k ∈ K, and c∗,iλ∗,i = 0.

We note from (2.15) that the set I∗ ≡ I(x∗) is precisely the set of constraints covered in Case

1. Having thus identified the constraints in A∗ ≡ A(x∗) as those in Case 2 above, we consider

Case 2 in detail.

Case 2. By construction, at every iteration of the algorithm, λ̄k > 0. Moreover, from (2.6),

(2.12), (A.4) and Case 1 above,

‖(gk −ATk,A∗ λ̄k,A∗)F1‖
≤ ‖(ATk,I∗ λ̄k,I∗)F1‖+ ‖P (xk,∇xΨk)F1‖
≤ ‖(ATk,I∗ λ̄k,I∗)F1‖+ ωk ≤ ω̄k

(B.18)

for some ω̄k converging to zero. Thus, in view of AS2 and Lemma 4.1, the Lagrange mul-

tiplier estimates λ̄k,A∗ are bounded and, as L(xk, ω̄k;x∗,F1) is nonempty, these multipliers

have at least one limit point. If λA is such a limit, AS1, (B.18) and the identity c∗,A∗ = 0

ensure that (g∗ −AT∗,A∗λA)F1 = 0, cT∗,A∗λA = 0 and λA ≥ 0.

Thus, from AS2, there is a subsequence K′ ⊆ K for which {xk} converges to x∗ and {λ̄k}
converges to λ∗ as k ∈ K′ tends to infinity and hence, from (2.4), ∇xΨk converges to g`∗. We also

have that

cT∗ λ∗ = 0(B.19)

with both c∗,i and λ∗,i (i = 1, . . . ,m) nonnegative and at least one of the pair equal to zero. We

may now invoke Lemma 2.1, and the convergence of ∇xΨk to g`∗ to see that

g`∗,F1
= 0 and xT∗ g

`
∗ = 0.(B.20)

The variables in the set F1 ∩Nb are, by definition, positive at x∗. The components of g`∗ indexed

by D1 are nonnegative from (2.10), as their corresponding variables are dominated. This then

gives the conditions

x∗,i > 0 and g`∗,i = 0 for i ∈ F1 ∩Nb,
g`∗,i = 0 for i ∈ F1 ∩Nf ,

x∗,i = 0 and g`∗,i ≥ 0 for i ∈ D1 and

x∗,i = 0 and g`∗,i = 0 for i ∈ F4.

(B.21)

Thus, we have shown that x∗ is a Kuhn-Tucker point and hence we have established results

(i), (ii) and (iii). It remains to prove (iv).

If µk is bounded away from zero, we have established in Case 1a above that λk,i converges

to zero. Hence, as µk is finite, sk,i also converges to zero. On the other hand, if µk converges to
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zero, we have established in Case 1b that µk
√
λk,i and hence, once again, sk,i converge to zero.

But as i ∈ I∗, ck,i is bounded away from zero for all k ∈ K sufficiently large, and therefore σk,i

converges to zero for all i ∈ I∗ which establishes (iv).

B.3. Proof of Theorem 4.3. Assumption AS3 implies that there is at most one point in

L(x∗, 0;x∗,F1) and thus AS2 holds. The conclusions of Theorem 4.2 then follow. The conclusion

(v) of the current theorem is a direct consequence of AS3.

We have already identified the set of constraints for which ci(x∗) = 0 with A∗. Let

σk,i
def
=

sk,i
ck,i + sk,i

.(B.22)

Then (2.3) shows that λ̄k,i = σk,iλk,i. We now prove that σk,i converges to zero for all i ∈ I∗ as

k ∈ K tends to infinity.

To prove (vi), we let Ω̄ be any closed, bounded set containing the iterates xk, k ∈ K. We note

that, as a consequence of AS1 and AS3, for k ∈ K sufficiently large, A+
k,A∗,F1

exists, is bounded

and converges to A+
∗,A∗,F1

. Thus, we may write

‖A+
k,A∗,F1

‖ ≤ a1(B.23)

for some constant a1 > 0. As the variables in the set F1 are floating, equations (2.6), (2.7), (2.12)

and the inner iteration termination criterion (A.4) give that

‖gk,F1
+ATk,A∗,F1

λ̄k,A∗ +ATk,I∗,F1
λ̄k,I∗‖ ≤ ωk.(B.24)

By assumption, λ(x)A∗ is bounded for all x in a neighborhood of x∗. Thus, we may deduce from

(4.2), (B.23) and (B.24) that

‖λ̄k,A∗ − λk,A∗‖ = ‖A+
k,A∗,F1

T
gk,F1 + λ̄k,A∗‖

= ‖A+
k,A∗,F1

T
(gk,F1 +ATk,A∗,F1

λ̄k,A∗)‖
≤ ‖A+

k,A∗,F1

T ‖(ωk + ‖ATk,I∗,F1
‖‖λ̄k,I∗‖

≤ a1ωk + a3‖λ̄k,I∗‖,

(B.25)

where a3
def
= a1 maxx∈Ω̄ ‖A(x)TI∗,F1

‖. Moreover, from the integral mean-value theorem and the

(local) differentiability of the least-squares Lagrange multiplier estimates (see, for example, Conn

et al. [11, Lemma 2.2]) we have that

λk,A∗ − λ∗,A∗ =

(∫ 1

0
∇xλ(x(t))A∗dt

)
(xk − x∗),(B.26)

where ∇xλ(x)A∗ is given by Conn et al. [11, equation 2.17], and where x(t) = xk + t(x∗ − xk).
Now the terms within the integral sign are bounded for all x sufficiently close to x∗ and hence

(B.26) gives

‖λA∗,k − λA∗,∗‖ ≤ a2‖xk − x∗‖(B.27)

for all k ∈ K sufficiently large, for some constant a2 > 0, which is just the inequality (4.5). We

then have that λA∗,k converges to λA∗,∗. Combining (4.1), (B.25) and (B.27), we obtain

‖λ̄k,A∗ − λ∗,A∗‖ ≤ ‖λ̄k,A∗ − λk,A∗‖+ ‖λk,A∗ − λ∗,A∗‖
≤ a1ωk + a2‖xk − x∗‖+ a3‖λ̄k,I∗‖
≤ a1ωk + a2‖xk − x∗‖+ a3σk‖λk,I∗‖,

(B.28)
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the required inequality (4.4). It remains to establish (4.6) and (4.7).

