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Summary. Inequality constrained minimization problems are often solved by consid-
ering a sequence of parameterized barrier functions. Each barrier function is approx-
imately minimized and the relevant parameters subsequently adjusted. It is common
for the estimated solution to one barrier function problem to be used as a starting
estimate for the next. However, this has unfortunate repercussions for the standard
Newton-like methods applied to the barrier subproblem. In this note, we consider a
class of alternative Newton methods which attempt to avoid such difficulties. Such
schemes have already proved of use in the Harwell Subroutine Library quadratic
programming codesVE14 andVE19.
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1. Introduction

In this note, we consider solving the problem

minimize
x∈Rn

f (x) subject to ci(x) ≥ 0 for i = 1, . . . ,m(1.1)

using a sequence of (logarithmic) barrier functions

Ψ (x,w, s) = f (x)−
m∑
i=1

wi log(ci(x) + si),(1.2)
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where thewi are termedweightsand thesi calledshifts. Here bothf and theci are
assumed to be at least twice-continuously differentiable. Traditional, unshifted (i.e.,
s = 0), barrier functions of this form were first considered by Frisch (1955), popu-
larized by Fiacco and McCormick (1968) and extensively studied by Wright (1976),
Murray and Wright (1978), Karmarkar (1984), Gill et al. (1986), Gould (1986),
McCormick (1991), Nash and Sofer (1993) and Wright (1992b) amongst others. Vari-
ations on the theme include the modified (unshifted) barrier function of Jittorntrum and
Osborne (1980), the shifted barrier functions of Gill et al. (1988) and Freund (1991),
the modified (shifted) barrier function of Polyak (1992) and the Lagrangian barrier
function of Conn et al. (1992a).

A typical barrier function method attempts to solve (1.1) by (approximately) min-
imizing a sequence of barrier functionsΨ (x,w(k), s(k)) for appropriate sequences of
weights{w(k)} and shifts{s(k)}. The approximate minimizer ofΨ (x,w(k), s(k)) is
generally found by applying an iterative unconstrained minimization method – the
inner iteration – toΨ . Usually, the minimization is terminated when anapproximate
stationary point, x(k), of Ψ is determined. Such a point is required to satisfy the
inner-iteration stopping rule

‖∇xΨ (x(k),w(k), s(k))‖ ≤ ω(k)(1.3)

for some sequence of positive tolerances{ω(k)} which converge to zero. Of course,
this does not guarantee thatx(k) is actually a minimizer ofΨ (x,w(k), s(k)) even if
{ω(k)} is zero – second order sufficiency assumptions would be needed to ensure this
– but tests of the form (1.3) are commonplace (see, for example, Polyak (1992) and
Conn et al. (1992a)).

The bulk of the work is performed in the inner iteration. As each inner iteration
is clearly influenced by the choice of starting point, there is some interest in trying
to determine good starting points. Since, under relatively mild conditions (see, for
example, Wright (1992b), Theorem 8), it can be shown that the sequence{x(k)}
converges to a first-order stationary point for (1.1), one might imagine thatx(k)

provides a good starting point for thek+1-st inner iteration, especially as the solution
is approached. In some sense this is true. However, Wright (1993) has shown that if
one naively uses Newton’s method to solve the inner iteration subproblem starting
from this point, difficulties may arise. In particular, she shows that it is highly likely
that a full Newton step will be impossible as this step crosses the constraint boundary.

In this note we show that this difficulty arises because the standard Newton method
is actually an asymptotically inappropriate member of a whole class of Newton meth-
ods for the subproblem. A different member of the class is then proposed which aims
to alleviate the aforementioned difficulty as the solution is approached. We indicate
that the proposed alternative is effective in practice when applied to three different
barrier function methods for solving bound-constrained quadratic programs.

After stating our notation in Sect. 2, we consider the difficulties associated with the
standard Newton method and propose some alternatives in Sect. 3. These alternatives
are considered in detail for a number of common barrier functions in Sect. 4 and
numerical results indicating their effectiveness are provided in Sect. 5.

Our intention here is not to produce a completely rigorous theory, merely to
indicate the possible advantages of viewing Newton’s method from different perspec-
tives. To these ends, we assume, where necessary, that all exhibited square systems
of equations are nonsingular. While it is easy to derive examples which defeat such
assumptions, we believe that such non-singular problems occur sufficiently frequently
in practice to make the conclusions drawn here useful.
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2. Notation

We let g(x) denote the gradient∇xf (x), ai(x) denote the gradient∇xci(x),
A(x) be the Jacobian matrix whose rows areai(x)T andH(x,λ) = ∇xxf (x) −∑m

i=1λi∇xxci(x) be the Hessian matrix of the Lagrangian function associated with
(1.1). We shall denote the diagonal matrix whosei-th diagonal component isdi by
D[di]; the dimension ofD should be obvious from the context. We then have that

∇xΨ (x,w, s) = g(x)−A(x)Tu(x,w, s)(2.1)

and

∇xxΨ (x,w, s) = H(x,u(x,w, s)) +A(x)TD[ui(x,w, s)/(ci(x) + si)]A(x),

(2.2)

where the Lagrange multiplier functionu(x,w, s) is defined, componentwise, as

ui(x,w, s)
def
=

wi

ci(x) + si
for i = 1, . . . ,m.(2.3)

We also need to compare the relative rates of convergence of sequences of num-
bers. If{ω(k)} and{η(k)} are two sequences of positive numbers converging to zero
ask tends to infinity, we say thatω(k) = O(η(k)) if there exists a constantκ such that
ω(k) ≤ κη(k) for all k. If ω(k) = O(η(k)) andη(k) = O(ω(k)), we say thatω(k) = Θ(η(k)).
We also say thatω(k) = o(η(k)) if there is a third sequence{κ(k)} of positive scalars
converging to zero ask tends to infinity such thatω(k) ≤ κ(k)η(k) for all k.

