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CORRECTION TO THE PAPER ON GLOBAL CONVERGENCE
OF A CLASS OF TRUST REGION ALGORITHMS FOR

OPTIMIZATION WITH SIMPLE BOUNDS*

A. R. CONN,, N. I. M. GOULD$, AND PH. L. TOINT

Abstract. A correction is made to the paper entitled "Global convergence of a class of trust region
algorithms for optimization with simple bounds" [Conn, Gould, and Toint, SIAM J. Numer. Anal., 25
(1988), pp. 433-460]. First, an error is pointed out in the proof of the fact that the correct set of active
bounds is determined after a finite number of iterations. A new proof of the relevant theorem is given.

Key words, trust regions, convergence theory, optimization with bounds

AMS(MOS) subject classifications, primary 65K05; secondary 90C30

The purpose of the present note is not to reconsider the complete problem of
global convergence and active set determination for the class of trust region algorithms
considered in 1], but rather to correct an error in this paper. Good knowledge of the
contents of 1] will therefore be assumed, and reference to this paper will be frequent.
In particular, all notation and definitions will be borrowed from [1]. We will also
adopt the convention that equation numbers between braces refer to equations of [1].

1. The error. The error we want to correct occurs in the proof of Theorem 14.
Towards the end of the proof equation {169} is used to deduce {176}. This deduction
is incorrect because {169} only holds for successful iterates, that is for k S, and thus
cannot be applied for all k. As a consequence, {176}, and hence {177}, only holds for
successful iterates, which is not enough to obtain the desired contradiction.

2. A new proof of Theorem 14.
THEOREM 14. Assume (AS.1)-(AS.7) and {155} hold. Then,

(1) l(xk)=I(x,)

for k sufficiently large, where x, is arbitrary in L.
Proof First choose an arbitrary limit point x, L, say, and denote by X, the

connected set of limit points to which x, belongs, according to Lemma 12. Note that
Theorem 11 implies that x, is critical. Since X, is connected, it is possible to find a
q > 0 such that the distance from X, to any other limit point not in X, is bounded
below by . As in Lemma 13, we can choose (0,q] sufficiently small and a kl
sufficiently large to guarantee that, for all x (X,, 2),

(2) I(x)
_
I(X,),

(3) sgn ([Vf(x)])= sgn ([Vf(x,)]) and ][Vf(x)]j[ >- e

with

(4)
def

e min min I[x7f(x,)]l > o,
x,X, jI(X,)
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the sequence {I(Xk)} is nondecreasing (according to Lemma 13) and that

(5) a(x, x,)> a(x, x,)>_-1/24
for all k-> kl. We now define the subsequence {k} as

(6) {k} {k _-> k, lxk (X,, 6) and k S},

where, as in [1], S denotes the set of indices of successful iterations. By definition of
X,, the subsequence (6) has infinitely many terms. For future reference, we note here
that (2), (6), and the nondecreasing character of {I(xk)} imply that

(7) I(xk, + s.j)
_
I(X,)

for all j.
Assume now, for the purpose of obtaining a contradiction, that, for all j,

(8) I(xkj+ Sk,)= I(X,),
where the inclusion is strict. Because of {155}, there must be a nonempty set T I(X,)
such that TI(x) is empty for all j. Therefore, from (AS.5), (AS.7), and (3), we
may deduce that, for all j,

e def
2(9) [a, t 2

Lemma 6 then implies that
2(10) b.j[f(x.)-f(xk+)]>-txc3 e min [e

and (AS.6) thus gives that

(11) lim bkj Ak 0.

The inequality bk ->- 1, (AS.3), and (11) show that

(12) [ISk. O’l]2Ak
for j larger than j => 1, say. Then, for all j =>jl,

36 3
(13) d(x,,+,,X,)<-d(x,,,X,)+[ls,,ll<---<--,,2 8

because of the definition (6). Hence, because of (5), the iterates cannot jump outside
(X,, 6), and we must have that x.;+ (X,, 6) again. This implies that the next
successful iterate belongs to (X,, 6). Therefore, the subsequence {k} is identical to
the complete sequence of successful iterates with k_-> k,. Hence we may deduce from
(11) that

(14) lim bkAk O.
k-
kS

But the mechanism of the algorithm then implies that

(15) lim Ak 0.

