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Abstract

We consider a class of Iterated-Subspace Minimization (ISM) methods for solving
large-scale unconstrained minimization problems. At each major iteration of such a
method, a low-dimensional manifold, the iterated subspace, is constructed and an
approximate minimizer of the objective function in this manifold then determined.
The iterated subspace is chosen to contain vectors which ensure global convergence
of the overall scheme and may also contain vectors which encourage fast asymptotic
convergence. We demonstrate that this approach can sometimes be very advantageous
and indicate the general performance on a collection of large problems. Moreover,
comparisons with a limited memory approach and LANCELOT are made.

1 Introduction

In this paper, we consider finding a local solution of the unconstrained minimization
problem,

minimize
x∈ℜn

f(x),(1.1)

where we assume, for simplicity, that the objective function f ∈ C2. We are particularly
interested in the case where n is sufficiently large that methods appropriate for small
problems — such as those which might maintain a dense factorization of a suitable
approximation of the Hessian matrix, see, for example, Gill et al. (1981), Dennis and
Schnabel (1983) and Fletcher (1987) — are impractical. We are especially interested
in solving large problems for which exact second derivatives are explicitly available. At
variance with a popular misconception, such problems frequently arise in practice, as is
evident when one considers, amongst others, the large CUTE collection (see Bongartz et
al., 1995).

We are primarily concerned with the commonly occurring case in which the cost of
evaluating the value of the objective function and its derivatives, at a given point x, is less
significant than the cost of solving, for instance, the Newton equations. Our experience
with the large-scale nonlinear optimization package LANCELOT (see Conn et al., 1992) has
been that it is the linear-algebra cost which tends to dominate when solving a significant
number of widely differing application problems (see, Conn et al., 1993 and Conn et al.,
1996). Thus, it would appear desirable in these cases to attempt to reduce the linear-algebra
costs, even if this results in an increase in the number of objective function evaluations.



The most common methods for unconstrained minimization either determine a search
direction followed by a linesearch or use the trust-region approach (see, for example, Dennis
and Schnabel, 1983). In the former case, a simple model of the underlying objective function
is constructed in order to determine the search direction. By contrast, in the latter case,
an approximate minimizer of the model within a restricted domain (the trust region) is
determined. This model minimizer is then used as a prediction of the actual minimizer
of the true objective. In a trust-region method, success of this process is measured by
comparing the model and true function values at the predicted minimizer. In linesearch
methods, the true function is used to establish a step size. Thus, both of these approaches
may be considered to perform their multi-dimensional work with respect to a model whilst
probing the true function uni-dimensionally. Of course, the model does make use of the
true function and perhaps its derivatives — maybe at more than a single point.

In this paper, we take the view that the above schemes are quite wasteful, given the
amount of information that may have been accrued during the (approximate) minimization
of the model. In particular, the model may have been sampled in a number of potentially
interesting directions, of which only the aggregate direction is normally considered to be of
significance.

We also believe that, provided function and derivative values are inexpensive to compute
relative to the linear-algebra costs, an (approximate) low-dimensional minimization is a
relatively simple calculation. Indeed, we feel that there is high-quality, robust, general-
purpose software readily available for the small-scale unconstrained minimization problem,
and that such software is normally capable of solving problems of modest dimensions -
say up to a hundred variable problems - extremely fast on current workstations provided
that function evaluation is cheap. Of course there are, and will continue to be, small-scale
problems which are challenging, because they are so nonlinear that algorithms implemented
in fixed, finite precision arithmetic are unsuccessful, but in our experience such examples
occur rarely in practice.

Thus, in this paper, we propose methods which aim to investigate the true objective
function in a space larger than the one-dimensional space which is normally associated
with linesearch or trust-region methods. We do this knowing that, so long as the
space is relatively modest, the approximate multi-dimensional minimization will still be
a manageable calculation. Moreover, by carefully choosing the space that we investigate,
we hope to reduce significantly the linear-algebra costs while still maintaining global, and
fast asymptotic, convergence.