3. Motivation

Suppose that we have obtainedx(k) satisfying (1.3) and now wish to solve thek + 1-
st inner iteration subproblem (with some givenw(k+1) ands(k+1)) starting fromx(k).
Furthermore, suppose also that we intend using Newton’s method – or, more precisely,
a globally convergent Newton method – to solve the inner iteration subproblem. That
is, we obtain our first correction tox = x(k) by determining the Newton search
directionδxN from thestandard Newton equations,

∇xxΨ (x,w(k+1), s(k+1))δxN = −∇xΨ (x,w(k+1), s(k+1))(3.1)

and subsequently performing a linesearch in this direction. We refer to the solution,
δxN, as thestandard Newton directionor correction and an iteration based on this
direction as astandard Newton iteration. There are a number of potential dangers.

1. The Newton step may not be possible as the valuex(k) + δxN may violate one or
more of the “shifted” constraintsc(x) + s(k) > 0. Thus a restricted step will be
necessary and the rapid convergence of Newton’s method will be thwarted.

2. ∇xxΨ (x(k),w(k+1), s(k+1)) may be badly conditioned making an accurate solution
of the Newton equations difficult.

3. There is no guarantee that, just because (1.3) ensures that∇xΨ (x(k),w(k), s(k))
is small for largek, the same is true for∇xΨ (x(k),w(k+1), s(k+1)). Hence, an
undamped (unit stepsize) Newton process may require a significant number of
steps before a suitablex(k+1) satisfying (1.3) is determined.
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We consider the following alternative, based on the method proposed by Gould (1989)
for obtaining superior starting points for the quadratic penalty function. Ideally, we
wish to determine a valuex for which

∇xΨ (x,w(k+1), s(k+1)) = g(x)−A(x)Tu(x,w(k+1), s(k+1)) = 0,(3.2)

where

ui(x,w
(k+1), s(k+1)) =

w(k+1)
i

ci(x) + s(k+1)
i

, for i = 1, . . . ,m,(3.3)

for then the inner-iteration stopping rule (1.3) will be satisfied for any choice ofω(k+1).
The Newton direction (3.1) is obtained by computing the Newton correction for (3.2)
while directly eliminatingu(x) via (3.3).

Suppose instead that we considerindependentvariablesx andλ which are re-
quired to satisfy the equations

g(x)−A(x)Tλ = 0,(3.4)

and
(ci(x) + s(k+1)

i )λi − w(k+1)
i = 0, for i = 1, . . . ,m.(3.5)

Clearly, if x andλ satisfy (3.5), thenu(x,w(k+1), s(k+1)) = λ. Moreover, the two
systems of nonlinear equations (3.2)–(3.3) and (3.4)–(3.5) have identical solutionsx.

Suppose thatx and λ are estimates of the solution of (3.4)–(3.5). If we write
down the Newton equations for the correctionsδx and δλ to these estimates, the
corrections satisfy the equations(

H(x,λ) −A(x)T

D[λi]A(x) D[ci(x) + s(k+1)
i ]

)(
δx
δλ

)
= −

(
g(x)−A(x)Tλ

D[(ci(x) + s(k+1)
i )λi − w(k+1)

i ]e

)
,(3.6)

wheree is a vector of ones. Eliminating the variablesδλ and rearranging, we obtain(
H(x,λ) +A(x)TD[λi/(ci(x) + s(k+1)

i )]A(x)
)
δx

= −∇xΨ (x,w(k+1), s(k+1)).(3.7)

We see that, although the choice ofλ does not affect the right-hand-side of (3.7), it
most certainly influences the left-hand-side. Moreover, the effect on the right-hand-
side of (3.6) may be significant. We note that we are not proposing thatλ should be
changed using the correctionδλ from (3.6), but we are merely using the equations
(3.6) to derive an alternative Newton correction tox(k). We also note that, although
they are mathematically equivalent, there may sometimes be good numerical reasons
why one might prefer to solve (3.6) rather than (3.7) (see, for instance, Gould (1986)).

