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GLOBAL CONVERGENCE OF A CLASS OF
TRUST REGION ALGORITHMS FOR OPTIMIZATION

WITH SIMPLE BOUNDS*

A. R. CONN, N. I. M. GOULD:I:, AND PH. L. TOINT

Abstract. This paper extends the known excellent global convergence properties of trust region
algorithms for unconstrained optimization to the case where bounds on the variables are present. Weak
conditions on the accuracy of the Hessian approximations are considered. It is also shown that, when the
strict complementarity condition holds, the proposed algorithms reduce to an unconstrained calculation
after finitely many iterations, allowing a fast asymptotic rate of convergence.
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1. Introduction. Minimizing a nonlinear function of several variables subject to
satisfying bounds on these variables is probably one of the most common types of
constrained optimization problems encountered in practical applications. Some authors
(see [9], for instance) even claim that a vast majority of optimization problems should
be considered from the point of view that their variables are indeed restricted to certain
meaningful intervals, and should therefore be solved in conjunction with bound
constraints. Fortunately, it is the simplest of the inequality constrained problems,
because of its structure. On the other hand, in a way it is more complex than many
equality type problems" indeed it involves a combinatorial part, which is the detection
of the set of constraints that are active at the solution. Algorithms that can take
advantage of this structure and that are reasonably efficient in the determination of
the optimal active set are thus of interest to many practitioners.

This fact has already been observed by many authors, and some special purpose
methods have been proposed, as in 1], [2] and 11 ]. Of particular interest to us is the
first of these proposals (on which the third is based), because it provides a rather
complete convergence theory to back up a satisfying numerical performance. However,
although this theory can easily be applied to convex problems, it is not clear in
Bertsekas’s presentation in [1] how to extend it to the nonconvex case, and still
guarantee global convergence.

This question of ensuring global convergence on nonconvex problems has, on the
other hand, been explored extensively in the recent past, in connection with the use
of trust region techniques. One of the main reasons behind this development is the
combination of a rather intuitive framework with a powerful theoretical foundation
ensuring convergence to a stationary point, even from starting points that are far away
from the problem’s solution. We refer the reader to 12] for an excellent survey of this
topic in the context of unconstrained optimization. More recently, many authors have
considered extending the trust region concepts and algorithms to the constrained
minimization case (see [3], [4], [7], [15], [16], for instance). In most of these papers,
quite general equality constraints have been investigated, and a variety of solutions
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have been proposed. Another interesting reference is [8], where the linear inequality
constrained case is considered.

It is the purpose of this paper to provide a general global convergence theory for
an algorithm that solves nonconvex optimization problems with simple bounds, using
a trust region technique. The analysis and algorithm presented merge ideas from [12]
and 14] concerning unconstrained problems with those from 1 ], as far as the treatment
of the bounds is concerned. Global convergence and adequate determination of the
correct active set are proved. Preliminary numerical results that indicate the viability
of the proposed method are reported elsewhere [5].

Section 2 presents the problem and algorithm in more detail, while 3 is devoted
to the convergence theory. Some conclusions are drawn in 4.

2. An algorithm for bound constrained optimization. We consider solving the
problem

(1) minf(x)

where f(x) is a function of n real variables which are subject to the constraints

(2) li Xi Ui 1,. ., n).

We assume that we can compute the function value f(x) and the gradient 7f(x) for
any feasible point x. We are also given a feasible starting point Xo, and we wish to
start the minimization procedure from that point. If we define as the intersection
of the set

{x e R" If(x) -<f(xo)}
with the feasible region defined by (2), we may formulate our assumptions on the
problem as follows.
(AS.l) The set w is compact and has a nonempty interior.
(AS.2) The objective function f(. is twice continuously ditterentiable in an open

domain containing .
The first of these assumptions says that the optimization problem is nontrivial

and cannot be reduced to a lower dimension. In particular, infinite (positive and/or
negative) bounds are allowed provided the set is still bounded.

The algorithm we propose for solving (1) subject to (2) is of trust region type.
Indeed, at each iteration, we define a quadratic approximation to the objective function,
and a region surrounding the current iterate where we believe this approximation to
be adequate. The algorithm then finds, in this region, a candidate for the next iterate
that sufficiently reduces the value ofthe quadratic model to the objective. If the function
value calculated at this point matches its predicted value closely enough, the new point
is then accepted as the next iterate and the trust region is possibly enlarged; otherwise
the point is rejected and the trust region size decreased.

Before describing the details of the method, we need to introduce some notation.
We will denote by I(x) the set of all bound constraints that are violated or satisfied
as equalities at the point x (we will call them active) and

def

(3) C(x) span {eili= I(x)},
where the vectors e are the vectors of the canonical basis. This last subspace is nothing
but the linear subspace spanned by the variables that are not at their bounds or
infeasible at x. We will also need the affine subspace

def

(4) a(x) {Y Y x + z with z C(x)},
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that contains x and is parallel to C(x). We will also use the "projection" operator
defined componentwise by

if Xi < li,
(P[x])i Ui if X

xi otherwise.

This operator "projects" the point x onto the feasible region defined by (2).
We are now in position to describe more precisely the strategy we propose in

order to choose, at the kth iteration, a candidate for the (k + 1)th iterate. Our model
of the objective function is of the form

(6) mk(Xk + Sk) f(xk)+ gsk +1/2sBksk,
where the superscript T stands for the transpose, where gk Vf(xk), and where the
symmetric matrix Bk is an approximation to the Hessian V2f(xk). (As will be seen
below, this approximation may be quite poor.) We also consider the direction wk
defined by the condition

(7) DDkwk= gk

for some nonsingular diagonal scaling matrix Dk. (Without loss of generality, we assume
that the entries of Dk are positive. Of course, D Dk, but the inclusion ofthe transpose
provides a closer relation with more general changes of variables.) This vector Wk then
gives the scaled gradient direction. As in the unconstrained case, we will first ensure
a sufficient decrease of our model along this direction, but, because of the bounds, we
have to "project" onto the feasible region, yielding the polygonal line P[Xk- tWk] for
> O. This line satisfies the important norm increasing property, that is,

(8) IIPEx t wk] xll- IIPEx t2 wk] xll whenever 2.

We may then define the continuous piecewise quadratic function

(9) qk(t) mk(P[Xk-- tWk])

as a function of => 0, and denote by t the value of in (9) corresponding to the first
local minimum of qk (t) subject to the trust region constaint defined by

(10) D P[x, tw x
where Ak is the trust region radius at the kth iteration, , is a positive constant and

I1" is the usual 12 norm on R’. The point

(11) x=P[Xk--tWk]
is called the generalized Cauchy point at iteration k. This notion is illustrated in Fig.
1, where the circles are the contour lines of the objective function, and the trust region
is large and inactive, so that its boundaries do not appear in the figure.

feasible infeasible

FIG. 1. The generalized Cauchy point.
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We require that the trial point Xk + Sk is feasible and that the step sk satisfies the
following two conditions:

(12)

and

f(xk)- mk(xk + Sk) >= fl,[f(xk)-- qk( t)]

(13) I[DkSklI <-- fl2Ak.