The relationships (2.5) and (A.3) imply that

ck,i = µk(
√
λk,i/λ̄k,i)(λk,i − λ̄k,i)(B.29)

and

ck,iλ̄k,i/
√
λk,i = µk(λk,i − λ̄k,i)(B.30)

for 1 ≤ i ≤ m. Bounding (B.29) and using the triangle inequality and the inclusion A ⊆ A∗, we

obtain
‖ck,A‖ ≤ µk

∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A∣∣∣∣∣∣ ‖(λ̄k − λk)A‖
≤ µk

∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A∣∣∣∣∣∣ [‖(λ̄k − λ∗)A‖+ ‖(λk − λ∗)A‖
]

≤ µk
∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A∣∣∣∣∣∣ [‖(λ̄k − λ∗)A∗‖+ ‖(λk − λ∗)A‖

]
.

(B.31)

But then, combining (B.28) and (B.31), we see that (4.7) holds for all k ∈ K sufficiently large.

Furthermore, the triangle inequality, the relationships (4.1), (4.4) and

λ∗,I∗ = 0(B.32)

yield the bound

‖λ̄k − λk‖ ≤ ‖λ̄k − λ∗‖+ ‖λk − λ∗‖
≤ ‖(λ̄k − λ∗)A∗‖+ ‖(λk − λ∗)A∗‖+ ‖λ̄k,I∗‖+ ‖λk,I∗‖

≤ a1ωk+ a2‖xk − x∗‖+ (1 + (1 + a3)σk)‖λk,I∗‖+ ‖(λk − λ∗)A∗‖.
(B.33)

Hence, taking norms of (B.30) and using (B.33), we see that (4.6) holds for all k ∈ K sufficiently

large.

C. Details of proofs from §5

C.1. Proof of Lemma 5.1. We first need to make some observations concerning the status

of the variables as the limit point is approached. We pick k sufficiently large that the sets F1

and D1, defined in (2.13), have been determined. Then, for k ∈ K, the remaining variables either

float (variables in F2) or oscillate between floating and being dominated (variables in F3). Now

recall the definition (2.14) of F4 and pick an infinite subsequence, K̃, of K such that:

(i) F4 = F5 ∪D2 with F5 ∩ D2 = ∅;
(ii) variables in F5 are floating for all k ∈ K̃; and

(iii) variables in D2 are dominated for all k ∈ K̃.

Notice that the set F2 of (2.13) is contained within F5. Note, also, that there are only a finite

number (≤ 2|F4|) of such subsequences K̃ and that for k sufficiently large, each k ∈ K is in one

such subsequence. It is thus sufficient to prove the lemma for k ∈ K̃.

Now, for k ∈ K̃, define

F def
= F1 ∪ F5 and D def

= D1 ∪ D2.(C.1)

So, the variables in F are floating while those in D are dominated.

7



We also need to consider the status of the constraints in A∗2. We choose a χ satisfying (5.5)

and pick an infinite subsequence, K̄, of K̃ such that

(a) A∗2 = A∗s ∪ A∗b with A∗s ∩ A∗b = ∅, where A∗s and A∗b are defined below;

(b) the Lagrange multiplier estimates satisfy

λ̄k,i ≤ µ1−χ
k

√
λk,i(C.2)

for all constraints i ∈ A∗s and all k ∈ K̄; and

(c) the Lagrange multiplier estimates satisfy

λ̄k,i > µ1−χ
k

√
λk,i(C.3)

for all constraints i ∈ A∗b and all k ∈ K̄.

We note that there are only a finite number (≤ 2|A
∗
2|) of such subsequences K̄ and that for k

sufficiently large, each k ∈ K is in one such subsequence. It is thus sufficient to prove the lemma

for k ∈ K̄.

We define

A = A∗1 ∪ A∗b(C.4)

and note that this set is consistent with the set A described by AS5. It then follows from (5.1)

and (C.4) that

A∗ = A ∪A∗s with A ∩A∗s = ∅.(C.5)

We note that, if i ∈ A∗b , (C.3) gives √
λk,i/λ̄k,i < µχ−1

k(C.6)

for all k ∈ K̄. Moreover, inequalities (5.4) and (5.5) imply∣∣∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A∗1
∣∣∣∣∣∣∣∣ ≤ a4µ

ζ−1
k ≤ a4µ

χ−1
k .(C.7)

It then follows directly from (C.6) and (C.7) that∣∣∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A
∣∣∣∣∣∣∣∣ ≤ a14µ

χ−1
k(C.8)

for some positive constants χ, satisfying (5.5), and a14 and for all k ∈ K. Furthermore

λ∗,A∗s = 0,(C.9)

as A∗s ⊆ A∗2. Finally, the same inclusion and (C.2) imply that

‖λ̄k,A∗s‖ ≤ µ
1−χ
k

∣∣∣∣∣∣∣∣[√λk,i]i∈A∗s
∣∣∣∣∣∣∣∣ ≤ µ1−χ

k

∣∣∣∣∣∣∣∣[√λk,i]i∈A∗2
∣∣∣∣∣∣∣∣(C.10)

for all k ∈ K̄.

We may now invoke Theorem 4.3, part (vi), the bound (C.8) and the inclusion A ⊆ A∗ to

obtain the inequalities

‖(λ̄(xk, λk, sk)− λ∗)A‖ ≤ a1ωk + a2‖xk − x∗‖+ a3σk‖λk,I∗‖(C.11)
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and
‖ck,A‖ ≤ a14µ

χ
k [a1ωk + a2‖xk − x∗‖+

a3σk‖λk,I∗‖+ ‖(λk − λ∗)A∗‖]
(C.12)

for all sufficiently large k ∈ K̄. Moreover, λ̄k converges to λ∗ and hence (2.4) implies that ∇xΨk

converges to g`∗. Therefore, from Lemma 2.1,

x∗,i = 0 for all i ∈ D and g`∗,i = 0 for all i ∈ F .(C.13)