The standard Newton equations (3.1) corresponds to the choicex = x(k) and

λi = λN
i

def
=

w(k+1)
i

ci(x(k)) + s(k+1)
i

for i = 1, . . . ,m(3.8)

(c.f. (2.1)–(2.3)). Notice that, with this choice, the first term on the right-hand-side of
(3.6) may be quite large while the second term vanishes.
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An alternative, and potentially better, choice is obtained by selectingx = x(k) and

λi = λA
i

def
=

w(k)
i

ci(x(k)) + s(k)
i

for i = 1, . . . ,m.(3.9)

For then, we see from (1.3) that the first term on the right-hand-side of (3.6) is
arbitrarily small for sufficiently largek. Furthermore, each component of the second,

r(k+1)
i

def
= w(k)

i
ci(x

(k)) + s(k+1)
i

ci(x
(k)) + s(k)

i

− w(k+1)
i

=
w(k)
i

ci(x
(k)) + s(k)

i

(
ci(x(k))

(
1− w(k+1)

i

w(k)
i

)
+

(
s(k+1)
i

s(k)
i

− w(k+1)
i

w(k)
i

)
s(k)
i

)
,

(3.10)

for i = 1, . . . ,m, will be small if {s(k)
i } and {w(k)

i } converge while the remaining
terms remain finite. Thus, in this case, one would expect the Newton iteration (3.6)
to converge rapidly. We refer to the solution,δxA, of (3.7), whenx = x(k) andλ is
given by (3.9), as thealternativeNewton direction atx(k).

We note that the unshifted variant of the equations (3.6) form the basis of a whole
class of nonlinear primal-dual methods for convex optimization problems proposed
by McCormick (1991). Unlike the methods considered here, such methods explicitly
use the the correctionsδλ to construct improved Lagrange multiplier estimates but
may require extra precautions to ensure that such estimates are strictly positive.

We must also consider the value of the shifted constraints after such a Newton
correction,c(x(k) + δx) + s(k+1). A Taylor’s expansion aroundx(k) yields

c(x(k) + δx) + s(k+1) = c(x(k)) + s(k+1) +A(x(k))δx +O(‖δx‖2).(3.11)

In order to assess the (shifted) feasibility (or otherwise) ofx(k)+δx, it is thus important
to determine the size ofA(x(k))δx. We now consider various methods in detail.

4. Shifts and weights

A large variety of shifts and weights have been proposed for barrier function methods.
Our concern here is the relationship between the shifts and weights for one inner
iteration and the next and its implication for the ease of solving successive inner-
iteration subproblems.

In this section, we consider a number of different barrier function methods. For
each, we analyze the size of the right-hand-side of the expanded Newton system
(3.6). We next consider the feasibility of the constraints after taking Newton steps
(3.7) corresponding to the two choices (3.8) and (3.9) forλ. We then show that the
latter choice does not suffer from this drawback. An analysis of the size of the gradient
of the barrier function at the new point following such a step indicates that the new
point is a good one to start a standard Newton iteration. Indeed, for the last class
of methods considered, this new point will asymptotically satisfy the inner iteration
stopping rule and thus a single inner iteration will eventually suffice for each outer
iteration.
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4.1. Traditional barrier function methods

In these methods the shifts are zero. The weights are typically given as

w(k+1)
i = µ(k+1) for i = 1, . . . ,m,(4.1)

where the positive sequence of penalty parameters{µ(k+1)} monotonically converge
to zero. In this case, (3.10) is

r(k+1)
i =

(
1− µ(k+1)

µ(k)

)
µ(k), for i = 1, . . . ,m,(4.2)

and hence one would expect the Newton iteration (3.6)/(3.9) to yield a significant
improvement for sufficiently largek.

In particular, if, as is normal,ω(k) = κ1µ
(k) for some constantκ1, (1.3), (3.10) and

(4.2) imply that the right-hand-side of (3.6) isO(µ(k)). Consequently, in this case,
provided the coefficient matrix of (3.6) has a bounded inverse, one would expect that
δx = O(µ(k)) andδλ = O(µ(k)) and that

g(x(k) + δx)−A(x(k) + δx)T(λ + δλ) = O(µ(k)2)(4.3)

and
ci(x

(k) + δx)(λi + δλi) = w(k+1)
i +O(µ(k)2),(4.4)

for i = 1, . . . ,m. It then follows from (2.3) and (4.4) that

λi + δλi =
w(k+1)
i

ci(x
(k) + δx)

+O

(
µ(k)2

ci(x
(k) + δx)

)
= ui(x(k) + δx,w(k+1), 0) +O

(
µ(k)2

ci(x
(k) + δx)

)
,

(4.5)

for i = 1, . . . ,m.
Now considerc(x(k) + δx). For the inactive constraints at a limit pointx∗ of

{x(k)}, that is, those constraints for whichci(x∗) > 0, it follows, from the previous
observation thatδx = O(µ(k)) and the continuity ofci, that ci(x(k) + δx) is bounded
away from zero for allk sufficiently large. We thus have that

1
2ci(x

(k)) ≤ ci(x
(k) + δx) ≤ 2ci(x

(k)),(4.6)

for all inactive constraints and all sufficiently largek. It remains to consider the
active constraints, that is those for whichci(x∗) = 0. We argue in the same way as
Wright (1993).