In equations (12) and (13), the constants must satisfy the conditions

(14) fl(0,1] and /32->,.

The first of these conditions requires the model reduction at Xk + Sk to be within a fixed
fraction of the model reduction at x, the second requires it to be inside an extended
trust region.

This clearly generalizes the conditions used by Mor6 in 12] by suitably extending
the notion of a Cauchy point to the case where bound constraints are present. Note
that, because of the equivalence of norms and the presence of the constants , and f12
in (10) and (13), respectively, norms other than the 12 norm can be chosen to define
the trust region. In particular, the l norm may be of interest, because the shape of
the trust region is then that of a box, and its boundaries are aligned with the bound
constraints. In this case,/32 can be set to ,x/-.

We also note that we do not assume that Sk be the quasi-Newton step

(15) Sk --B-gk,

whenever Bk is positive definite and t2A, in contrast to [14]. This assumption
may indeed be undesirable when n is large. In this context, the calculation of the
direction (15) may be quite costly and is not always justified.

The reason for introducing the scaling matrices Ok is also practical. As discussed
in 12], they ensure invariance with respect to diagonal transformations of the problem,
which are the only ones that preserve the structure of the constraints. These matrices
also allow the use of preconditioned conjugate gradients as a method for deriving a
suitable step. Preconditioned conjugate gradients have already proved to be extremely
useful in the context of large scale problems [11]. The preconditioner is then defined
as the diagonal matrix

(16) Ck-- DTDk
Note that, in practical implementations of this flexible method, a more sophisticated
preconditioner can be used in the subspace C(x), in order to improve on efficiency
when computing the step Sk. We only require the diagonal preconditioner for the
computation of x, because this is the part of the procedure where the combinatorial
treatment of the bounds is performed, and the special structure of the constraints
exploited.

Finally, we stress the fact that the computation of t can be implemented in a
rather efficient way, once Wk is known (see [5]).

We are now able to outline our algorithm. It depends on some constants/ (0, 1),
7 (, 1), yo, yl and y2 which must satisfy

(17) 0< ’)/0 f ’)/1 < 1 _-< ’)/2.

These constants are used in the trust region radius updating in a way similar to [12].
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Step O. The starting point Xo and the function value f(xo) and gradient go are given,
as well as an initial trust region radius, Ao, and B0, an initial approximation
to the Hessian at the starting point. Set k 0.

Step 1. Obtain a step Sk as described above.
Step 2. Compute f(Xk + Sk) and

(18)

Step 3. In the case where

f(Xk) --f(xk + Sk)
Pk f(Xk) mk (Xk q- Sk

(21) Ak+ [Ak, ),Ak] if pk --> 7

(22) Ak+ [71Ak, Ak] if Pk < 7q.

(23) Xk+ Xk, gk+ gk

(20) Xk+ Xk -k Sk, gk+l Vf(Xk+,)

set

and

or

Otherwise, set

and

(24) Ak+ [’)/0Ak, ’/1Ak].

Step 4. Update the matrices Bk and Dk. Increment k by one and go to step 1.

This is obviously a theoretical algorithm. Many details should be added in order
to specify a practical numerical procedure. In particular, we have omitted a stopping
criterion, and all details on the method to determine the step Sk once the generalized
Cauchy point x has been calculated.

We call an iteration successful if the test (19) is satisfied, that is when the achieved
function reductionf(Xk) --f(Xk h- Sk) is large enough compared to the predicted function
reduction f(Xk)--mk(Xk-1-Sk). If (19) is not satisfied, the iteration is said to be unsuc-

cessful.
We finally observe that this algorithm only generates feasible points, which can

be an advantage in the case of "hard" constraints, that is, when the function and/or
gradient values are undefined or difficult to compute if some constraints are violated.

3. Convergence analysis. We now turn to the analysis of the behaviour of our
algorithm, when applied to problem (1)-(2). It is quite clear that this behaviour will
depend on the conditions we impose on the matrices Bk and

We first state our assumptions of the scaling matrices
(AS.3) The scaling matrices are diagonal and have bounded inverses, that is,

(25) IID’II_-< or1

for some o- 1.
Condition (25) is identical to that imposed in 12]. As in this reference, we observe

that this condition does not imply that the scaling matrices have bounded condition
numbers. The condition that cr _-> can be imposed without loss of generality, and will
be useful in the sequel.

(19) Pk >
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Assumption (AS.3) also allows us to characterize critical points of our problem,
that is points at which the first-order Kuhn-Tucker optimality conditions hold. This
is expressed in the following statement.

LEMMA 1. Let x be feasible and let D be a diagonal nonsingular matrix. Then x is
a critical point for problem (1)-(2) if and only if
(26)

for all >-O, where w is given by

P[x-tw]=x

(27) DTDw=Vf(x).

Proof This lemma results immediately from Proposition 1.35 of [1].
Now observe that if we define

(28) dk (t) P[Xk tWk Xk,

we can rewrite the conditions for Xk to be critical in terms of this new vector: Xk is a
critical point if and only if dk (t)= 0 for all => 0, which is equivalent to dk (t)= 0 for
any particular > 0. The quantity

def

(29) hk P[Xk W, X, dk 1

can therefore be regarded as a measure of the "criticality" of the kth iterate, provided
the scaling matrices Dk stay bounded in norm. The geometric interpretation of this
quantity is illustrated in Fig. 2.

feasible infeasible

FIG. 2. The critical length hk.

Since we are interested in asymptotic convergence, we will assume below that the
sequence of iterates is infinite and hk > 0 for all k.

We now state our condition on the model Hessians, namely,
(AS.4) If we define

(30) bk 1 + max IIDTB,D?’II,
=0,...,k

we require that

(31)
k k /"
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Note that we have added 1 to the norm of the scaled Hessian approximation in
order to prevent definition problems when this last quantity is identically zero. This
condition (31) is the weakest possible involving the whole of Bk for obtaining conver-
gence to a stationary point when Dk I. This was shown by Powell in [14] in the
context of unconstrained minimization, where he provides an example showing that,
if condition (31) is violated, the algorithm can converge to a noncritical point. It is
also worth remembering that the well-known BFGS secant update does satisfy (AS.4)
on convex problems (see [13]). This is also the case for a suitably safeguarded
Symmetric Rank One update applied to convex and nonconvex problems (see [5]).
On the other hand, if second derivatives of the objective function are available and
used for Bi, then they are obviously bounded on , and (AS.4) holds too.