Using Taylor’s theorem and the identities (B.32), (C.5) and (C.9), we have

∇xΨk = gk +ATk λ̄k

= g∗ +H∗(xk − x∗) +AT∗ λ̄k+∑m
j=1 λ̄k,jH∗,j(xk − x∗) + r1(xk, x∗, λ̄k)

= g`∗ +H`
∗(xk − x∗) +AT∗,A(λ̄k − λ∗)A +AT∗,A∗s λ̄k,A∗s+

AT∗,I∗λ̄k,I∗ + r1(xk, x∗, λ̄k) + r2(xk, x∗, λ̄k, λ∗),

(C.14)

where

r1(xk, x∗, λ̄k) =

∫ 1

0
(H`(xk + t(x∗ − xk), λ̄k)−H`(x∗, λ̄k))(xk − x∗)dt(C.15)

and

r2(xk, x∗, λ̄k, λ∗) =
m∑
j=1

(λ̄k,j − λj,∗)Hj(x∗)(xk − x∗).(C.16)

The boundedness and Lipschitz continuity of the Hessian matrices of f and the ci in a neighbor-

hood of x∗ along with the convergence of λ̄k to λ∗ for which the relationships (4.8) and (B.32)

hold then give that

‖r1(xk, x∗, λ̄k)‖ ≤ a15‖xk − x∗‖2(C.17)

and
‖r2(xk, x∗, λ̄k, λ∗)‖ ≤ a16‖xk − x∗‖‖λ̄k − λ∗‖

≤ a16‖xk − x∗‖(‖(λ̄k − λ∗)A∗‖+ σk‖λk,I∗‖)
(C.18)

for some positive constants a15 and a16, using (4.1). In addition, again using Taylor’s theorem

and that c∗,A = 0, we have

ck,A = A∗,A(xk − x∗) + r3(xk, x∗)A,(C.19)

where

(r3(xk, x∗))i =

∫ 1

0
t2

∫ 1

0
(xk − x∗)THi(x∗ + t1t2(xk − x∗))(xk − x∗)dt1dt2(C.20)

for i ∈ A (see Gruver and Sachs [26, p. 11]). The boundedness of the Hessian matrices of the ci

in a neighborhood of x∗ then gives that

‖r3(xk, x∗)A‖ ≤ a17‖xk − x∗‖2(C.21)

for some constant a17 > 0. Combining (C.14) and (C.19), we obtain(
H`
∗ AT∗,A

A∗,A 0

)(
xk − x∗

(λ̄k − λ∗)A

)

=

(
∇xΨk − g`∗ −AT∗,I∗ λ̄k,I∗ −AT∗,A∗s λ̄k,A∗s

ck,A

)
−
(
r1 + r2

(r3)A

)
,

(C.22)
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where we have suppressed the arguments of r1, r2 and r3 for brevity. We may then use (C.13) to

rewrite (C.22) as 
H`
∗,F ,F H`

∗,F ,D AT∗,A,F
H`
∗,D,F H`

∗,D,D AT∗,A,D
A∗,A,F A∗,A,D 0




(xk − x∗)F
xk,D

(λ̄k − λ∗)A


=


∇xΨk,F −AT∗,A∗s ,F λ̄k,A∗s −A

T
∗,I∗,F λ̄k,I∗

∇xΨk,F − g`∗,D −AT∗,A∗s ,Dλ̄k,A∗s −A
T
∗,I∗,Dλ̄k,I∗

ck,A

−


(r1 + r2)F
(r1 + r2)D

(r3)A

 .
(C.23)

Then, rearranging (C.23) and removing the middle horizontal block, we obtain(
H`
∗,F ,F AT∗,A,F

A∗,A,F 0

)(
(xk − x∗)F
(λ̄k − λ∗)A

)
=(

∇xΨk,F −H`
∗,F ,Dxk,D −AT∗,A∗s ,F λ̄k,A∗s −A

T
∗,I∗,F λ̄k,I∗

ck,A −A∗,A,Dxk,D

)
−
(

(r1 + r2)F
(r3)A

)
.

(C.24)

Roughly, the rest of the proof proceeds by showing that the right-hand side of (C.24) is O(ωk)+

O(σk‖λk,I∗‖)+ O(µk‖(λk − λ∗)A∗‖). This will then ensure that the vector on the left-hand side

is of the same size, which is the result we require. First observe that

‖xk,D‖ ≤ ωk,(C.25)

from (2.11) and (A.4), and

‖∇xΨk,F‖ ≤ ωk,(C.26)

from (2.12). Consequently, using (C.13) and (C.25), we have

‖xk − x∗‖ ≤ ‖(xk − x∗)F‖+ ωk.(C.27)

Let ∆xk = ‖(xk − x∗)F‖. Combining (4.8), (B.32), (C.11) and (C.27), we obtain

‖(λ̄k − λ∗)A‖ ≤ a18ωk + a2∆xk + a3σk‖λk,I∗‖,(C.28)

where a18
def
= a1 + a2. Furthermore, from (C.17), (C.18), (C.21), (C.27) and (C.28),∥∥∥∥∥

(
(r1 + r2)F

(r3)A

)∥∥∥∥∥ ≤ a19(∆xk)
2 + a20∆xkωk + a21ω

2
k+

a22σk‖λk,I∗‖(ωk + ∆xk),
(C.29)

where a19
def
= a15 + a17 + a16a2, a20

def
= 2(a15 + a17) + a16(a18 + a2), a21

def
= a15 + a17 + a16a18 and

a22
def
= a16(1 + a3). Moreover, from (C.10), (C.12), (C.25), (C.26) and (C.27),∥∥∥∥∥

(
∇xΨk,F −H`

∗,F ,Dxk,D −AT∗,A∗s ,F λ̄k,A∗s −A
T
∗,I∗,F λ̄k,I∗

ck,A −A∗,A,Dxk,D

)∥∥∥∥∥ ≤
a23ωk + a24σk‖λk,I∗‖+ a25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+
a14µ

χ
k [a18ωk + a2∆xk + a3σk‖λk,I∗‖+ ‖(λk − λ∗)A∗‖] ,

(C.30)
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where

a23
def
= 1 +

∥∥∥∥∥
(
H`
∗,F ,D

A∗,A,D

)∥∥∥∥∥ , a24
def
= ‖AT∗,I∗,F‖ and a25

def
= ‖AT∗,A∗s ,F‖.(C.31)