Consider (3.7) asµ(k) converges to zero. The coefficient matrix will be dominated
by

AA(x(k))TDA[λi/ci(x
(k))]AA(x(k)),(4.7)

whereAA is the matrix whose rows are theaT
i (x(k)) corresponding to the active

constraints andDA is the diagonal matrix whose entries are those ofD for the
active constraints. Likewise, because of the relationship (1.3), the right-hand-side of
(3.7) is dominated by

−AA(x(k))TDA[(w(k)
i − w(k+1)

i )/ci(x
(k))]e,(4.8)
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for smallµ(k) and thus (3.7) is (approximately)

AA(x(k))TDA[λi/ci(x
(k))]AA(x(k))δx

≈ −AA(x(k))TDA[(w(k)
i − w(k+1)

i )/ci(x
(k))]e.(4.9)

Now assume thatA(x)A is full-rank. Then it follows from (4.9) that

AA(x(k))δx ≈ −DA[(w(k)
i − w(k+1)

i )/λi]e.(4.10)

As Wright (1993) observes, the relationships (3.8), (4.1) and (4.10) imply that

AA(x(k))δxN ≈ (1− µ(k)/µ(k+1))cA(x(k)),(4.11)

whenλi = λN
i , whereδxN is the standard Newton correction and wherecA denotes

the vector of active constraints, In this case, (3.11) and (4.11) then give that

cA(x(k) + δxN) ≈ (2− µ(k)/µ(k+1))cA(x(k)),(4.12)

which will be negative ifµ(k+1) is significantly smaller than1
2µ

(k). As it is normal to
reduceµ(k) by significantly more than a half, it must be expected, as Wright (1993)
indicated, that a full Newton step (3.1) will be infeasible.

If, on the other hand, we chooseλi = λA
i from (3.9), the relationships (3.9), (4.1)

and (4.10) imply that

AA(x(k))δxA ≈ −(1− µ(k+1)/µ(k))cA(x(k)),(4.13)

whereδxA is the alternative Newton correction. Combining (3.11) and (4.13), we see
that

cA(x(k) + δxA) ≈ µ(k+1)

µ(k)
cA(x(k)),(4.14)

which indicates that a step in the alternative direction will be safely feasible. Moreover,
in this case, as both the inactive and active constraints are bounded away from zero at
x(k) +δxA for fixed, but sufficiently largek, we have from (4.14) and the convergence
of µ(k)/ci(x(k)) to the Lagrange multiplierλ∗i under appropriate assumptions (see, e.g.
Wright (1992b), Theorem 8) that

µ(k)

ci(x(k) + δxA)
≈ µ(k)

ci(x(k))
µ(k)

µ(k+1)
≈ λ∗i

µ(k)

µ(k+1)
,(4.15)

for all active constraints. Likewise, from (4.6),

µ(k)

2ci(x(k))
≤ µ(k)

ci(x(k) + δxA)
≤ 2

µ(k)

ci(x(k))
(4.16)

for the inactive constraints, and all such terms converge to zero as the Lagrange
multipliers for these are zero. Thus, combining (4.5), (4.15) and (4.16), we see that

λi + δλi = ui(x
(k) + δxA ,w(k+1), 0) +O(µ(k)2/µ(k+1)),(4.17)

for i = 1, . . . ,m, and hence, from (2.1) and (4.3), that

∇xΨ (x(k) + δxA ,w(k+1), 0) =O(µ(k)2/µ(k+1)).(4.18)
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In view of the estimate (4.18), one now expects the standard Newton iteration
to converge fast when started fromx(k) + δxA so long as the sequence{µ(k)} does
not converge to zero too fast. In particular, following (4.18), one would expect that
the gradient of the barrier function after a single standard Newton iteration from this
point would be asymptoticallyO(µ(k)4/µ(k+1)2) and thus the stopping rule (1.3) to
be satisfied at such a point so long asµ(k) = o(µ(k+1)3

4 ). An analogous result for the
quadratic penalty function was given by Gould (1989). Similar means of avoiding the
poor behaviour of Newton’s method following a reduction in the penalty parameter in
traditional barrier function methods have proposed by Fiacco and McCormick (1968)
and Jarre et al. (1988) in addition to the aforementioned work by Wright (1993).
Murray (1969) and Bartholomew-Biggs (1972) give related methods for the quadratic
penalty function.

Although the Hessian of the barrier function is likely to be ill-conditioned near the
constraint boundaries, a number of schemes have been proposed for accurately solving
the Newton equations. We refer the interested reader to the papers by Wright (1976),
Murray and Wright (1978), Gould (1986), McCormick (1991) and Wright (1992a).

4.2. Jittorntrum and Osborne’s modified barrier function method

In this method, the shifts are, once again, zero and the weights satisfy the relationship

w(k+1)
i =

µ(k+1)

ci(x(k))
w(k)
i , for i = 1, . . . ,m,(4.19)

where the positive sequence of penalty parameters{µ(k+1)} monotonically converge
to zero. In this case, (3.10) is

r(k+1)
i = w(k)

i − µ(k+1) w(k)
i

ci(x(k))
for i = 1, . . . ,m.(4.20)

Moreover, under mild conditions, one has that eachw(k)
i = O(µ(k)) and{w(k)

i /ci(x(k))}
converges to a Lagrange multiplierλ∗i (see, Jittorntrum and Osborne (1980)). There-
fore r(k+1)

i = O(µ(k)) and, once again, one expects the Newton iteration (3.6)/(3.9) to
yield a significant improvement for largek.