Previous work along the lines we are considering includes Cragg and Levy (1969)
who propose minimizing in a k-dimensional subspace, which includes the steepest descent
direction. The remaining k-1 directions are the steps from the k-1 previous outer iterations.
See also, for example, Dennis and Turner (1987), Dixon et al. (1984), Miele and Cantrell
(1969), and Vinsome (1976). The first minimizes a convex quadratic on a subspace by
adding, at each iteration, an extra vector that is not dependent on the existing subspace.
They thus provide a uniform framework for a wide class of conjugate directions. The
second minimizes the objective function over a grid of 4096 points, generated from a four-
dimensional subspace. This subspace is defined using the steepest descent direction, the
Newton direction, and two others directions which are combinations of the two previous
steps.

A particular form of these ideas has been given by Saad (1990) for the solution of
nonlinear systems of equations. Here, a sequence of iterates are generated as least-squares
solutions to the equations in suitable Krylov subspaces. The principal difference is that, in
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Saad’s proposal, the entire Krylov subspace generated is used, while, as we shall see, this
is in general quite unnecessary. Another example, that also is in the context of nonlinear
equations is that of Kaporin and Axelsson (1995). Although developed independently, many
of the ideas are quite similar to those of this paper, but the emphasis is rather different.

Given an initial estimate of the solution to (1.1), x(0), and an iteration count, k, set
initially to zero, a prototype algorithm for the proposed method might be as follows:

1. Stop with the solution estimate x(k) if convergence tests are satisfied.

2. Determine a full-rank subspace matrix S(k) ∈ ℜn×s(k), where s(k) ≪ n.

3. Approximately solve the s(k)-dimensional minimization problem

minimize

y∈ℜs
(k)

f(x(k) + S(k)y),(1.2)

set

x(k+1) = (approximate) arg min

y∈ℜs
(k)

f(x(k) + S(k)y),(1.3)

replace k by k + 1 and return to step 1.

We refer to such a method as Iterated-Subspace Minimization or ISM for short. This is,
of course, a multi-dimensional subspace analog of the unidimensional-subspace linesearch
method.

We are interested in the following issues:

• What is a good choice for s(k)?

• How do we determine the Iterated-Subspace matrix S(k)?

• What do we mean by “approximate” in the problem (1.3)?

• Are there methods which are particularly appropriate for solving (1.2)?

• What can we say about the convergence of such a method?

• If we can establish convergence, what can we say about its asymptotic rate?

In this paper, we make preliminary attempts to answer all of these questions.
We will use the following notation. Bold lower and upper case Roman letters indicate

vectors and matrices, respectively, while Greek and normal Roman letters denote scalars.
Script style letters are index sets. A superscript (k) indicates a quantity which occurs at
the k-th iteration or which is evaluated at x(k).

We let g(x) and H(x), respectively, indicate the gradient, ∇xf(x), and Hessian matrix,
∇xxf(x), of the objective function. We define

f (k)
s (y)

def
= f(x(k) + S(k)y),(1.4)

g
(k)
s (y)

def
= ∇yf

(k)
s (y) and H(k)

s (y)
def
= ∇yyf

(k)
s (y), and will make use of the derivative

identities
g(k)
s (y) = S(k)Tg(x(k) + S(k)y)(1.5)
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and
H(k)

s (y) = S(k)TH(x(k) + S(k)y)S(k).(1.6)

The paper is organised as follows. In Section 2, we consider the convergence of the
algorithm given in the introduction. We discuss a number of ISM methods in Section 3,
and we report on some preliminary numerical experience when solving some relatively large
test examples, from the CUTE test suite (see Bongartz et al., 1995), in Section 4. Possible
extensions, to the cases where there are linear or nonlinear constraints present, are given
in our concluding Section 5, where we also offer our perspectives of this and future work.

2 Convergence of a general algorithm

Global convergence of the above scheme can be guaranteed under fairly general assumptions.
Suppose that we are able to pick consecutive iterates x(k) and x(k+1) = x(k) +S(k)y(k) for
which the Goldstein (1964) conditions

f (k) + βg(k)TS(k)y(k) ≤ f (k+1) ≤ f (k) + αg(k)TS(k)y(k),(2.1)

for some 0 < α ≤ β < 1, are satisfied, where y(k) is the approximate solution of (1.2).
Suppose, furthermore, that

−g(k)TS(k)y(k)

‖S(k)Tg(k)‖2‖y(k)‖2
≥ ǫ,(2.2)

for some ǫ > 0. Then the ISM algorithm from Section 1 is globally convergent to a
stationary point for the problem (1.1) from any starting point so long as f is bounded from
below and has a Lipschitz-continuous gradient (see, for example, Dennis and Schnabel,
1983, Theorem 6.3.3).