Our convergence analysis can be divided into three parts. In the first part, we
examine the consequences of our step strategy and establish the important condition
that, for a given successful iteration, iteration k say,

(32) f(Xk) f(Xk d- Sk) >= CllID-Tgkll min Ak, [[D_rBk-kkill + 1

for some constant c1>0. This condition is crucial in both [12] and [14] for the
unconstrained case, and its generalization to the bounded case stays crucial in our
framework. In the second part of our theory, we establish global convergence of our
algorithm to a critical point of the problem. We also show the important property that,
assuming strict complementarity, the algorithm determines the set of bounds that are
active at the solution in a finite number of iterations. This means that, asymptotically,
the rate of convergence can be regarded as that of a purely unconstrained method.
The third part of the analysis is concerned with guaranteeing convergence to a local
minimum, not merely to a critical point, under conditions on the step Sk that take
second order information into account.

3.1. Obtaining a sufficient decrease in the model. Let us first examine the implica-
tions of our step strategy at iteration k. Since the iteration is fixed, so is the scaling
matrix Dk, and the complete procedure for determining a step Sk can be viewed as
taking place in a scaled space. Indeed, if we denote the scaled quantities with a
superscript s, we can define

(33) x= DkXk, S= DkSk, d(t)= Ok dk(t)

and

(34) g-- D-Tgk, BSk DTBkD-1.

Also observe that

(35) w= DkWk= gk,

SO that the scaled Wk direction is nothing but the scaled gradient. In this new space,
we can rewrite the piecewise quadratic (9) as

qk(t) mg(Xk + dk(t))

(36) f(Xk)-t- gdk t) +1/2[dk t)]rBkdk( t)
T--f(Xk)+[gk]rdk(t)+[dk(t)] BkdSk(t),

where we redefine the objective function on the scaled space by

(37) f (x) f(D-Ix) f(x).
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Similarly, the bounds in (2) are transformed into new bounds on the scaled variables

(38) l. =<x,*.-< u (i= 1,..., n),

with

(39) l (Dk)iili and u,*. (Dk),Ui.

These bounds, in turn, allow the definition of the set of indices of the active scaled
constraints

(40) IS(xS)=I(x),

and of a scaled PS[. operator as in (5), corresponding to projection onto the feasible
domain defined by (38). Also similarly, a scaled can be defined using (37) and
(38). Then we have that

(41) dk(t) Dk(P[Xk-- tWk]--Xk)= P’[Xk tgk]--Xk

for all t, and the constraints (10) and (13) can be rewritten as

(42) IlP[Xk tgk3 Xkl] <---
and

(43)

respectively. Finally, observe that, for all x,

(44) [[xll-<_ IIDlll []xll <_-

To simplify the notation, we will use this one-to-one correspondence between the
original and scaled spaces at iteration k, and therefore assume the scaling Dk L
Hence the scaled and original spaces coincide for this iteration, and the superscript s

can be dropped. We will reintroduce the notion of scaled space when we consider
several iterations of our algorithm.

LEMMA 2. For all 0 < tl <= t2 and all k, we have that

(45) I(Xk + dk(tl)) c I(Xk + dk(t2)).

Proof The proof of this lemma is trivial once we observe that the set of active
bounds can only be increased or remain the same as one follows the polygonal line
defined by Xk + dk(t), and no satisfied bounds can become violated.

We now define the reduced gradient with respect to a given set of active bounds
as follows:

def {[oWk] if i I(xk + dk( t)),
(46) [Zk(t)]i

otherwise,

where the subscript denotes the ith component of the vector, and where t_-> 0.
LEMMA 3. Assume that (AS.1)-(AS.2) hold. Also assume that hk > O. Then, if

def

(47) c2 max[1 max

we obtain that

(48)

where

(49)

z, t2 )) = -h
tkl) hk.

2C2
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Proof To prove this lemma, we first note that c2 is well defined because of the
continuity of the gradient and the compactness of . We also deduce that

hk(50) [[d(t))[[--< t(lgk 2C---
Let us now denote by t2 the smallest such that

(5)

Then, using (50), we obtain

(2)

Hence, because of (50) and (51),

(53)

IIz(t(k) (t(k2- t(kl)llZk(
--> d(t d(t

>= - hk,which proves the lemma.
It is worth noting that the line coordinate t() depends only on hk and the problem.
With this tool at our disposal, we may now examine a crucial part of our

development" the guaranteed decrease in the quadratic model starting from a noncritical
point.

LEMMA 4. Assume (AS.1)-(AS.2) hold. Also assume that, for some t(k3)> 0,

def

(54) ok Ilzk(t(3)[[ > O.

Then, ifTis the set ofpoints in [0, t3] at which thepiecewise quadratic (9) is differentiable,

d
(55) d

for all T. Furthermore,

d
(56)

at

for all T I"1 [0, tk4], and

(57)

for all [0, t(4], where

(58)

qk(t)<=f(xk)--1/2at,

t?fmin t(3’ 4c (ll ll+ 1)

Proof To prove this result, we first examine the behaviour of the slope of the
function qk (t) in the interval [0, t(3)]. As increases from 0 to t(3), the polygonal line
Xk + dk (t) may hit several bounds. Let us label

(59) 0 to < t < < t(3)
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the "bends" or breakpoints points (if any) of this polygonal line. Now consider the
set T as defined above, that is, the complete interval [0, t3)] minus the breakpoints
(59). Then for any T,

d T(60)
dt

qk(t)= gkdk(t)+ dTBkd(t),

where d,(t) is defined componentwise by

d
(61) [d,(t)]i t [dk(t)],

for 1," ", n. We now assume, without loss of generality, that if bounds are active
at Xk or become active as increases from 0 to tk3), they do so in order of successive
indices, that is, the bounds on the first variables become active first. It is then possible
to write that

(62) [dk(t)]i__{--t[gk]i for [0, w,],
--wi[gk]i for (wi, tk3)],

where to is the value at which the ith bound becomes active, if applicable.
Equivalently,

(63) [dk(t)],=--[gk],[t(t[O, W,])+W,(t(w,, tk3)])],
where the function (condition) is equal to 1 if" condition is true and zero otherwise. Then

(64) [d,(t)], -[gk],6(t [0, to,]).
We now examine the quadratic term in (60):

[d(t)]rBd’(t) [Bk]i[gk],[gk][tG(t [O, tO,])

(65)
i,=

+ wiG(t (,, tk3)])]6(t 6 [0, W]).
Now let us consider a given T. Then there is an integer s such that (t, t+).
Define r by

(66) I(x + d(t))= {1, , r- 1}.
Therefore we obtain the following equivalences:

[O, toi]<=> >= r,
(67)

(wi, t3)] :> _-< r- 1.

Hence, for (ts, ts+),

(68) [dk(t)]7"Bkd(t) [Bk]ij[gk]i[gk]j[t(i>=r)6(j>=r)+wiG(i<r)6(j>=r)],

while

(69) [g]rd’(t) [g]3(i> r)=- [gk] 2

i=1 i=r

Gathering (68) and (69), we obtain from (60)

(70)

dd---tq(t)=- [gk]+t [Bk]ij[gk]i[gk]j+ [B*k]ij[gk]i[gk]jWi
i=r i,j=r i,j=l

=<- [gk],2. + [Bk]i[gk]i[gk]+
i=r i,j=r
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where Bk* is defined by

(71)
if < r andj>= r,

[Bk*]ij
0 otherwise.