If, as in the previous section,ω(k) = κ1µ
(k) for some constantκ1, much of the

analysis of that section remains valid. In particular, (4.3)–(4.6) and, under the same
full-rank assumption, (4.10) hold. Combining (4.10) and (4.19), we obtain

AA(x(k))δx ≈ −DA

[(
1− µ(k+1)

ci(x(k))

)
w(k)
i

λi

]
e.(4.21)

Hence, ifλi = λN
i from (3.8), the relationships (4.19) and (4.21) imply that

AA(x(k))δxN ≈ −DA

[
ci(x(k))

(
1− µ(k+1)

ci(x
(k))

)
w(k)
i

w(k+1)
i

]
e

= c(x(k))−DA[ci(x(k))/µ(k+1)]c(x(k)),
(4.22)

whereδxN is the standard Newton correction. As before, (3.11) and (4.22) then give
that
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cA(x(k) + δxN) ≈ 2cA(x(k))− µ(k)

µ(k+1)
DA[ci(x

(k))/µ(k)]cA(x(k)).(4.23)

Dividing both sides of the relationship (4.19) byci(x(k+1)) and using the convergence
of the sequence{w(k)

i /ci(x(k))} to λ∗i , we see thatci(x(k))/µ(k) converges to one
providedλ∗i is not zero. Thus (4.23) will be negative ifµ(k+1) is significantly smaller
than 1

2µ
(k). But, as before, it is normal to reduceµ(k) by significantly more than a

half and therefore a full Newton step (3.1) will be infeasible.
On the other hand, if we chooseλi = λA

i from (3.9), the relationships (4.19) and
(4.21) imply that

AA(x(k))δxA ≈ −DA[ci(x
(k))(1− µ(k+1)/ci(x

(k)))]e = −c(x(k)) + µ(k+1)e,

(4.24)

for the alternative Newton correction,δxA. Thus, combining (3.11) and (4.24), we
have that

cA(x(k) + δxA) ≈ µ(k+1)e +O(µ(k)2),(4.25)

which indicates that a step in the alternative direction will be safely feasible so long
asµ(k) = o(µ(k+1)1

2 ). Moreover, in this case, as both the inactive and active constraints
are bounded away from zero atx(k) + δxA for fixed, but sufficiently largek, we have
from (4.25) that

µ(k)

ci(x(k) + δxA)
≈ µ(k)

µ(k+1)
,(4.26)

for all active constraints. Furthermore (4.16) holds for the inactive constraints. Thus,
combining (4.5), (4.16) and (4.26), we see once again that (4.17) and (4.18) hold.

The comments at the end of Sect. 4.1 then apply equally here, namely that one
would expect that the gradient of the barrier function after a single standard Newton
iteration from the pointx(k) + δxA will be O(µ(k)4/µ(k+1)2). Again, the stopping rule
(1.3) will be satisfied at such a point so long asµ(k) = o(µ(k+1)3

4 ). Moreover, care
should be taken to avoid the possible effects of ill-conditioning in the Newton systems
and the remedies suggested in the final paragraph of Sect. 4.1 are equally appropriate.

4.3. The shifted barrier function methods

In this method, it is intended that the shifts and weights are chosen so that

w(k)
i /s(k)

i → λ∗i for i = 1, . . . ,m,(4.27)

whereλ∗ are a set of Lagrange multipliers associated with the problem (1.1). In this
case, in the framework of Gill et al. (1986), it follows that

w(k)
i

ci(x(k)) + s(k)
i

→ λ∗i for i = 1, . . . ,m.(4.28)

Thus, using (4.27) and (4.28), (3.10) gives

r(k+1)
i = w(k)

i
ci(x

(k)) + s(k+1)
i

ci(x
(k)) + s(k)

i

− w(k+1)
i

≈ (ci(x(k)) + s(k+1)
i )λ∗i − w(k+1)

i

≈ ci(x(k))λ∗i ,

(4.29)
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which tends to zero because of the complementary slackness conditionci(x∗)λ∗i = 0.
It is difficult to say more about this method without more specific information on the
shifts and weights.

4.4. Polyak’s modified- and the Lagrangian barrier function methods

For the point of discussion here, the methods of Polyak (1992) and Conn et al. (1992a)
may be considered to work in two phases, the non-asymptotic and asymptotic phases.
The purpose of the non-asymptotic phase is to locate a (x,λ)-neighbourhood of
a first-order stationary point, (x∗,λ∗) while the asymptotic phase moves from this
neighbourhood to (x∗,λ∗). Control of the non-asymptotic phase is primarily achieved
by reducing the penalty parameter, while the penalty parameter remains fixed and esti-
mates of the Lagrange multipliers are adjusted in the asymptotic phase. If the problem
is degenerate, the non-uniqueness of the optimal Lagrange multipliers may prevent
the algorithm from ever entering its asymptotic phase. None the less, convergence
will still occur so long asA(x)A is full-rank.

If the algorithm has not entered its asymptotic phase, or perhaps if the problem
is degenerate, the shifts and weights satisfy the relationships

s(k+1)
i =

µ(k+1)

µ(k)
s(k)
i and w(k+1)

i =
µ(k+1)

µ(k)
w(k)
i , for i = 1, . . . ,m,(4.30)

where the adjacent penalty parameter values are such that 0< µ(k+1)/µ(k) ≤ τ < 1.
In this case, (3.10) is

r(k+1)
i =

w(k)
i

ci(x(k)) + s(k)
i

ci(x
(k))

(
1− µ(k+1)

µ(k)

)
for i = 1, . . . ,m.(4.31)

Moreover, under mild conditions one has that each{w(k)
i /(ci(x(k))+s(k)

i )} converges to
a Lagrange multiplierλ∗i and thus, because of the complementary slackness condition
ci(x∗)λ∗i = 0, (4.31) may be made arbitrarily small. We need to be cautious here as
there is no guarantee thatx(k) is feasible for the shifted constraints once the updates
(4.30) have been applied. It may then be necessary to find an alternative starting point
for the k + 1-st inner iteration. Suitable methods are given by Conn et al. (1992a).