Using the definitions (1.4) and (1.5), we may write (2.1) as

f (k)
s (0) + βg(k)

s (0)Ty(k) ≤ f (k)
s (y(k)) ≤ f (k)

s (0) + αg(k)
s (0)Ty(k)(2.3)

and ensure that (2.2) is satisfied by requiring that

−g
(k)
s (0)Ty(k)

‖g
(k)
s (0)‖2‖y(k)‖2

≥ ǫ.(2.4)

This is relevant as now the global convergence conditions may be verified in terms of
the inner-minimization function fs and its gradient. Similar global convergence results
can be obtained if we replace condition (2.1) by the Armijo (1966) backtracking strategy
(see Bertsekas, 1982, Section 1.3). It may, however, be difficult to design general
algorithms which ensure that conditions (2.3) and (2.4) are satisfied on exit from the
inner minimization. Thus, it may be preferable to impose extra conditions on the iterates
generated during the inner minimization to ensure overall global convergence. With this in

mind, suppose that we can find any point y
(k)
s for which

f (k)
s (0) + βg(k)

s (0)Ty(k)
s ≤ f (k)

s (y(k)
s ) ≤ f (k)

s (0) + αg(k)
s (0)Ty(k)

s(2.5)

and
−g

(k)
s (0)Ty

(k)
s

‖g
(k)
s (0)‖2‖y

(k)
s ‖2

≥ ǫ(2.6)
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are satisfied. Suppose, furthermore, that we terminate the inner minimization at a point
y(k) for which

f (k)
s (0)− f (k)

s (y(k)) ≥ τ(f (k)
s (0)− f (k)

s (y(k)
s )),(2.7)

where τ > 0. Then it is easy to show that this scheme is globally convergent under the
same conditions as stated above. The advantage here is that the tests (2.5) and (2.6) need
only be satisfied at an intermediate point to ensure convergence. Typically, the first inner-
iterate provides such a point for carefully chosen subspaces and minimizers. For example,
if the subspace contains the steepest-descent direction and the inner minimization starts by
performing a linesearch in this direction, the resulting first inner-iterate satisfies (2.5) and
(2.6). Similarly, if the subspace contains a (modified) truncated-Newton direction and the
inner minimization starts by performing a linesearch in this direction, the same conclusion
is true.

3 Computational Variants

We consider it important from a practical point of view to require that S(k) contains at
least two components,

• a gradient-related direction, such as −g(k), to encourage global convergence, and

• a Newton-related direction, such as might be computed by a truncated-Newton
method, to encourage fast asymptotic convergence, with safeguards to account for
indefiniteness.

Of course, these components play a key role in dog-leg trust-region methods (see, for
example, Powell, 1970). Additional components have the advantage of enlarging the
subspace searched, but the disadvantage of increasing the overheads in solving the s(k)-
dimensional subspace minimization problem. In this section, we consider various possible
ways of choosing the enlarged iterated subspace by choosing suitable conjugate directions.

3.1 Conjugate gradients

An appealing choice of S(k) may be obtained by picking the columns of S(k) as a set
of H(k)-conjugate directions, especially if these directions are generated by a conjugate-
gradient (CG) method. In practise one would typically precondition first.

Suppose that H(k) is positive definite. Let φ(k)(x(k) + p) be the quadratic model,

φ(k)(x(k) + p) = f (k) + pTg(k) + 1
2
pTH(k)p,(3.1)

of f(x(k)+p) about x(k). The preconditioned conjugate-gradient method (see, for example,
Hestenes and Stiefel, 1952 and Golub and Loan, 1989, Section 10.3) is an iterative method
which may be used to calculate the smallest value of (3.1). It is well known that the
solution, pn, to this problem is the Newton direction.