Also define

if < r (all j),
(72) [B-]iJ

if/-> r

and now observe that

(73) Ilull IIBII [IBII.
If we put v= z(t), then (70) implies that, for all (t, t+),

d
(74) d--t qk t) <= -II vkll=/ t[ vk]TBkvk + tk)llgll=llUkll.

Hence, for all T,

d
(75) d-- q(t) <-_ -a+ 2t3cllBll,

where we have used (47), the Cauchy-Schwarz inequality and the fact that Lemma 2
implies the inequality IIvll->-. This proves (55). In particular, we may consider t(k4)
as defined by (58). Since t(k4)-< t(k3), we obtain that Ilzk(t4))ll->_ k > 0, and we can apply
the above argument with t(k3) replaced by t(k4), and yield

d
(76) d-- q(t) <= -a+ 2t4cllBll <- -1/2

(when the derivative exists), and, consequently,

(77) q(t) <--f(x)-1/2a
for all [0, tk4)], l-]

Observe that this lemma does not take the trust region constraint (13) into account:
only the model and the problem bounds are. considered. Also observe that the term
(11B / 1) can be replaced by Bk when this is nonzero, but the given term simplifies
the later analysis.

We can now state the equivalent of condition (32) in the case ofbounded problems.
In order to avoid confusion when applying this property, we formulate our result
without assuming that Ok I.

LEMMA 5. Assume (AS.1)-(AS.3) hold. Also assume that

def
(78) h, IID(P[x- w]-x)ll > 0.

Then

(79)

where

f(Xk)--mk(Xk+Sk)>=c3[hSk]2min Ak! bk

der [ f12 min(1,,)fll]<l"(80) C min
1 r/’ 64c22o-12
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If the kth iteration is successful, we also have that

1 s] [[h,](81 f(Xk) --f(xk + Sk) >- -/XC3[ h k min bk
Proof We prove the result in the scaled space first, and then reformulate it in the

original space. We observe that, if t1 is used as t3 in Lemma 4, then, by Lemma 3,
Cek >= 1/2hk > 0, and relation (57) implies that

(82) qk( t) <=f(Xk)--h t,

where is in an interval whose upper bound is

min
16c22(}1B11 + 1) 16ce2(llBkll + 1)’

because h-< c2 by definition. Assume first that IId(t)ll . Then, recalling (12),
we obtain that

(84) f(Xk)-- mk(Xk + Sk),ht5.
On the other hand, if ]]dk(ts>)l]> Ak, we know that [[dk(t[)[[ UAk, and, since

C2/ C2

we can deduce that

(86) tc=>
C2

Therefore, because tc < t(5, (12) and (82) imply that

(87) f(x,) m,(x, + s,) >= u---2 h2A,.
8c

Gathering (83), (84) and (87), we obtain that

min (1, v)/31
(88) f(Xk)-- mk(Xk + Sk)>=

In this last inequality, as in the whole development in the scaled space, we have
assumed that the scaled gradients are bounded above by the constant cz. Returning
to the unscaled space, we have to replace this bound by oh c, which reintroduces the
scaling and uses (25). We also replace IIn ll/l by the scalar bk, which already
incorporates the scaling, and hk by h,. The relation (88) is thus nothing but the scaled
form of (79), except that the constant c3 is possibly further reduced, in order to simplify
another development below. The inequality (81) then results from (79), (18) and
(19).

We now turn our attention to a useful variant of this result.
LEMMA 6. Assume (AS.1)-(AS.3) hold. Also assume that

defa, IIDz(tc)ll > 0.(89)

Then

(90)
1 ,]2 [ [a,]2 ]f(x) m (xk + s) _-> Ca[ a min

b
A
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where Ca is defined in (80). If the kth iteration is successful, we also have that

(91) f(Xk)--f(Xk+Sk)>=-c3[a]Zmin ,A,
L

Proof The proof of this lemma is similar to that of Lemma 5. In the scaled space,
(89) is equivalent to

def

(92) ak Ilzk(t)ll >0.
Moreover, the inequality Ilz (O)ll llz (t )ll>o implies that t>0. Hence we can
apply Lemma 4 with t3) replaced by t. We then deduce that

(93) q (t) f(x) -afor all nonnegative [0, min (t, t6))], where

(94) t? de a
4c (lln [[ + 1)"

Consider first the case where t" < t6). If IId(tU)ll <, then there exists a t7) t
such that the derivative of qk (t) is defined and nonnegative at this point, and such that

(95) I(Xk + dk(t7)))= I(x).
This last condition implies that Zk(t7)) Zk(t), and we obtain that

(7)2(96)  =llB ll
because of Lemma 4. This ensures that

2

> ak t6)(97) t7=2c(]]Bk+ 1)

But t7) is arbitrarily close to t, and hence t t6, which is impossible. Therefore,
we deduce that IId(t)ll . We can then apply an argument identical to that used
in the previous lemma, and we obtain that

(98) f(Xk) mk(Xk + Sk) ufl aAk.
2C

If we now consider the case where t t6, we can first deduce that ]]dk(t6))]] UAk
because of the definition of t and the norm increasing propey (8). Therefore, the
inequality (93), (94) and (12) give

(99) f(x)-m(z+s)a 4c(B+l)
Gathering now (98) and (99), we obtain

(100) + min

This implies (90) in the unscaled space, as explained above. The inequality (91) then
again results from (90), (18) and (19).

This closes the first pa of our convergence theory which was devoted to finding
a suitable generalization of condition (32) to the case where bound constraints are
present.
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3.2. Global convergence to critical points. We now wish to use the guarantee of a
sufficient decrease in the model to prove global convergence to critical points for the
algorithm. This will be accomplished very much in the spirit of [14]. The global
convergence itself indeed will be separated into two propositions, with statements close
to those appearing in Powell’s paper. It is interesting to note that, although the proof
of the second statement follows Powell’s argument closely, the proof of the first of
these statements is quite different from that in [14].

LEMMA 7. Assume that (AS.1)-(AS.3) hold. Consider a sequence {xk} of points
generated by the algorithm, and assume that there is a constant e > 0 such that, for all k,

(101) h>=e,

where h is defined by (78). Then there exist a constant c4>0 such that, for all k>=l,

C4(102)

where bk is defined by (30).
Proof. We first define

def

(103) c5 max

2 > 1 and thatand assume, without loss of generality, that c5o-

((104) e < min 1,/32 V -ii ---i ]"
We also have that

(105)

because of (6), where

If(xg / s) mg (x + sg)[ 1/2l s [ Gk B)sg

(106) Gk 2 (1 t)V2f(x + tsk) dt.