If the asymptotic phase of the algorithm is reached, the penalty parameterµ(k)

remains fixed at some value
∗
µ > 0 and the Lagrange multiplier estimatesλ(k+1) are

defined by

λ(k+1)
i =

w(k)
i

ci(x(k)) + s(k)
i

, for i = 1, . . . ,m(4.32)

(c.f. (3.9)). Here, the shifts and weights are defined to be

s(k+1)
i =

∗
µ (λ(k+1)

i )αλ and w(k+1)
i = λ(k+1)

i s(k+1)
i for i = 1, . . . ,m,(4.33)

and some constant 0≤ αλ ≤ 1 – the choiceαλ = 0 gives Polyak’s method while
any 0< αλ ≤ 1 defines a Lagrangian barrier function. We note that the theory given
by Conn et al. (1992a) does not hold for the caseαλ = 0. Both Polyak (1992) and
Conn et al. (1992a) indicate that this asymptotic behaviour will occur under certain
non-degeneracy assumptions. The main advantage of using nonzero shifts is that the
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ill-conditioning associated with traditional barrier function methods will no longer be
present in a neighbourhood of a non-degenerate first-order stationary point for (1.1).

In this case (3.10), (4.32) and (4.33) give

r(k+1)
i = w(k)

i
ci(x

(k)) + s(k+1)
i

ci(x
(k)) + s(k)

i

− λ(k+1)
i s(k+1)

i

= w(k)
i
ci(x

(k)) + s(k+1)
i

ci(x
(k)) + s(k)

i

− w(k)
i

s(k+1)
i

ci(x
(k)) + s(k)

i

= w(k)
i

ci(x
(k))

ci(x
(k)) + s(k)

i

= λ(k+1)
i ci(x(k)),

(4.34)

for eachi = 1, . . . ,m. Under mild conditions, Polyak (1992) and Conn et al. (1992a)
show that limit points of{x(k)} are Kuhn-Tucker points and that the corresponding
λ(k+1)
i converge to Lagrange multipliers. Hence, one expectsλ(k+1)

i ci(x(k)) to be small
because of the limiting complementary slackness condition at a Kuhn-Tucker point.

In particular, the asymptotic phase of the Lagrangian barrier function algorithm
of Conn et al. (1992a) is entered whenever the condition

‖D[
∗
µ λ(k+1)

i ci(x
(k))/s(k)

i ]e‖ ≤ η(k),(4.35)

for another positive sequence{η(k)} whose limit is zero. In this case, (4.33) and (4.35)
imply that

λ(k+1)
i ci(x

(k)) ≤ η(k)s(k)
i /

∗
µ ≤ κ2η

(k),(4.36)

whereκ2 = 2 maxi=1,...,m(λ∗i )αλ for eachi = 1, . . . ,m and all k sufficiently large.
To proceed further, we need to consider the exact form of the sequences{ω(k)} and
{η(k)}. These are given by

ω(k) = κω
∗
µ βωk and η(k) = κη

∗
µ βηk,(4.37)

where the constantsβη andβω satisfy the relationship 0< βη < min(1, βω), while
κω andκη are strictly positive.

Consider first the choice (3.8),λi = λN
i . In this case, Conn et al. (1992b, equation

(4.47)), ensures that the first component of the right-hand-side of (3.6) isO(
∗
µ βηk−1).

As the second is, by definition, zero, we would then expect that, so long as the

coefficient matrix of (3.6) has a bounded inverse,δxN = O(
∗
µ βηk−1) andδλN = O(

∗
µ

βηk−1) and that

g(x(k) + δxN)−A(x(k) + δNx)T(λ + δλN) = O(
∗
µ 2βηk−2)(4.38)

and
(ci(x

(k) + δxN) + s(k+1)
i )(λi + δλN

i ) = w(k+1)
i +O(

∗
µ 2βηk−2),(4.39)

for i = 1, . . . ,m. It then follows from (2.3) and (4.39) that

λi + δλN
i =

w(k+1)
i

ci(x
(k) + δxN) + s(k+1)

i

+O

( ∗
µ 2βηk−2

ci(x
(k) + δxN) + s(k+1)

i

)
= ui(x(k) + δxN,w(k+1), s(k+1)) +O

( ∗
µ 2βηk−2

ci(x
(k) + δxN) + s(k+1)

i

)
,

(4.40)
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for i = 1, . . . ,m.
But, now consider the values of the shifted constraintsc(x)+s(k+1) at the perturbed

pointx = x(k) +δx, whereδx = o(1). Suppose, furthermore that strict complementary
slackness holds at limit points of{x(k)}. For the inactive constraints,c(x(k) + δx) is
bounded away from zero for allk sufficiently large and thusci(x(k) + δx) + s(k+1)

i =

Θ(1). For the active constraints, thes(k)
i converge to

∗
µ (λ∗i )αλ and thusci(x(k) +δx)+

s(k+1)
i = Θ(

∗
µ).