A preconditioner P (k) is usually an easily invertible approximation to H(k). We shall
insist that P (k) has a uniformly bounded condition number. The j-th step of the precon-
ditioned conjugate-gradient method determines the smallest value of (3.1) in the Krylov
subspace spanned by the vectors {−((P (k))−1H(k))i(P (k))−1g(k)}ji=0. Conjugacy proper-
ties ensure that each successive step may be accomplished by a univariate minimization of
(3.1) in the direction sj ; the vectors {sj} are conjugate and are recurred from step to step.
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Significantly from our point of view, the first such vector, s0 = −(P (k))−1g(k). In exact
arithmetic the method would terminate with the Newton direction, pn, after at most n

steps, but numerical rounding errors ensure that the method behaves more like an infinite
iteration (see Reid, 1971). Moreover, for the large-scale case, we would be unwilling to
consider anywhere close to n iterations. Nonetheless, the method is an effective technique
for calculating approximations to the Newton direction, especially if a good preconditioner
is used or if low accuracy solutions may be tolerated (see Toint, 1981, Dembo et al., 1982,
and Dembo and Steihaug, 1983).

In truncated-Newton methods, (see Dembo et al., 1982), the method of conjugate
gradients is used to generate approximations to the Newton direction. The resulting
search direction, ptn, is employed within a linesearch framework for solving unconstrained
optimization problems. Highly accurate approximations to the Newton correction are
only needed to accelerate the convergence of the iteration in the neighbourhood of a
limit point, and crude improvements upon the steepest-descent direction suffice elsewhere.
Furthermore, by monitoring the gradient of the model at each step of the conjugate-gradient
method, we can decide when to terminate the iteration.

While such an approach has undoubtedly proved successful in practice, we note that
a considerable amount of work is invested, in such a scheme, in calculating an “average”
direction and that much of the information gleaned on the way is subsequently ignored.
We take the point of view that directions generated by the conjugate-gradient method
are of interest for the quadratic model, but might also be locally of interest for the true
objective function. We thus propose to construct our iterated subspace from the subspace
investigated by the conjugate gradient method.

We intend to include the following:

• The preconditioned steepest-descent direction, s0 = −(P (k))−1g(k);

• A number of other conjugate directions, sj , determined by the preconditioned
conjugate-gradient method; and

• The overall truncated-Newton direction, ptn.

We note that the first of these components is designed to encourage global convergence,
while the last will ensure that convergence occurs at a fast asymptotic rate. Thus,
although we could include only the steepest descent direction and not Newton or some
other combination, the choice above seems most prudent.

In the next two subsections, we will discuss the choice of the conjugate directions and
the size of the iterated subspace.

3.2 Choice of conjugate directions

Suppose that, in addition to the (preconditioned) steepest-descent and (truncated) Newton
directions, we wish to include q directions that are H(k)-conjugate in the subspace.
Although there are other possibilities, we propose two specific ways to choose the conjugate
directions. The simplest choice is just to take the first q generated (excluding, of course,
the steepest-descent direction). Alternatively one might propose choosing the q which gave
the largest decrease in the model. Experiments suggest that this is rarely more successful
than the simpler scheme.

Another possibility is to include approximations from the extreme eigenspaces, that is
the set of eigenvectors which correspond to the smallest and largest eigenvalues (recall H(k)
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is assumed positive definite). In the unpreconditioned case, eigenvectors corresponding to
large eigenvalues correspond to the directions along which the function and CG model
change most rapidly. In the preconditioned case, they still have the same effect for the
transformed model.

Similarly, those associated with small eigenvalues reflect the (transformed) space in
which the Newton direction is likely to be sensitive and contributions from this space
are necessary if rapid progress is to be made. Thus both sets of vectors are reasonable
candidates for subspace directions.

Clearly, the calculation of these spaces is generally prohibitively expensive, but they
may be approximated by directions generated during the CG process (see, eg, Parlett, 1980,
Chapter 13). One possibility is to monitor the Rayleigh quotients

sTj H
(k)sj

sTj sj
(3.2)

and include the sj which give rise to the most extreme Rayleigh quotients. Of course, these
vectors are not eigenvectors of H(k), but they usually contain significant contributions in
the extreme eigenspaces.

3.3 Choice of subspace dimension

The choice of subspace dimension is clearly important. The simplest choice is to fix an
upper bound s on this dimension before the computation proceeds (perhaps s = 10, see
Section 4), and to select s(k) to be the smaller of s and the total number of CG directions
sampled during the k-th CG iteration — recall that the CG process may be truncated and
thus fewer than s directions may have been computed.

A more sophisticated approach is to try to dynamically select the size of subspace
based upon the needs of the k-th iteration. For instance, if the Hessian is relatively
well-conditioned, it is reasonable that a subspace made up from the steepest-descent
and (truncated) Newton directions will suffice. If, on the other hand, the Hessian is ill-
conditioned, further subspace directions to account for the extreme eigenvalues are likely
to prove beneficial.