By assumption AS5, the coefficient matrix on the left-hand side of (C.24) is nonsingular. Let

its inverse have norm M . Multiplying both sides of the equation by this inverse and taking norms,

we obtain ∥∥∥∥∥
(

(xk − x∗)F
(λ̄k − λ∗)A

)∥∥∥∥∥ ≤ M [a19(∆xk)
2 + a20∆xkωk + a21ω

2
k+

a22σk‖λk,I∗‖(ωk + ∆xk) + a23ωk + a24σk‖λk,I∗‖+
a25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+ a14µ
χ
k (a18ωk + a2∆xk+

‖(λk − λ∗)A∗‖+ a3σk‖λk,I∗‖)]
= (Ma19∆xk +Ma20ωk +Ma2a14µ

χ
k )∆xk+

(Ma21ωk +Ma14a18µ
χ
k +Ma23)ωk+

Ma14µ
χ
k‖(λk − λ∗)A∗‖+Ma25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+
(Ma24 +Ma22(ωk + ∆xk) +Ma3a14µ

χ
k )σk‖λk,I∗‖.

(C.32)

The mechanisms of Algorithm A.1 ensure that ωk converges to zero. Moreover, Theorem 4.2

guarantees that ∆xk also converges to zero for k ∈ K̄. Thus, there is a k0 for which

ωk ≤ min(1, 1/(4Ma20))(C.33)

and

∆xk ≤ min(1, 1/(4Ma19))(C.34)

for all k ≥ k0 (k ∈ K̄). Furthermore, let

µmax ≡ min(1, 1/(4Ma2a14)1/χ).(C.35)

Then, if µk ≤ µmax, (C.32), (C.33), (C.35) and (C.34) give

∆xk ≤ 3
4
∆xk +M(a21 + a14a18 + a23)ωk+

Ma14µ
χ
k‖(λk − λ∗)A∗‖+Ma25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+
M(a24 + 2a22 + a3a14)σk‖λk,I∗‖.

(C.36)

Cancelling the ∆xk terms in (C.36), multiplying the resulting inequality by four and substituting

into (C.27), we obtain the desired inequality (5.6), where a5
def
= 1 + 4M(a21 + a14a18 + a23),

a6
def
= 4Ma14, a7

def
= 4Ma25 and a8

def
= 4M(a24 + 2a22 + a3a14). The remaining inequalities (5.7)

and (5.8) follow directly by substituting (5.6) into (4.4) and (4.6), the required constants being

a9
def
= a1 + a2a5, a10

def
= a2a6, a11

def
= a2a7, a12

def
= a3 + a2a8 and a13

def
= 1 + a2a6.

C.2. Proof of Lemma 5.2. We have, from Theorem 4.3 and AS6, that the complete sequence

of Lagrange multiplier estimates {λ̄k} generated by Algorithm A.1 converges to λ∗. We now

consider the sequence {λk}.
There are three possibilities. First, µk may be bounded away from zero. In this case, step 3 of

Algorithm A.1 must be executed for all k sufficiently large, which ensures that {λk} and {λ̄k−1}
are identical for all large k. As the latter sequence converges to λ∗, so does the former.
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Secondly, µk may converge to zero but nonetheless there may be an infinite number of iterates

for which (A.7) is satisfied. In this case, the only time adjacent members of the sequence {λk}
differ, λk = λ̄k−1, and we have already observed that the latter sequence {λ̄k−1} converges to λ∗.

Finally, if the test (A.7) were to fail for all k > k1, ‖λk,I∗‖ and ‖(λk − λ∗)A∗‖ will remain

fixed for all k ≥ k1, as step 4 would then be executed for all subsequent iterations. But then

(4.6) implies that ∣∣∣∣∣∣∣∣[ck,iλ̄k,i/√λk,i]mi=1

∣∣∣∣∣∣∣∣ ≤ a26µk(C.37)

for some constant a26 for all k ≥ k2 ≥ k1. As µk converges to zero as k increases, we have

a26µk ≤ ηsµ
5
6
k = ηk(C.38)

for all k sufficiently large. But then inequality (A.7) must be satisfied for some k ≥ k1, con-

tradicting the supposition. Hence, this latter possibility proves to be impossible. Thus, {λk}
converges to λ∗.

Inequality (5.9) then follows immediately for i ∈ I∗ by considering the definitions (A.3), (4.8)

and (B.22) and using the convergence of λk,I∗ to λ∗,I∗ = 0; a suitable representation of θk would

be

θk = max
i∈I∗

( √
λk,i

ck,i + µk
√
λk,i

)
.(C.39)

Now λ̄k,i converges to λ∗,i > 0 and is thus bounded away from zero for all k, for each

i ∈ A∗1. But this and the convergence of {λ̄k} to λ∗ implies that
√
λk,i/λ̄k,i is bounded and hence

inequality (5.4), with ζ = 1, holds for all k. The remaining results follow directly from Lemma 5.1

on substituting ζ = 1 into (5.5).

C.3. Proof of Theorem 5.3. The appropriate version of Theorem 5.3 for the simplified

Algorithm 2 is now stated:

Theorem C.1 Suppose that the iterates {xk} generated by Algorithm 3.1 satisfy AS6 and that

AS4 and AS5 hold. Furthermore, suppose that AS7 holds. Then there is a constant µmin > 0

such that µk ≥ µmin for all k.

Proof. Suppose, otherwise, that µk tends to zero. Then, step 4 of the algorithm must be

executed infinitely often. We aim to obtain a contradiction to this statement by showing that

step 3 is always executed for k sufficiently large. We note that our assumptions are sufficient for

the conclusions of Theorem 4.3 to hold.