Hence, asδxN = o(1), (4.40) shows that

λ + δλN = u(x(k) + δxN,w(k+1), s(k+1)) +O(
∗
µ 2βηk−3),(4.41)

and thus (2.1), (4.38) and (4.41) yield that

∇xΨ (x(k) + δxN,w(k+1), s(k+1)) = O(
∗
µ 2βηk−3).(4.42)

But then, as
∗
µ 2βηk−3 = o(ω(k+1)) for all k sufficiently large, one would eventually

expect a single iteration of Newton’s method to suffice for each inner iteration. This
is made rigorous by Conn et al. (1992b).

Now consider the choice (3.9),λi = λA
i . In this case, (1.3), (4.34) and (4.36) imply

that the right-hand-side of (3.6) isO(max(ω(k), η(k))) = O(
∗
µ βηk). Consequently,

provided the coefficient matrix of (3.6) has a bounded inverse, one would expect that

δxA = O(
∗
µ βηk) andδλA = O(

∗
µ βηk), and that

g(x(k) + δxA)−A(x(k) + δxA)T(λ + δλA) = O(
∗
µ 2βηk)(4.43)

and
(ci(x

(k) + δxA) + s(k+1)
i )(λi + δλA

i ) = w(k+1)
i +O(

∗
µ 2βηk),(4.44)

for i = 1, . . . ,m. It then follows from (2.3) and (4.39) that

λi + δλA
i =

w(k+1)
i

ci(x
(k) + δxA) + s(k+1)

i

+O

( ∗
µ 2βηk

ci(x
(k) + δxA) + s(k+1)

i

)
= ui(x(k) + δxA ,w(k+1), s(k+1)) +O

( ∗
µ 2βηk

ci(x
(k) + δxA) + s(k+1)

i

)
,

(4.45)

for i = 1, . . . ,m.

Arguing as before thatc(x(k) + δxA) + s(k+1) = Θ(
∗
µ), (4.45) shows that

λ + δλA = u(x(k) + δxA ,w(k+1), s(k+1)) +O(
∗
µ 2βηk−1),(4.46)

and thus (2.1), (4.38) and (4.46) yield that

∇xΨ (x(k) + δxA ,w(k+1), s(k+1)) = O(
∗
µ 2βηk−1).(4.47)

But then again, as
∗
µ 2βηk−1 = o(ω(k+1)) for all k sufficiently large, one would eventu-

ally expect a single iteration of Newton’s method to suffice for each inner iteration.
Thus, we see that it is not crucial to use the alternative model for the methods

considered in this section to achieve a reasonable second inner iterate. None the
less, there are differences in the estimates (4.42) and (4.47) and the slightly better
asymptotic estimate provided by (4.47) sometime manifests itself in practice.
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5. Numerical experiments

In this section, we indicate the effect of using the alternative initial model discussed
in the previous sections. We illustrate the effect using an algorithm for solving bound-
constrained quadratic programming problems that incorporates a variety of shifts and
weights, as implemented in Nick Gould’s Harwell Subroutine Library (1993) code
VE14.

Table 1. BQPGAUSS(n = 2003), optimal value =−0.36258

method standard alternative
inner outer time inner outer time

iterations iterations (secs) iterations iterations (secs)
Trad 96 8 27.03 87 8 25.18
J and O 80 5 21.73 75 5 21.26
LBF 76 8 21.57 63 8 19.17

method standard alternative
number of number of number of number of

factorizations backtracks factorizations backtracks
Trad 49 159 46 93
J and O 41 216 39 143
LBF 41 148 34 115

Table 2. JNLBRNGA(n = 15625), optimal value−0.26851

method standard alternative
inner outer time inner outer time

iterations iterations (secs) iterations iterations (secs)
Trad 82 9 356.96 72 9 303.62
J and O 61 5 261.44 55 5 231.45
LBF 51 9 223.91 35 8 159.50

method standard alternative
number of number of number of number of

factorizations backtracks factorizations backtracks
Trad 45 81 38 31
J and O 33 135 29 81
LBF 28 47 20 32

We consider three variants which are included inVE14. These are the traditional
barrier function method (“Trad”, see Sect. 4.1), the proposal by Jittorntrum and Os-
borne (1980) (“J and O”, see Sect. 4.2) and the Lagrangian barrier function method
(“LBF”, see Sect. 4.4) with the parameter choiceαλ = 0.5. As we have suggested,
each method comprises an outer iteration in which the shifts, weights and tolerances
are adjusted according to predefined rules (see Sect. 4) and a sequence of inner iter-
ations which conclude as soon as a valuex(k) satisfying (1.3) is obtained. The inner
iteration subproblem is solved using a simple backtracking linesearch method. In this,
a search direction is computed by minimizing a quadratic model of the barrier func-
tion; the model is such that the gradients of the model and barrier function agree and
the Hessian of the model is the matrix