This yields
l T( l O"21 +(107) If(xk + s)- m(x + s) ==ta,llDZ Sk)P-’ll =/3A[c5

where we have used (AS.3), (13), (30), (33) and the inequality IIG II c. For fuher
reference, we note that this inequality holds independently of (101). Assume now that
there is a k such that

2
2(108) (c5, + b)A To(1 -n)c3 ,

and define r as the first iteration number such that (108) holds. (Note that (104) implies
that (108) does not hold for k=0, and hence r 1.) Then the mechanism of the
algorithm ensures that

2 r 2
(09) a_,a_,(c+a_,)a_,z(c,+a)--(-n)c<,
where we used (80) to derive the last inequality. This last inequality, (30), (101), (104)
and Lemma 5 then imply that

(110) f(Xr_l)--mr_l(Xr_l+Sr_l)C3 min ,_ =C3e
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Combining (107) and (110), we obtain that

If(xr-1 + sr_l)- m_l(X_l + s_l)[ </3(c5cr+ br-1)r-1
(111) IPr-1-11- [f(Xr-1)-- mr-l(Xr-1 + sr-1)l c3e

2 <= l-rh

where we also used (18) and the middle part of (109). This imposes Or_l >- ’rl, and
therefore (21) implies that A__> A-I. This, in turn, gives

2
2(112) (5O’l+br_l)Ar_l

which contradicts the assumption that r was the first index with (108) satisfied. Hence,
(108) never holds, and we obtain that

2
L_(113) (c5 o- + b)A

for all k >_-1. But, since

(114) r(b+ 1)<= rbC50"1 " bk < C5 2c5

for all such k, we have proved (102) with

(115) C4--

2To(1 "q)c3 e

2C5 2 2O’12

We are now ready for our main theorem in this section.
THEOREM 8. Assume that (AS.1)-(AS.4) hold. Also assume that {Xk} is a sequence

of iterates generated by the algorithm. Then

(116) lim inf hk 0,
kooo

where hk is defined in (29).
Proof The proof of this statement is by contradiction. Assume therefore that there

is an e > 0 such that

(117) hk >= eO’l

for all k, implying that

(118) hk >-- e

because of (44). Now Lemma 5 and the fact that the objective function is bounded
below on the set 5 imply that

(119)
2 c3 kS kS

where S is the set of successful iterations. Using this inequality and Lemma 7, we may
deduce that the sum

(120) min (e2’ c4)s --<- ksX min =< min ,Ak

converges to a finite limit. Now let p be defined as an integer such that

(121)
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and also define

(122) S(k) S (3 {0, , kI[

the number of successful iterations up to iteration k. Then define

(123) J={k]k<=pS(k)} and J2={k]k>pS(k)}.

We now want to show that both sums

1
(124) Y v- and Y-

kcJ 0k kcJ bk

are finite. Consider the first. If it has only finitely many terms, its convergence is
obvious. Otherwise, we may assume that J1 has an infinite number of elements, and
we then construct two subsequences. The first one consists of the indices of J1 in
ascending order and the second one, J3 say, of the set of indices in S (in ascending
order) with each index repeated p times. Hence the jth element of J3 is no greater
than the jth element of J. This gives

1
(125) -_-< j
because of the nondecreasing nature of the sequence {bk} and the convergence of the
last sum. We now turn our attention to the second sum in (124). Observe that, for k J2,

(126) --_<-ikc4
b

where we have used Lemma 7 and the definition of J2 in (123). This yields

(127)
kGJ bk-- C4 kGJ

and the second sum is convergent. Therefore the sum

(128)
=o

is finite, which contradicts (AS.4). Hence condition (117) is impossible and (116) is
true.

We also obtain the following impoant corollary directly Dom this prooE
COROLLARY 9. Assume that (AS.1)-(AS.4) hold, and that {x} is a sequence of

iterates generated by the algorithm. en
(129) lim inf h 0,

where h is defined in (78).
We note that (129) gives a scaled equivalent of (116). We often prefer (129) as a

convergence result, because we believe that, in most cases, the scaled quantities are
more meaningful when they are used to assert convergence (see also [6] on this subject).
Also observe that one has to be cautious in interpreting (129) or (116) as "convergence."
In fact, these equations mean that at least a subsequence of the iterates approaches a
critical point provided the norms of the scaling matrices D stay bounded, as has
already been pointed out.
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We also note here that Lemma 6 could be used instead of Lemma 5 in the proofs
of Lemma 7 and Theorem 8, in order to prove that

(130) lim inf ak lim inf a, 0,

where ak and a, are defined in (92) and (89), respectively.
We are now able to prove that the "lim inf" in (116) can be replaced by a true

limit, if we strengthen our assumptions somewhat, as is shown in the next theorem.
We first complete our assumptions on the scaling matrices, and ensure that hk is

a suitable measure of criticality.
(AS.5) There is a positive constant 0"2 1 such that, for all k,

131) Dk =.
This and (AS.3) clearly implies that the scaling matrices have bounded condition

numbers, and we obtain the following result.
LEMMA 10. Assume that (AS.3) and (AS.5) hold. Then

(132)
1 2
2 hk <= IIP[x.-g.J-xll <-- o’2hk

0-1

for all k.
Proof This lemma is not difficult to prove. We first observe that (AS.3), (AS.5)

and (7) imply that

(133) 12 I[g]l
0-2

for all j 1,. ., n, and that the components of wk and gk have the same sign. But, if
we set

uj if [gk]j < O,
(134) vj

lj if [gk]j > O,

we also have that, for all j,

(135)

Similarly, for all j,

(136)

I[P[x w] x]jI min (l[w3l, IEx]j 1)
min (Crll[g]jI, IEx] 1)

-< o-l[P[x gk]- x]l.

1
>-- P[Xk gk Xk 21.

0-2

Formula (132) follows immediately.
We also require the following condition:

(137) (AS.6) lim bk[f(Xk) --f(Xk/l)] O.
k-

It says that the norm of the approximating Hessians should not increase too fast
compared with the speed of convergence of the function values. This condition clearly
holds if the sequence {bk} is bounded, as assumed in [12]. As noted above, this is
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obviously the case when exact Hessians are used to form the quadratic model, yielding
a variant of Newton’s method. Observe also that the fact that f(. is bounded below
and (AS.4) already imply that

(138) lim inf bk[f(Xk) --f(xk+,)] 0.

Indeed, assume that

(139)

for some e > 0. Then

bk[f(Xk) f(Xk+l)] > e

(140) 2 ----<- 2 [f(Xk)--f(Xk+l)] <
=0 bk e

if f(. is bounded below, which is impossible because of (AS.4).
THEOREM 11. Assume (AS.1)-(AS.6) hold. Also assume that {xk} is a sequence of

iterates generated by the algorithm. Then,

141 lim hk O.