Lemma 5.2, part (i), ensures that {λk} converges to λ∗. We note that, by definition,

µk < 1.(C.40)

Consider the convergence tolerance ωk as generated by the algorithm. By construction

ωk ≤ ωsµk(C.41)

for all k. (This follows by definition if step 4 of the algorithm occurs and because the penalty

parameter is unchanged while ωk is reduced when step 3 occurs.) As Lemma 5.2, part (iii),
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ensures that (5.4) is satisfied for all k, we may apply Lemma 5.1 to the iterates generated by the

algorithm. We identify the set K with the complete set of integers. As we are currently assuming

that µk converges to zero, we can ensure that µk is sufficiently small so that Lemma 5.1 applies

to Algorithm A.1 and thus that there is an integer k1 and constants a9, . . . , a13 so that (5.7) and

(5.8) hold for all k ≥ k1. In particular, if we choose

χ = χ0
def
= 1,(C.42)

we obtain the bounds

‖(λ̄k − λ∗)A∗‖ ≤ a9ωk + (a10 + a11)µk‖(λk − λ∗)A∗‖+ a12σk‖λk,I∗‖(C.43)

and ∣∣∣∣[ck,iλ̄k,i/√λk,i]mi=1

∣∣∣∣ ≤ µk [a9ωk + (a11 + a13)‖(λk − λ∗)A∗‖+
(1 + (1 + a12)σk)‖λk,I∗‖]

(C.44)

for all k ≥ k1, from (C.40) and the inclusion A∗2 ⊆ A∗. Moreover, as Lemma 5.2, part (ii), ensures

that θk converges to zero, there is an integer k2 for which

σk ≤ µk(C.45)

for all k ≥ k2. Thus, combining (C.40), (C.43), (C.44) and (C.45), we have that

‖(λ̄k − λ∗)A∗‖ ≤ a9ωk + a27µk‖(λk − λ∗)A∗‖+ +a12µk‖λk,I∗‖(C.46)

and ∣∣∣∣[ck,iλ̄k,i/√λk,i]mi=1

∣∣∣∣ ≤ µk [a9ωk + a28‖(λk − λ∗)A∗‖+
a29‖λk,I∗‖]

(C.47)

for all k ≥ max(k1, k2), where a27
def
= a10 + a11, a28

def
= a11 + a13 and a29

def
= 2 + a12.

Now, let k3 be the smallest integer such that

µ
1
6
k ≤

ηs
ωsa30

,(C.48)

µ
5
6
k ≤ min

(
1,

1

a31

)
,(C.49)

µk ≤
ηs

2ωsa9
(C.50)

and

µk ≤
ηs

2ωs(a29 + a28a31)
(C.51)

for all k ≥ k3, where a30
def
= a9 + a28 + a29 and a31

def
= a9 + a12 + a27. Furthermore, let k4 be such

that

‖(λk − λ∗)A∗‖ ≤ ωs and ‖λk,I∗‖ ≤ ωs(C.52)

for all k ≥ k4.
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Finally, define k5 = max(k1, k2, k3, k4), let Γ be the set {k| step 4 is executed at iteration k−1

and k ≥ k5}, and let k0 be the smallest element of Γ. By assumption, Γ has an infinite number

of elements.

For iteration k0, ωk0 = ωsµk0 and ηk0 = ηsµk0. Then (C.47) gives∣∣∣∣[ck0,iλ̄k0,i/
√
λk0,i

]m
i=1

∣∣∣∣
≤ µk0 [a9ωk0 + a28‖(λk0 − λ∗)A∗‖+ a29‖λk0,I∗‖]
≤ ωs(a9 + a28 + a29)µk0 = ωsa30µk0 [from (C.52)]

≤ ηsµ
5
6
k0

= ηk0 [from (C.48)].

(C.53)

Thus, from (C.53), step 3 of Algorithm A.1 will be executed with λk0+1 = λ̄(xk0, λk0 , sk0). In-

equality (C.46), in conjunction with (C.41) and (C.52) guarantees that

‖(λk0+1 − λ∗)A∗‖ ≤ a9ωk0 + a27µk0‖(λk0 − λ∗)A∗‖+ a12µk0‖λk0,I∗‖
≤ a9ωsµk0 + a27ωsµk0 + a12ωsµk0

≤ ωsa31µk0.

(C.54)

Furthermore, inequality (4.1), in conjunction with (4.8), (C.45), and (C.52), ensures that

‖λk0+1,I∗‖ ≤ σk0‖λk0,I∗‖ ≤ ωsµk0 .(C.55)

We shall now assume that step 3 is executed for iterations k0 + i (0 ≤ i ≤ j) and show that

‖(λk0+i+1 − λ∗)A∗‖ ≤ ωsa31µ
1+ 1

6
i

k0
(C.56)

and

‖λk0+i+1,I∗‖ ≤ ωsµ
1+ 1

6
i

k0
.(C.57)

Inequalities (C.54) and (C.55) show that this is true for j = 0. We aim to show that the same is

true for i = j + 1. Under our supposition, we have, for iteration k0 + j + 1, that µk0+j+1 = µk0 ,

ωk0+j+1 = ωsµ
j+2
k0

and ηk0+j+1 = ηsµ
1+ 1

6
(j+1)

k0
. Then (C.47) gives∣∣∣∣[ck0+j+1,iλ̄k0+j+1,i/

√
λk0+j+1,i

]m
i=1

∣∣∣∣
≤ µk0

[
a9ωsµ

j+2
k0

+ a28‖(λk0+j+1 − λ∗)A∗‖+ a29‖λk0+j+1,I∗‖
]

≤ µk0

[
a9ωsµ

j+2
k0

+ a28a31ωsµ
1+ 1

6
j

k0
+ a29ωsµ

1+ 1
6
j

k0

]
[from (C.56)–(C.57)]

≤ ωs(a9 + (a29 + a28a31)µ
2+ 1

6
j

k0

≤ ηsµ
1+ 1

6
j

k0
= ηk0+j+1 [from (C.50)–(C.51)].

(C.58)

Thus, from (C.58), step 3 of Algorithm A.1 will be executed with λk0+j+2 =

λ̄(xk0+j+1, λk0+j+1, sk0+j+1). Inequality (C.46) then guarantees that

‖(λk0+j+2 − λ∗)A∗‖
≤ a9ωk0+j+1 + a27µk0+j+1‖(λk0+j+1 − λ∗)A∗‖+ a12µk0+j+1‖λk0+j+1,I∗‖
≤ a9ωsµ

j+2
k0

+ ωs(a27a31µ
5
6
k0

+ a12)µ
1+ 1

6
(j+1)

k0
[from (C.56)–(C.57)]

≤ ωsa31µ
1+ 1

6
(j+1)

k0
[from (C.49)],

(C.59)
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which establishes (C.56) for i = j + 1.