H(x,λ) +A(x)TD[λi/(ci(x) + s(k+1)
i )]A(x)(5.1)
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Table 3. OBSTCLBM(n = 15625), optimal value = 7.2958

method standard alternative
inner outer time inner outer time

iterations iterations (secs) iterations iterations (secs)
Trad 81 9 335.95 81 9 323.17
J and O 95 6 369.22 86 6 343.81
LBF 56 10 250.66 49 10 219.55

method standard alternative
number of number of number of number of

factorizations backtracks factorizations backtracks
Trad 45 110 43 50
J and O 49 223 46 146
LBF 32 45 29 19

Table 4. TORSION1(n = 14884), optimal value−0.42570

method standard alternative
inner outer time inner outer time

iterations iterations (secs) iterations iterations (secs)
Trad 84 9 304.71 74 9 251.54
J and O 75 5 256.41 55 5 192.65
LBF 60 9 220.88 58 9 206.74

method standard alternative
number of number of number of number of

factorizations backtracks factorizations backtracks
Trad 46 83 38 36
J and O 39 138 29 72
LBF 33 79 28 115

of (3.7), modified (if necessary) to be positive definite. The model is minimized by
solving the linear system which define its stationary point, using the sparse, mul-
tifrontal code MA27 (Duff and Reid (1982)) from the Harwell Subroutine Library
(1990) and, if necessary, modifying the factorization to ensure a convex model us-
ing the techniques described by Gill et al. (1992). Then, a step along this direction
is found as the smallest non-negative power of 0.5 which is both feasible for the
“shifted” constraintsc(x) + s(k) > 0 and satisfies a loose Armijo sufficient-decrease
condition (see, for example, Dennis and Schnabel (1983) or Fletcher (1987)). We ap-
preciate that a more sophisticated linesearch, such as those specifically proposed for
barrier functions by Lasdon et al. (1973) or Murray and Wright (1992), may be ben-
eficial, but note that the simple backtracking strategy performed reasonably well in
practice.

Before the minimization commences, a good symbolic ordering is found for the
rows of the Hessian matrix. The Hessian of the model may remain fixed for a number
of inner iterations. In tests, we have found that changing (and consequently refactoriz-
ing) the matrix every couple of inner iterations achieves a good compromise between
the cost of the factorization and the effectiveness of an outdated model, although we
also choose to delay refactorization if the ratio of norms of successive gradients of the
barrier function is decreased by more than a fixed factor (0.1 in the tests performed
here).

We consider two possible choices forλ in (5.1), those given byλ = u(x,w(k+1),
s(k+1)) from (2.3), denoted “standard”, and those from (3.9), denoted “alternative”.
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We only chooseλ as (3.9) for the first model/step of each inner iteration in the
“alternative” method, reverting to (2.3) for the second and subsequent models/steps.
Both choices ofλ are implemented as options withinVE14, the default being to
use (3.9) for the first model/step of each inner iteration. Further experiments, where
additional steps were performed withλ chosen as (3.9), were less successful and are
not reported here. The lack of success here is not really that unreasonable since the
single “alternative” (primal-dual) step is intended to account for the change in shifts.
Once the recovery is made, there is no reason not to continue with the “standard”
(primal) Newton method given by (3.1).

In Tables 1–4 we give the numbers of outer and inner iterations and the
cpu times required to solve four large examples from theCUTE test collection
(Bongartz et al. (1993)) – all of the remaining large examples in the collection for
which direct methods are appropriate1 are variants of these and similar performances
were observed. We note that the problemBQPGAUSSis nonconvex, while the remain-
ing problems are convex. We also report the number of factorizations that are required
to solve the problems and the total number of times the stepsize was reduced in the
backtracking linesearch. All tests were performed on a SUN Sparc 10 workstation in
double precision and were stopped when the norm of the projected gradient of the
objective function within the feasible region was smaller than 10−6.

We draw the following conclusions from these experiments:

– The alternative choice ofλ pays respectable dividends in both the number of
iterations and the required cpu times to solve the problems. In some of the cases,
as much as a twenty five percent improvement is possible. For the two unshifted
methods, the number of backtracks performed is significantly reduced indicat-
ing that the alternative choice helps in producing good initial search directions
– a closer examination of the runs indeed reveals that this is so. For the shifted
method, the payoff is not as high but this may be explained by the theory of
Conn et al. (1992b) which indicates that the standard Newton correction also pro-
vides acceptable steps in many cases. However, there is a slight, but noticeable,
improvement in the “close-to” asymptotics, in that the gradient of the barrier func-
tion after the first Newton step of each inner iteration is almost always slightly
smaller in the alternative method and this appears to be beneficial for the second
and, if required, subsequent Newton steps.

– As these are the first reported results for Lagrangian barrier function methods, we
also observe that such methods outperform the unshifted barrier function methods
in almost all of our tests. While we cannot infer that this is a general trend, it is
at least an indication that the theory provided by Conn et al. (1992a) is of use in
producing good algorithms for bound-constrained quadratic programs.

6. Conclusions

We have presented a class of alternatives to the usual Newton direction for calculating
an initial improvement to each of a sequence of barrier function minimizations. The
method has proved to be effective in practice within the Harwell Subroutine Library
(1993) bound constrained quadratic programming subroutineVE14 and shows similar
signs within a (as yet, unfinished) related, general quadratic programming codeVE19.

1 The Hessian of the one other large problem from the collection,ODNAMUR, is too dense to assemble
and store on our machine.
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