A simple heuristic would be to monitor the Rayleigh quotient as the CG iteration
proceeds. Typically the first search direction, s0 = −(P (k))−1g(k), for the CG iteration will
contain components of all eigenvectors and hence some components of those corresponding
to the largest eigenvalues. The influence of the eigenvectors corresponding to the large
eigenvalues is reduced in the subsequent directions s1, . . ., and this is reflected in a reduction
in the Rayleigh quotient during these iterations. This effect is reversed after a number of
iterations, when the influence of the larger eigenvalues reappears. It would thus seem
sensible to record the iteration number, i(k), at which the Rayleigh quotient first starts
to increase after its initial sequence of decreases. As we know that we then have sampled
eigenvectors corresponding to both “large” and “small” eigenvalues, it is appropriate to set
s(k) = i(k).

3.4 The inner minimization

As we have stated, we believe that there are a number of highly effective algorithms for
the unconstrained minimization of a function of several variables. Indeed, it would not
be unreasonable to say that the problem has effectively been solved so long as derivatives
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are available. Among the most successful methods are the Newton-like second-derivative
methods and the finite-difference and secant methods which require only gradients (see, for
example, Dennis and Schnabel, 1983, Gill et al., 1981 or Fletcher, 1987).

When considering the minimization of (1.4), we note that the calculation of derivatives

of f
(k)
s requires those of f . We see that the calculation of the second derivatives (1.6) requires

significantly more products involving S(k) than do the first derivatives (1.5). Thus, we would
prefer to use methods which either only require relatively few Hessian-vector products, such
as (preconditioned and truncated) conjugate-gradient methods, or secant methods, which
build up approximations to the second derivatives from gradients in the s(k)-dimensional
subspace as they proceed.

The most widely used secant methods are those in the convex Broyden class of positive-
definite approximations, of which the BFGS method has the best reputation (again see, for
example, Dennis and Schnabel, 1983). While there is some controversy as to whether there
are better nonconvex secant updates (see for example, Conn et al., 1991, Khalfan et al.,
1993, and Byrd et al., 1996), we feel that convex secant methods are most natural in a
linesearch, as opposed to a trust-region, context. Such methods start with a positive-
definite second-derivative approximation and generate a sequence of matrices which mimic
the curvature in the space of directions searched. Traditionally, the Cholesky factors of the
sequence are updated as the iteration proceeds. We now show that building a good starting
matrix in our case is easy.

Firstly, suppose that S(k) is made up purely of H(k)-conjugate directions. Then the
exact second-derivative matrix H(k)

s is diagonal because of the conjugacy and moreover
its diagonal entries will have been calculated during the conjugate-gradient process. This
matrix, then, is a good starting approximation; its Cholesky factors are trivial to determine.
Furthermore, this choice ensures that the first quasi-Newton search direction is identical to
that generated by minimizing the quadratic model (3.1) in the manifold x(k) + S(k)y (see,
Gill et al., 1981, section 4.8.3.1).

Now suppose that S(k) is made by augmenting a set of H(k)-conjugate directions by
the overall truncated-Newton direction ptn. Then, the exact second-derivative matrix has
an arrowhead structure with the leading s(k) − 1 by s(k) − 1 submatrix being diagonal and
the remaining row and column easy to obtain. To be precise, if we denote the residual
H(k)ptn + g(k) following the truncated conjugate-gradient process by r(k), the last column
of the required second-derivative matrix is S(k)T (r(k)− g(k)). Thus, once again this matrix
provides a good starting approximation in that its Cholesky factors are extremely cheap to
compute. Moreover, as before, the first quasi-Newton direction gives the minimum of the
model (3.1) in the manifold x(k)+S(k)y. Significantly, as the truncated-Newton direction is
in the subspace, this first quasi-Newton direction is thus the same as the truncated-Newton
direction.

4 Numerical Experiments

We start this section by investigating, from a numerical point of view, the impact of different
subspace sizes on the convergence of the method. As the problem FMINSURF1 is particularly
efficiently solved using ISM in comparison with the default version of LANCELOT, we
examined this problem in detail. We ran ISM, without preconditioner, but constructing
the subspace from a combination of the steepest-descent, truncated-Newton and extreme

1From the CUTE collection, see Bongartz et al. (1995).
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directions as described in Section 3.2, using a variety of subspace dimensions and illustrate,
in Figure 1, the effects of the choice of this dimension on the CPU time2 required to solve
the problem.