Furthermore, inequalities (4.1) and (C.45) ensure that

‖λk0+j+2,I∗‖ ≤ σk0+j+1‖λk0+j+1,I∗‖ ≤ µk0+j+1‖λk0+j+1,I∗‖ [from (4.8) ]

≤ ωsµ
1+ 1

6
(j+1))

k0
[from (C.57)],

(C.60)

which establishes (C.57) for i = j+1. Hence, step 3 of the algorithm is executed for all iterations

k ≥ k0. But this implies that Γ is finite, which contradicts the assumption that step 4 is executed

infinitely often. Hence the theorem is proved. 2

C.4. Proof of Theorem 5.4. We proceed by considering an example which has more than

one Kuhn-Tucker point and for which the optimal Lagrange multipliers are distinct. We consider

a sequence of iterates which is converging satisfactorily to a single Kuhn-Tucker point (x∗,1, λ∗,1)

(and thus the penalty parameter has settled down to a single value). We now introduce an

“extra” iterate xk near to a different Kuhn-Tucker point (x∗,2, λ∗,2). We make use of the identity

ck,iλ̄k,i/
√
λk,i = µk(λk,i − λ̄k,i),(C.61)

derived from (2.5) and (A.3), to show that if the Lagrange multiplier estimate λ̄k,i calculated at

xk is a sufficiently “accurate” approximation of λ∗,2 (while λk,i is an “accurate” representation

of λ∗,1), the acceptance test (A.7) will fail and the penalty parameter will be reduced. Moreover,

we show that this behavior can be repeated indefinitely.

To be specific, we consider the following problem:

minimize

x∈R

ε(x− 1)2 such that c(x) = x2 − 4 ≥ 0,(C.62)

where ε is a (yet to be specified) positive constant. It is straightforward to show that the problem

has two local solutions, which occur at the Kuhn-Tucker points

(x∗,1, λ∗,1) =

(
−2,

3ε

2

)
and (x∗,2, λ∗,2) =

(
2,
ε

2

)
,(C.63)

and that the constraint is active at both local solutions. Moreover, there are no specific bounds

on the variable in the problem, and hence P (x,∇xΨ(x, λ, s)) = ∇xΨ(x, λ, s) for all x.

We intend to construct a cycle of iterates xk+i, i = 0, . . . , j, for some integer j, which are

allowed by Algorithm A.1. The penalty parameter remains fixed throughout the cycle until it is

reduced at the end of the final iteration. We start with λ0 = λ∗,1. We also pick ε so that

ε ≤ min

2

3
,

ωs

(6 + 1
1−µ0

)
,

2ηs

3µ
1
6
0

 .(C.64)

We define j to be the smallest integer for which

µ
j−1

6
0 < 1

2
ε/ηs.(C.65)

We let µ denote the value of the penalty parameter at the start of the cycle.
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i = 0: We have ωk = ωsµ and ηk = ηsµ
5
6 . We are given λk = λ∗,1. We pick xk near x∗,1 so

that λ̄k = (1 − µ)λ∗,1. We show that such a choice guarantees that the convergence and

acceptance tests (A.5) and (A.7) are satisfied, and thus step 3 of the algorithm is executed.

i = 1, ... , j - 2: We have ωk+i = ωsµ
1+i and ηk+i = ηsµ

5+i
6 . We have λk+i = (1 − µi)λ∗,1.

We pick xk+i near x∗,1 so that λ̄k+i = (1 − µi+1)λ∗,1. We again show that such a choice

guarantees that the convergence and acceptance tests (A.5) and (A.7) are satisfied, and

thus step 3 of the algorithm is executed.

i = j - 1: We have ωk+i = ωsµ
1+i and ηk+i = ηsµ

5+i
6 . We have λk+i = (1 − µi)λ∗,1. We pick

xk+i near x∗,1 so that λ̄k+i = λ∗,1. Once again, we show that such a choice guarantees that

the convergence and acceptance tests (A.5) and (A.7) are satisfied, and thus step 3 of the

algorithm is executed.

i=j: We have ωk+j = ωsµ
1+j and ηk+j = ηsµ

5+j
6 . We have λk+j = λ∗,1. We pick xk+i as the

local minimizer of the Lagrangian barrier function which is larger than x∗,2, which trivially

ensures that the convergence test (A.5) is satisfied. We also show that the acceptance test

(A.7) is violated at this point, so that step 4 of the algorithm will be executed and the

penalty parameter reduced.

It is clear that if an infinite sequence of such cycles occur, the penalty parameter µk will converge

to zero. We now show that this is possible.

If a is a real number, we will make extensive use of the trivial inequalities

1 ≤
√

1 + a ≤ 1 + a whenever a ≥ 0(C.66)

and

1− a ≤
√

1− a ≤ 1− 1
2
a whenever 0 ≤ a ≤ 1.(C.67)

We also remind the reader that

µ ≤ µ0 < 1.(C.68)

1. Let

xk = −2
√

1 + 1
4
µsk/(1− µ),(C.69)

where the shift sk = µ
√

3
2
ε. Then it is easy to verify that λ̄k = (1− µ)λ∗,1. Moreover,

∇xΨ(xk, λk, sk) = 2ε(xk − 1)− 3ε(1 − µ)xk = −ε(2 + (1− 3µ)xk)

= −2ε
(
1− (1− 3µ)

√
1 + µsk/(4(1 − µ))

)
.

(C.70)

Taking norms of (C.70) and using (C.66) yields

‖P (xk,∇xΨ(xk, λk, sk))‖ ≤


6εµ if µ ≤ 1

3
,

2εµ

(
3 +

(3µ− 1)sk
4(1 − µ)

)
otherwise.