As a consequence of this limit and of {10} and {13}, we may increase the value of
cif necessary, to ensure that xk, xx and xk + sk all belong to (X,, 26) for all k_->

and therefore that (2) and (3) hold at these points.
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We now wish to show that all iterations are successful for k sufficiently large.
Assume this is not the case. It is then possible to find an index k arbitrarily large such
that

(16) kS and k+lS.

Note that, because of {24} and {30}, we have that

(17) bA _--<b+A+,
To

and therefore that (14) implies that bA is arbitrarily small for k large enough and
satisfying (16). In particular, for such a k,

(18) bA < e min 1, 2fl(cscr+ 1)

Now, if we have that

(19) I(xC’) I(X,),
with strict inclusion, then we may deduce from (AS.5), (AS.7), and (3) that,

(20) [a]2>-e 2,
as for (9). Using this equation, (18), and Lemma 6, we obtain that for k sufficiently large,

(21) f(Xk)-- mk(xk + Sk) > 1/2e3e2k
Since bk >- 1, the inequalities {107} and (21) now imply that

(22) IPk II </3(ctr2 + 1)
bkA2 k

36

for k sufficiently large. The bound (18) and To < 1 then yield that pk >/ for k large
enough. But this implies that k S, which is impossible because of the first part of
(16). Hence (19) cannot hold, and (2) taken at Xk

c yield that I(x)-- I(X,) for k large
enough and satisfying (16). Condition {155} and (2) taken at xk + sk then imply that,
for such a k,

(23) I(Xk + Sk)= I(X,).
Now observe that, since k S, {6} and {23} imply that

mk+1 (Xk+1 + 8k+l mk (Xk -- Sk mk+1 (Xk -[- Sk+l mk (Xk - Sk
(24)

Now decomposing gk and (Sk+--Sk) as

(25) gk=g+g and Sk+l--Sk=(Sk+l--Sk)R-(Sk+l--Sk) N,
where g and (Sk+l--Sk) N belong to C(x,) and where gff and (Sk+l--Sk) R belong to

C(x,) +/-, we write that

(26) g[(Sk+,--Sk)=[g](Sk+,--Sk) R +[g]r(Sk+,--sk)N.

Now observe that Xk W(X,, 26) for k large enough, the criticality of all points in
X, and Lemma 12 guarantee the limit

(27) lim gV 0,
k--
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and also, together with (16), (3), and (23), that the nonzero components of both g
and (sk+l- sk) R (x+l + s+-(x + s))R have the same sign. Hence we obtain that

[g](+,-) o,(28)

and therefore that
T

(29)

Yo

where we have used (26), the Cauchy-Schwarz inequality, {13}, (AS.3), and {24}. Using
the same equations, (17), {30}, and {33}, we also obtain that

(30) Is2+B+lS+l-S2BslN(b+,+l+b)Nb+,+,.

Combining (24), (29), and (30), we have that

(31) m+,(x+, + s+,)- m(x + s)
Y0 To

The limits (27) and (14) then imply that, for a k large enough and satisfying (16),

(32) m+(x+ + s+,)- m(x + s) -Je3e2&+.
On the other hand, since k + e S and using (9), (14), and Lemma 6, we deduce that,
for such a k,

2(33) f(x+)- m+(x+ + s+) c3e +,

and hence that

f(x)- m(x + s)=f(x+)- m+,(x+ + s+,) + m+,(x+, + s+,)- m(x + s)
(34)

=C3Yoe2&.
But again the inequality b 1, {107}, and (34) yield that

2(c+ 1)
(35) I0-1 < 6a,

C3Yoe

for k sufficiently large and satisfying (16). The bound (18) then again implies that
p># and keS for k large enough, which contradicts (16). The conditions (16) are
thus impossible for k sufficiently large, and all iterates are eventually successful. But
this again contradicts (15). Hence our assumption (8) is false, and we obtain from (7)
that there exists a subsequence {k,} {k;} such that l(x,+ s,) I(X.) for all t. Lemma
13 finally gives (1).
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