Proof We prove this theorem by contradiction. Assume therefore that there is an
el e (0, 1) and a subsequence {mi} of successful iterates such that, for all mi in this
subsequence

(142) hmi o-l el,

and thus, by (44),

(143) h,, 1"

Corollary 9 guarantees the existence of another subsequence {li} such that

(144) hk>=e2 formi<=k<li and hl,<e2,
where we have set

(145) e2 2< e1.
4O-lO-2

Note that the last inequality in (144), (44) and Lemma 10 imply that

(146) I]P[Xl, gl] Xl O-hl, <- O-lO-22 e2
We may now restrict our attention to the subsequence of successful iterations whose
index is in the set

(147) K {k k e S and mi <- k < li},

where mi and li belong, respectively, to the two subsequences defined above. Now
applying Lemma 5, for k e K, we obtain that

(148) f(Xk)--f(xk+)- tzC3e min [.ff, hk

Because of (137), we then have that

(149) lim bkAk -’0.
kK
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Therefore, we can deduce that, for sufficiently large,

l.-1

(150)
t.-1

-< c6 ’2(’ [f(x)-f(x+,)]

--< c6[f(x,, -f(xti ],

where the sums with superscript (K) are restricted to the indices in K, and where we
have set

def2:zO’l(151) c6
IC3 e 2

But the last right-hand side of relation (150) tends to zero as tends to infinity, and
thus continuity and (146) imply that

for sufficiently large. We may now apply Lemma 10 again, and we obtain that

(153) h, N2e2Ne
when is sufficiently large. This contradicts (142) and proves the theorem.

As above, we note that (AS.3) and (AS.5) imply a scaled equivalent of (141), i.e.,

(154) lim h; 0.

We also note that the technique of the proof of Theorem 11 cannot be used to replace
the limit inferior by the true limit in (130) because of the lack of continuity of ak and
a, as functions of the point xk.

Before dealing with the extension of convergence results involving second-order
information to the bounded case, we wish to analyse the behaviour of the algorithm
when the sequence converges to a critical point. In particular, we will show that, if
the iterates converge to a critical point satisfying the strict complementarity conditions,
and if the condition

(55) (x)
_

I(x,, +

holds, then the set of constraints that are active at this critical point is correctly identified
in a finite number of iterations. Condition (155) ensures that all bounds that are active
at the generalized Cauchy point x are also active at Xk + Sk. This is imposed in [5],
and we will assume it from now on.

In the argument that follows, we consider {Xk} an arbitrary sequence generated
by the algorithm. We also define L to be the set of all limit points of this sequence.
This set is nonempty because is compact. We then restrict our attention to the case
where the following assumption holds.
(AS.7) All limit points in L satisfy the strict complementarity slackness condition

(156) I(x,)l[Vf(x,)],l > o
for every x, L, where is the index of a bound.
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This condition has the following consequence.
LEMMA 12. Assume (AS.1)-(AS.7) hold. Then each limit point x, L belongs to

an unique connected set oflimit points ofL, X, say, and there exists a set I(X,) such that

(157) I(x,)-I(X,)

for all x, X,.
Proof The fact that x, belongs to an unique connected set of limit point X, is

obvious. We still have to show the existence of I(X,) and (157). First, Theorem 11
ensures that all points in L are critical. This implies that, for all x, X,,

j I(x,)=>[Vf(x,)]j O.

On the other hand, since the set {x, LIj I(x,)} must be closed and hence compact,
(AS.7) then implies that there exists an e > 0 such that

(159) j l(x,)l[Vf(x,)]l >= e

for all x, X,. We can then deduce from (158) and (159), connectivity of X, and the
continuity of the gradient that, if j I(),) for some 9, X,, then j must belong to

I(x,) for all x, X,. Hence we can choose I(X,)= I(x,) for any such x,, and the
lemma is proved. [q

We now show that, once a constraint is picked up as the iterates approach a limit
point, it will be active for the rest of the calculation.

LEMMA 13. Assume that (AS.1)-(AS.7) and (155) hold. Then

(160) I(Xk)_ I(Xk+,)

for all m >= 0 and k sufficiently large.
Proof We first observe that, because is compact, it is possible to choose kl

sufficiently large and 6 > 0 such that, given an iterate Xk with k => kl there exists a
connected set of limit points x,k)_ L such that

(161)
def

(k)x :(x, )

where the distance d(x, X) is defined by

def

(162) d(x, X) min IIx-yll
yX

for any vector x and any compact set X. Using continuity, Lemma 12 and (AS.7), we
can also assume, without loss of generality, that 6 is small enough to ensure that, for
allx,,,

(163) I(x)a I(X(k))

(164) sgn ([Vf(x)]j) sgn ([Vf(x,)]) and I[Vf(x)]l_->1/21[Vf(x,)]jl

for all j I(x) and all x,e X() Consider now a k > k If the kth iteration is
unsuccessful, then x+ x and, clearly, I(x) I(x+). If it is successful, condition
(155) ensures that I(x) l(x+). But (163) and (164) then imply that I(x) I(x).
Therefore, we obtain that I(x) I(x+) for all k sufficiently large, and (160) is
proved.
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We now show that the correct active set is identified by the algorithm after a finite
number of iterations.

THEOREM 14. Assume (AS.1)-(AS.7) and (155) hold. Then

(165) I(xk)=I(x,)

for k sufficiently large, where x, is arbitrary in L.
Proof First choose an arbitrary subsequence {xk,} converging to a limit point

x, L, say, and denote by X, the connected set of limit point to which x, belongs,
according to Lemma 12. Since X, is connected, it is possible to find a 4’ > 0 such that
the distance from X, to any other limit point not in X, is bounded below by q. As
in the previous lemma, we can choose 6 (0, q] sufficiently small and a kl sufficiently
large so as to guarantee that (163) and (164) hold and that

(166) d(x,X,)> 6d(x,X,)>=@
for all k_-> kl. We now define the subsequence {k} as

(167) {k} {k >- kl Xk df(X,, 6) and k S},

where, as in the proof of Theorem 8, S denotes the set of indices of successful iterations.
By definition of X,, the subsequence (167) has infinitely many terms. Assume, finally,
for the purpose of obtaining a contradiction, that, for all j,

(168) I(x)c I(X,),

where the inclusion is strict. Then there must be a nonempty set T
_
I(X,) such that

Tfq I(x) is empty for all j. Therefore, from (AS.5) and (164), we may deduce that,
for all j,

11
[gk]2> 2(169) =-- 4r ]J] min ][7f(x,)] ,2] >= e

for some e > 0. Lemma 6 then implies that

(170) b,j[f(x,)-f(x,j+)] -txc3 min[e bA],
and (AS.6) thus gives that

(171) lim b. A 0.