(C.71)
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Now (C.64) implies that sk ≤ µ < 1, and thus we obtain the overall bound

‖P (xk,∇xΨ(xk, λk, sk))‖ ≤ ε
(

6 +
1

1− µ0

)
µ(C.72)

from (C.68) and (C.71). But then (C.72) and (C.64) give

‖P (xk,∇xΨ(xk, λk, sk))‖ ≤ ωsµ = ωk,(C.73)

as 1 ≤ ωs/(6 + 1/(1 − µ0))ε. Furthermore, from (C.61) and (C.64),

‖c(xk)λ̄k/
√
λk‖ = µ‖λk,i − λ̄k,i‖ = 3

2
µ2ε ≤ ηsµ

5
6 = ηk,(C.74)

as µ
7
6 ≤ µ

1
6
0 ≤ 1 ≤ 2ηs/3ε. Thus, xk satisfies (A.5) and (A.7), and hence step 3 of the algorithm

will be executed. Therefore, in particular, ωk+1 = ωsµ
2, ηk+1 = ηsµ and λk+1 = (1− µ)λ∗,1.

2. For i = 1, . . . j − 2, let

xk+i = −2
√

1− 1
4
µi(1− µ)sk+i/(1− µi+1),(C.75)

where the shift sk+i = µ
√

3
2
(1− µi)ε. Note that (C.75) is well defined, as the second term within

the square root is less than 1
4

in magnitude because (C.64) and (C.68) imply that sk < µ and

µi(1− µ)/(1 − µi+1) < 1. It is then easy to verify that λ̄k+i = (1− µi+1)λ∗,1. Moreover,

∇xΨ(xk+i, λk+i, sk+i) = 2ε(xk+i − 1)− 3ε(1− µi+1)xk+i

= −ε(2 + (1− 3µi+1)xk+i)

= −2ε

(
1− (1− 3µi+1)

√
1− µi(1−µ)sk+i

4(1−µi+1)

)
.

(C.76)

Now suppose µi+1 ≤ 1
3
. Then (C.76), (C.67), (C.68) and sk ≤ µ yield

‖P (xk+i,∇xΨ(xk+i, λk+i, sk+i)‖ ≤ 2ε
(
1− (1− 3µi+1)(1− µi(1−µ)sk+i

8(1−µi+1)
)
)

= 2ε
(
3µi+1 +

µi(1−µ)(1−3µi+1)sk+i

8(1−µi+1)

)
≤ 2εµi+1

(
3 + (1−µ)(1−3µi+1)

8(1−µi+1)
)
)

≤ 2εµi+1
(
3 + 1

8(1−µ0)

)
.

(C.77)

If, on the other hand, µi+1 > 1
3
, the same relationships give

‖P (xk+i,∇xΨ(xk+i, λk+i, sk+i)‖ ≤ 2ε
(
1− (1− 3µi+1)(1− µi(1−µ)sk+i

4(1−µi+1)
)
)

= 2ε
(
3µi+1 +

µi(1−µ)(1−3µi+1)sk+i

4(1−µi+1)

)
≤ 6εµi+1.

(C.78)

Thus, combining (C.77) and (C.78), we certainly have that

‖P (xk+i,∇xΨ(xk+i, λk+i, sk+i)‖ ≤ ε
(

6 +
1

1− µ0

)
µi+1.(C.79)

But then (C.79) and (C.64) give

‖P (xk+i,∇xΨ(xk+i, λk+i, sk+i)‖ ≤ ωsµ1+i = ωk+i,(C.80)
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as 1 ≤ ωs/((6 + 1/(1 − µ0)) ε). Furthermore, from (C.61) and (C.64),

‖c(xk+i)λ̄k+i/
√
λk+i‖ = µ‖λk+i,i − λ̄k+i,i‖ = 3

2
µi+1(1− µ)ε

≤ 3
2
µi+1ε ≤ ηsµ

5+i
6 = ηk+i,

(C.81)

as µ
1+5i

6 ≤ 2
3
ηs/ε. Thus, xk+i satisfies (A.5) and (A.7), and hence step 3 of the algorithm

will be executed. Therefore, in particular, ωk+i+1 = ωsµ
i+2, ηk+i+1 = ηsµ

1+ i
6 and λk+i+1 =

(1− µi+1)λ∗,1.

3. Let

xk+j−1 = −2
√

1− 1
4
µj−1sk+j−1,(C.82)

where the shift sk+j−1 = µ
√

3
2
(1− µj−1)ε. Once again, (C.64) and (C.68) imply that sk+j−1 ≤ µ,

and thus (C.82) is well defined. Furthermore, it is easy to verify that λ̄k+j−1 = λ∗,1. Moreover

∇xΨ(xk+j−1, λk+j−1, sk+j−1) = 2ε(xk+j−1 − 1)− 3εxk+j−1

= −ε(2 + xk+j−1)

= −2ε
(
1−

√
1− 1

4
µj−1sk+j−1

)
.

(C.83)

But then (C.67), (C.83) and the inequality sk+j−1 ≤ µ yield

‖P (xk+j−1,∇xΨ(xk+j−1, λk+j−1, sk+j−1)‖ ≤ 1
2
εµj−1sk+j−1 ≤ 1

2
εµj.(C.84)

Thus, (C.84) and (C.64) give

‖P (xk+j−1,∇xΨ(xk+j−1, λk+j−1, sk+j−1)‖ ≤ ωsµj = ωk+j−1,(C.85)

as 1 ≤ ωs/((6 + 1/(1 − µ0)) ε) < 2ωs/ε. Furthermore, from (C.61) and (C.64),

‖c(xk+j−1)λ̄k+j−1/
√
λk+j−1‖ = µ‖λk+j−1,i − λ̄k+j−1,i‖ = 3

2
µjε

≤ ηsµ
4+j

6 = ηk+j−1,
(C.86)

as µ
5j−4

6 ≤ 2
3
ηs/ε. Thus, xk+j−1 satisfies (A.5) and (A.7), and hence step 3 of the algorithm will

be executed. Therefore, in particular, ωk+j = ωsµ
1+j , ηk+j = ηsµ

5+j
6 and λk+j = λ∗,1.