✻

✲

subspace dimension (s)

CPU time
(in seconds)

0 5 10 15 20 25 30 35 40 45 50

20

40

60

80

100

120

140 s

s

s

s

s

s s s
s s s s s s s s s s s s

s s s s s s

Figure 1: The impact of varying the subspace dimension on FMINSURF (using an unprecondi-
tioned ISM in which the subspace is chosen from the the steepest-descent, truncated-Newton
and extreme CG directions).

We observe that the CPU time for small subspace dimension is large, but that, for
subspaces of dimension between nine and forty, the time is relatively constant, being within
ten percent of the least (s = 11) time. Thus, it appears that for this problem, adding
information above the steepest-descent and truncated-Newton directions is beneficial but
there is little extra payoff from using more than eleven directions. When we monitored the
Rayleigh quotients for this problem, we observed that the quotient decreases for on average
ten CG iterations before increasing for the first time. Thus, unless we insist on at least ten
CG iterations, it is possible that we may not have sampled the complete eigenspace. Similar
runs on different problems indicate that this behaviour is not exceptional. In other words
it appears to be not exceptional that searching in a subspace that uses eight directions
corresponding to the extreme Rayleigh quotients with the addition of the steepest descent
and the truncated Newton directions captures the bulk of the possible improvements at a
given iteration. Of course, this cannot be the case for all iterations or all problems, but the
overhead associated with choosing substantially more directions, and the loss of descent
incurred by using less directions (recall s is fixed), does not payoff in general.

We next report the results of running a number of variants of our Iterated-Subspace

2This experiment was performed on an IBM RISC/6000 320h workstation, using optimized (-O) Fortran
77 code and IBM-supplied BLAS.
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Minimization code, based on the suggestions made in Section 3, on some large or difficult
test problems. The simplest variant has the following features.

• No preconditioning is used.

• s(k) is the smaller of the fixed bound s = 10 (as suggested by the above example) and
the number of inner iterations required to determine the truncated-Newton direction.

• The subspace is constructed from the first s(k) − 1 conjugate directions plus
the truncated-Newton direction. The truncation is performed when the residual
(gradient) of the model is smaller than ‖g(k)‖2 min(0.1, ‖g(k)‖0.12 ) or when more than
n conjugate-gradient iterations were performed.

• The model is modified, if necessary, to ensure that it is strictly convex. The
modification is carried out as the conjugate-gradient iteration proceeds using the
method of Arioli et al. (1993).

• The iteration is deemed to have converged when ‖g(k)‖2 is smaller than 10−5.

• A BFGS linesearch method is used to solve the inner-minimization problem. An
Armijo backtracking linesearch is used, starting with a unit step and dividing the
step by two until the Armijo sufficient decrease condition is satisfied. If a step of one
proves acceptable, but the model has been modified to ensure that it is strictly convex,
the step is doubled until an unacceptable stepsize is determined, when the last-found
acceptable step is chosen. A maximum of 2s(k) BFGS iterations are permitted and

the iteration is stopped if ‖g
(k)
s ‖2 is smaller than 10−6.

Note that one Hessian evaluation is made for each major iteration and one gradient
evaluation for each inner iteration. We denote this method by the symbol ISM(n,f,f), where
n means that no preconditioning is used, the first f that the subspace is constructed from
the first CG directions, and the second f that the maximal subspace dimension s is fixed
(to ten).

We also consider the ISM(p,f,f) method, which is identical to ISM(n,f,f), except that an
11-band modified Cholesky factorization preconditioner is used in the conjugate-gradient
calculation. The factorization takes the elements of H(k) within a band of semi-bandwidth
five of the diagonal, replacing any other elements by zeros. The resulting band matrix
is factorized, modifications being made according to the method of Schnabel and Eskow
(1991) to ensure that the preconditioner is positive definite with bounded condition number.

We define the methods ISM(n,e,f) and ISM(p,e,f) as the modifications of ISM(n,f,f) and
ISM(p,f,f), respectively, where we construct the subspace from a set of extreme s(k) − 2
conjugate directions plus the steepest-descent and truncated-Newton directions. We pick
half of the extreme directions to be those whose Rayleigh quotient is largest, while the
remainder correspond to the smallest Rayleigh quotients.