The inequality bk => 1, (AS.3) and (171) show that

(172) s II--< ,2A,-<
for j larger than j _-> 1, say. Then, for all j >=j,

(173)
36 3

because of the definition (176). Hence, because of (166), the iterates cannot jump
outside W(X,, 6), and we must have that x+IW(X,, 6) again. This implies that

x+ e (X,, 6). Therefore, the subsequence {k} is identical to the complete sequence
of successful iterates with k->_ k,. Hence we may deduce from (171) that

(174) lim bA 0.
kc
kS

d (Xk.j+,, X, =< d (x,, X,) + 2 8
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But the mechanism of the algorithm then implies that

175) lim bk Ak O.
k-c

Using (169), (175) and Lemma 6 again, we obtain that, for all k sufficiently large,

(176) f(Xk) mk (Xk + Sk) >-- 1/2 C3e2Ak.
Since bk----> 1, the inequalities (107) and (176) now imply that

(177) IPk-- 11 <
fl22(c5 cr+ 1)

bkAk2

for k sufficiently large. The limit (175) then yields that Pk >= 7q for k large enough. But
this prevents the sequence {Ak} from converging to zero, which contradicts (175).
Hence our assumption (168) is false, and we obtain that there exists a subsequence
{kt}___ {k} such that I(X,)_ I(XkC,) for all t. Lemma 13, (155) and (163) then give
(165).

This last result is important because it shows that, under very mild conditions,
the asymptotic behaviour of the algorithm is that of a purely unconstrained method,
restricted to the subspace of variables that are not at their bounds at the solution.
Hence rate of convergence analysis for the unconstrained case can be applied in our
context without any modification.

It is also interesting to observe that Lemma 13 and Theorem 14 together imply
that all limit points of the sequence of iterates generated by the algorithm have the
same active set.

3.3. Convergence to local minimizers. In this section, we consider exploiting
second-order information in the model and the objective functions to ensure stronger
convergence results. Our analysis follows the broad lines of the developments in [12],
recasting the results presented therein for unconstrained optimization into the context
of bounded minimization. We first examine some conditions that guarantee that the
complete sequence of iterates generated by the algorithm converges.

First define A I[X] as the minimum eigenvalue ofthe symmetric matrix X restricted
to the subspace C(x,). Then we can state the following result.

THEOREM 15. Assume that (AS.1)-(AS.7) and (155) hold, and assume that {Xk}
is a subsequence of iterates, generated by the algorithm, converging to the critical point
x,. Also assume that there is an e > 0 such that

178) lim inf A 1[Bk >= e.

Assume finally that V2f(x,) is nonsingular on the subspace C(x,). Then the complete
sequence of iterates {Xk} converges to x, and all iterates lie in A(x,) after finitel)) many
iterations.

Proof The criticality of x, is ensured by Theorem 11. We first choose a 6 > 0
smaller than the distance from x, to the nearest bound not active at x,. Then we
choose an il sufficiently large to ensure that Xki (X,, ) for all -> il. If we denote
by Z, a matrix whose columns form an orthonormal basis of the subspace C(x,) and
by q the minimum singular value of Z,V f(x,)Z, (that is V2f(x,) restricted to the
subspace C(x,)), we also require 6 to be small enough to ensure that

(179) Ilvf(x)-V-f(x,)ll<-c7=-zmin 1,
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for all x A(x,) with IIx-x.I <= 3. This is possible because of (AS.2). We also apply
Theorem 14 and deduce that

(180) I(Xk,)=I(x,)
for all sufficiently large. We can then choose i2 => il large enough so that

(181)

/3 def

(182) IIx ,-x,
4C7+

and (180) hold for all i i2, and also so that

C7 31(183) hk <= :z 2 <3
O’lO"2

for all k_-> ki2. The first of these inequalities has to hold for large enough k because
of Theorem 11. The second results from the definitions of 7, 31, 0"1 and 0"2 in (179),
(182), (AS.3) and (AS.5), respectively. For all i>= 2 we now observe that, using (180),

(184) Sk, C(x,)
and we decompose Wk, and gk, as

R N(185) Wki-- Wki-lt- Wki and gk, gkRi + gkN
where the vectors superscripted with N belong to C(x,), while those superscripted
with R belong to C(x,)-. Now, the definition of 31 and the second part of (183) imply

N Nthat, for >-_ i2, hk Wk, I[" Observe then that the vector gk, is the gradient of the model
at Xk, projected onto C(x,), and that it has the property that, for i>= i2,

N N 0"2(186) [Igk, -< 2hk, <= c731,

where we used (7), (AS.5), the first part of (183) and the fact that 0"1 >- 1. Consider
now the one-dimensional strictly convex quadratic function of the parameter r defined
by

def

(187) th(’) mki (Xki-- 7"Ski)--f(Xk,)
Then, since b(0)--0 and b(1)=<0 by construction of the step Ski we obtain that

def

(188) ’, arg min b(’)_>-.

But an easy computation shows that
N

(189) ’r,= T

where we have used the Cauchy-Schwarz inequality, (181) and (184) to derive the
last part of this bound. Therefore, we can deduce that

(190) <--
4

gk II.

Hence, gathering (182), (186) and (190), we obtain that

(191) [4-c7 + 1 ]
LeA
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Now assume that

(192) > I1

and observe that

(193)

where

N
gk,+, Q, gk,+, Q,[Vf(x,) + G,(xk,+l- X,)]

(194) G,= vZf(x,+l + t(x,-x,+,)) dt
0

def Tand Q, Z,Z, is the orthogonal projector onto the subspace C(x,). But Q,Vf(x,) 0
because x, is critical and, by (180) and (184), x,+-x, C(x,). Hence

(195) Ilgt,+l[[- [[Q,VZf(x,)Q,(xtq+,-x,) -k- Q,(G,-VZf(x,))Q,(xt,,+-x,)[[
This implies, by using the definition of Z,, the fact that [[Q,[[- 1, (192) and the
Cauchy-Schwarz inequality, that

N T 2 Tg,,,+lll Ilz,[ ]z,( -x,)ll-llG,-v2f(x,)[[ IIx+, x,
(196)

> q,a,- IIG,-V=f(x,)II a.

Now,

(197)

[72f(Xki+l + t(x,-xgi+,))-Vf(x,)] dt

max + t(x,-x+,))-VZf(x,)l]
t[0,]

C

Hence, using (7), (186), (196), (197), the definition of 81 in (182), the definition of c7
in (179) and the fact that 0-1 -> 1,

(1--7 81 (4C7A-s) C761(3e--4C7)
> 4_ _>_198 h,.+ > O’22 40" e e "This is impossible because of (183), and therefore

(199) Ilx,+l-X, <-- 81"

All the conditions that are satisfied at xki are thus satisfied again at x+l, and the
argument can be applied recursively to show that, for all j-> 1,

Since 6 is arbitrarily small, this proves the convergence of the complete sequence {x}
to x,. [3

This result is interesting because it confirms the intuition that the algorithm can
be forced to converge to a critical point which is not a minimizer, when the Hessian
approximations B do not reflect adequately the behaviour of V2f(x).

Since the final calculations are purely unconstrained, we can also apply Mor6’s
results in [12] and deduce that all iterations are eventually successful, and that the
trust region radii A are bounded away from zero.
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We now wish to show that convergence to a point where the necessary second-order
conditions for a local minimizer hold can also be established, if one is willing to

strengthen the requirements on the step Sk.
We shall impose the following conditions instead of (12).