4. We pick xk+j as the largest root of the nonlinear equation

φ(x) ≡ 2(x− 1)− 3xsk+j

x2 − 4 + sk+j
= 0,(C.87)

where sk+j = µ
√

3
2
ε. Equation (C.87) defines the stationary points of the Lagrangian barrier

function for the problem (C.63). This choice ensures that (A.5) is trivially satisfied. As φ(2) = −4

and φ(x) increases without bound as x tends to infinity, the largest root of (C.87) is greater than

2. The function λ̄ given by (2.4) is a decreasing function of x as x grows beyond 2. Now

let x̂ =
√

4 + 1
2
sk+j. It is easy to show that λ̄(x̂, λ∗,1, sk+j) = ε. Moreover, we get φ(x̂) =

2(x̂ − 1) − 2x̂ = −2. Therefore, xk+j > x̂, and thus λ̄k+j < ε. But then, using (C.61), we have

that
‖c(xk+j)λ̄k+j/

√
λk+j‖ = µ(λk+j − λ̄k+j) ≥ µ( 3

2
ε− ε) = 1

2
εµ

> ηsµ
5+j

6 = ηk+j

(C.88)
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from (C.65). Thus, the test (A.7) is violated and the penalty parameter subsequently reduced.

This ensures that ωk+j+1 = ωsµ, ηk+j+1 = ηsµ and λk+j+1 = λ∗,1.

Hence, a cycle as described at the start of this section is possible and we conclude that, in

the absence of AS6, the penalty parameter generated by Algorithm A.1 may indeed converge to

zero. 2

C.5. Proof of Theorem 5.5. First, as (A.7) holds for all k ≥ k0, the penalty parameter µk

remains fixed at some value µk, say, the convergence tolerances satisfy

ωk+1 = ωkµk and ηk+1 = ηkµ
1
6
k ,(C.89)

and λk+1 = λ̄k for all k > k0.

The Q-superlinear convergence of the Lagrange multiplier estimates for inactive constraints

follows directly from Theorem 4.2, part (iv). Lemma 5.2, part (ii), the convergence of θk to zero

and the relationships (4.1) and (4.8) then give that

‖λk+1,I∗‖ ≤ µk‖λk,I∗‖(C.90)

for all k sufficiently large.

The identities (2.5), (A.3) and the assumption that (A.7) holds for all k ≥ k0 gives

‖(λk+1 − λk)A∗‖ = µ−1
k

∣∣∣∣∣∣[ck,iλ̄k,i/√λk,i]i∈A∗ ∣∣∣∣∣∣
≤ µ−1

k

∣∣∣∣[ck,iλ̄k,i/√λk,i]mi=1

∣∣∣∣ ≤ µ−1
k ηk

(C.91)

for all such k. But then the triangle inequality and (C.91) imply that

‖(λk+j − λ∗)A∗‖ ≤ ‖(λk+j+1 − λ∗)A∗‖+ ‖(λk+j+1 − λk+j)A∗‖
≤ ‖(λk+j+1 − λ∗)A∗‖+ µ−1

k ηk+j

(C.92)

for all k ≥ k0. Thus, summing (C.92) from j = 0 to jmax − 1 and using the relationship (C.89)

yields

‖(λk − λ∗)A∗‖ ≤ ‖(λk+jmax − λ∗)A∗‖+ µ−1
k

∑jmax−1
i=0 ηk+j

≤ ‖(λk+jmax − λ∗)A∗‖+ µ−1
k ηk(1 − µ

1
6
jmax

k )/(1 − µk).
(C.93)

Hence, letting jmax tend to infinity and recalling that λk converges to λ∗, we see that (C.93) gives

‖(λk − λ∗)A∗‖ ≤
µ−1
k ηk

1− µk
(C.94)

for all k ≥ k0. As ηk converges to zero R-linearly, with R-factor µ
1
6
k , (C.94) gives the required

result (ii).

The remainder of the proof parallels that of Lemma 5.1. As (A.7) holds for all sufficiently

large k, the definition (C.4) of A and the bound (C.8) ensure that

‖ck,A‖ ≤
∣∣∣∣∣∣[√λk,i/λ̄k,i]i∈A∣∣∣∣∣∣ ∣∣∣∣∣∣[ck,iλ̄k,i/√λk,i]i∈A∣∣∣∣∣∣

≤ a14µ
χ−1
k

∣∣∣∣[ck,iλ̄k,i/√λk,i]mi=1

∣∣∣∣ ≤ a14µ
χ−1
k ηk.

(C.95)
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Thus, combining (C.25) and (C.26), (C.90) and replacing (C.12) by (C.95), we may replace

the bound on the right-hand side of (C.30) by a23ωk + a24σk‖λk,I∗‖+ a25µ
1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+
a14µ

χ−1
k ηk, and consequently (C.32) by

∆xk ≤ M [a19(∆xk)
2 + a20∆xkωk + a21ω

2
k+

a22σk‖λk,I∗‖(ωk + ∆xk) + a23ωk + a24σk‖λk,I∗‖+
a25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+ a14µ
χ−1
k ηk]

= (Ma19∆xk +Ma20ωk)∆xk + (Ma21ωk +Ma23)ωk+

(Ma24 +Ma22(ωk + ∆xk))σk‖λk,I∗‖
Ma25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+Ma14µ
χ−1
k ηk.

(C.96)

Hence, if k is sufficiently large that

∆xk ≤ 1/(4Ma19), ωk ≤ min(1, 1/(4Ma20)) and σk ≤ 1,(C.97)

(C.96) and (C.97) can be rearranged to give

∆xk ≤ 2M [(a21 + a23)ωk + (a24 + 2a22)‖λk,I∗‖+
a25µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣+ a14µ
χ−1
k ηk].

(C.98)

But then (C.27) and (C.98) give

‖xk − x∗‖ ≤ a32ωk + a33‖λk,I∗‖
+a34µ

χ−1
k ηk + a35µ

1−χ
k

∣∣∣∣∣∣[√λk,i]i∈A∗2 ∣∣∣∣∣∣ ,(C.99)

where a32
def
= 1 + 2M(a21 + a23), a33

def
= 2M(a24 + 2a22), a34

def
= 2Ma14 and a35

def
= 2Ma25. Each

term on the right-hand-side of (C.99) converges at least R-linearly to zero; the R-factors (in

order) being no larger than µk, µk, µ
1
6
k and µ

1
12
k , respectively, following (C.89), (C.90) and (C.94).

Hence, (C.99) shows that xk converges at least R-linearly with R-factor at most µ
1
12
k .

C.6. Proof of Corollary 5.6. This follows directly from Theorem C.1 (§ C.3), as this ensures

that (A.7) is satisfied for all k sufficiently large.
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