(AS.8) The choice of the step sk ensures that

(201) f(Xk)--mk(Xk+Sk)>--,[f(Xk)--minmk(x+pk)],

where the minimum is taken over eigenvectors Pk E C(x) associated with
A I[Bk] that are scaled so that the point x +Pk still lies in the trust region.

We also require that some step along a direction of negative curvature can be
made, when such a direction is found, as ensured by the condition

(202) (AS.9) /2 > p"

We will finally require that the model reflects the behaviour of the objective
function more accurately (for example, by using exact Hessians or finite difference
approximations). Thus, we require that the following two conditions hold.
(AS.10) The matrices Bk satisfy the conditions

(203) AI[Bk]C8AI[v2f(Xk)] whenAl[VZf(xk)]<O,

where c8 is some positive constant, and

(204) lim ]r(Bk, Sk)-- r(V2f(Xk), Sk)] =0 whenever lim IIs ll--0,
k->

where r(X, s)= sXs/llll is the Rayleigh quotient of the symmetric matrix
X with respect to the direction s (it can be viewed as a measure of the
curvature of the quadratic form defined by X along s).

We first consider a consequence of these conditions on the model decrease.
LEMMA 16. Assume that (AS.1)-(AS.3), (AS.5) and (AS.8) hold. Assume, further-

more, that

(205)

for some k. Then

(206)

AI[Bk] <0

f(xk)- mk(Xk + Sk) >= --1/2 C9/\ I[Bk]A,

where the constant c9 is defined by

(207) C9--- jl
0"2

Proof Consider first Pk C(x,) an eigenvector of Bk associated with A l[Bk], and
assume it is scaled so that

(208) P[(gk + Bk (X Xk)) <= 0

and

(209) ]]Dk(X +pk--Xk)]] 2Ak

PfxIf we set Xk +Pk, we obtain that

mk(X) mk(X)+p[(gk + Bk(X--Xk))+1/2pBkPk
(210)

2<=f(xk)+SA
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where we used the inequality mk(x)<f(xk), (208) and the definition of pk. Now
observe that

IIDpII
> IID(x’-x)ll_l(211) [[D,(x-x,)l [[D,(x-x,)[ v

because of (10) and (209), and hence

((212) /32A= IlD(xf-x)llN[[DP[[+llD(x-x)ll 1+
This last inequality and relation (210) together then imply that

(1
(213) f(x)-m(xf)-:X B] .

2

To complete the proof, one only needs to notice that

(214) f(x)- m(x + sk) l[f(xk)

because of (201).
We now show that there is a limit point where the second-order necessary

conditions for a minimizer are satisfied.
TzozM 17. Assume that (AS.1)-(AS.5) and (AS.8)-(AS.10) hold. en there is

a limit point x, of the sequence of iterates generated by the algorithm, with Vf(x,)
positive semidefinite on C(x,).

Proof We proceed again by contradiction, and assume that, for all limit points
x, of the sequence {x}, the Hessian matrix Vf(x,) has an eigenvector in C(x,)
corresponding to a negative eigenvalue bounded above by -2e, where e is some
positive constant. We first want to show that the trust region radii A tend to zero.
Assume it is not true, that is, there exists a subsequence {m} of successful iterations
such that

(215)

for some e2> 0. Then, because of (AS.I), we can exhibit a subsequence of this
subsequence which is converging to a limit point x,, say. Without loss of generality,
we assume that the entire sequence {x,} converges to x,. We will also assume that
is large enough to ensure that

(216) I(xm,) I(x,) and

by using the continuity of the Hessian. Hence (203) implies that

(27) a[Bmi]-c
for sufficiently large. Using this bound, Lemma 16, the fact that iteration m is
successful and (215), we deduce that

2(218) f(Xm) f(Xm+) e csc9el eZ

for large i. But this inequality is clearly impossible because

(219) 2 [f(xm) f(xm+)] 2 [f(xk) --f(xk+)] f(Xo) f(x,) < +.
i=0 kS

Hence no subsequence of successful iterations is such that (215) holds, and

(220) lim A 0.
kS
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This, in turn, implies that

lim Ak 0 and lim IIs [I 0,(221)
k- k-

by using (13), (22) and (24). We note that, for k sufficiently large, the point Xk is close
enough to a limit point to ensure that

(222) A l[vZf(Xk)] <--_ --el and hence A l[Bk] <--_ --Cse,

because of (203). Combining now (105), the bound IlSk[[ <--O’2Ak and (206) together,
we obtain that

(223) IPk 1] =< O’/3
]r(Bk, Sk)- r(V2f(Xk),

C C9 E

and the right-hand side of this expression tends to zero because of the second part of
(221) and (204). The updating rules for the trust region radius then prevent A from
tending to zero. However, this contradicts the first part of (221); therefore, there must
be a limit point x, where 7f(x,) is positive semidefinite.

Strictly speaking, this result does not ensure that x, is a local minimizer, because
we did not show that it is critical, or that it is not a saddle point. Nevertheless it is
often the case that x, is a local minimizer, and criticality can be guaranteed by imposing
(AS.6) as shown by Theorem 11.

Finally observe that we really proved that there is a limit point where the matrices

B are asymptotically positive semidefinite, and it is only because we imposed an
adequate relationship between these matrices and the true Hessian that the theorem’s
statement involves the latter.

4. Conclusions and perspectives. We believe that the theory presented in this paper
is interesting for several reasons.

First, it extends most of the convergence results known for unconstrained problems
to the very frequent case where bounds on the variables are present. This extension is
obtained by generalizing the now classical notion of a Cauchy point in what seems to
us a natural way. Quite general conditions on the size of the Hessian approximations
are also considered, allowing for a number of specialized implementations.

An important feature of the algorithm presented is that it does not require
successive multidimensional unconstrained minimization in a single iteration, at vari-
ance with Oay’s proposal in [8]. Gay’s method may indeed require the complete
numerical solution of more than one linear system for computing a single step, and
is therefore quite costly when applied on large-dimensional problems. Instead, our
proposal replaces this calculation by a simple linesearch along a piecewise linear arc,
possibly followed by a single refinement of the step. Efficient iterative methods such
as truncated preconditioned conjugate gradients can then be used for this last phase.
The new strategy is thus much cheaper to implement for problems involving a large
number of variables. Hence, the framework presented here is quite well suited to such
problems. In particular, one may consider using it in conjunction with partitioned
secant updating techniques on the very general class of partially separable problems
10]. These last techniques have already been used for bounded problems in the Harwell

library subroutine V08, which was shown in 11 to be remarkably efficient, although
it still lacks the strong theoretical foundation that we provide for the present proposal.

Finally, preliminary numerical experience with this type of algorithms is rather
encouraging (see [5]). The theory developed here therefore may well prove to be useful
in practical applications.
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Further extensions of this framework to the linearly and nonlinearly constrained
case are also of interest. They are the subject of continuing research.
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