We next consider the possibility of generating the subspace dimension automatically, as
discussed in Section 3.3. Once the subspace dimension has been determined, we construct
the subspace from the set of first or extreme s(k)−2 conjugate directions plus the steepest-
descent and truncated-Newton direction, just as before. This results in four additional
variants, namely ISM(n,f,a), ISM(p,f,a), ISM(n,e,a) and ISM(p,e,a).

As a yard-stick, we compare the above methods with three other algorithms. The first
is the default version of the LANCELOT A nonlinear optimization package (see Conn et
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al., 1992) (denoted LAN(p)) in which an 11-band preconditioner is used, together with the
same unpreconditioned version (denoted LAN(n)). LANCELOT is a trust-region method
in which a gradient and Hessian evaluation are made on every successful iteration. The
trust region subproblem is solved using a truncated conjugate gradient method. The
second algorithm included in our comparison is a truncated-Newton method (see Dembo
and Steihaug (1983)). The truncated-Newton search direction is obtained by an inexact
minimization of the Newton model using unpreconditioned or preconditioned conjugate
gradients. We denote the resulting methods by TN(n) and TN(p), respectively. These two
variants are obtained from our ISM algorithms by restricting the subspace minimization to
a single linesearch along the truncated-Newton direction. Here, the truncation is performed
when the residual (gradient) of the model is smaller than ‖g(k)‖2 min(0.1, ‖g(k)‖0.52 ) or when
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more than n conjugate-gradient iterations are performed3. Finally, we also compare our
ISM algorithms with the limited memory algorithm L-BFGS-B of Zhu et al. (1996) (see
also Byrd et al., 1995). In the unconstrained case, Algorithm L-BFGS-B approximately
minimizes a quadratic model, whose Hessian is a limited memory BFGS approximation
of the Hessian of the objective function, to compute a search direction, and performs a
linesearch along this search direction. We set parameter isbmin to three in the code,
meaning that the conjugate-gradient method is used to compute the search direction. As
no preconditioning is considered in this method (denoted LM(n)), we compare it with
the unpreconditioned variants of the ISM algorithms. We note that all the algorithms
considered in this comparison, except the limited memory one of course, use exact first and
second derivatives.

We selected our 34 test examples as the majority of large and/or difficult unconstrained
test examples in the CUTE (see Bongartz et al., 1995) test set. Only problems which took
excessive CPU time (more than 30 minutes), or which were variations on the reported
problems, were excluded. All experiments were made on a DEC 3000 workstation, using
optimized (-O) Fortran 77 code.

Table 1: Cumulative statistics on the performance of all methods on 32 problems
(unpreconditioned case)

Method Details #f Time

LAN(n) Table 5 5585 486
TN(n) Table 7 19443 649
LM(n) Table 9 15046 1175
ISM(n,f,f) Table 10 21743 695
ISM(n,e,f) Table 12 22168 720
ISM(n,f,a) Table 14 14753 532
ISM(n,e,a) Table 16 15172 533

Table 2: Cumulative statistics on the performance of all except the limited memory method
on 32 problems (preconditioned case)

Method Details #f Time

LAN(p) Table 6 4197 456
TN(p) Table 8 7852 471
ISM(p,f,f) Table 11 22096 649
ISM(p,e,f) Table 13 22193 652
ISM(p,f,a) Table 15 12616 448
ISM(p,e,a) Table 17 12774 458

Tables 1 and 2 first report cumulative statistics on the performance of the considered
algorithms on 32 problems for the unpreconditioned case (the limited memory algorithm

3The exponent differs from the 0.1 used for the ISM methods because otherwise the results for the
truncated-Newton method deteriorate considerably.
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failed to solve problems DIXON3DQ and VARDIM), and on 32 problems for the preconditioned
case (different approximate local optima have been reached for problems LIARWHD and
NONDIA). In these tables and the following ones, #f indicates the total number of function
evaluations and time the total CPU time (in seconds). The second column indicates which
of the tables in the appendix gives the complete and detailed results for the considered
method.

These tables show some interesting results. In particular, they indicate that the
automatic choice of the subspace dimension is advantageous on average. On the other
hand, there is little difference between the average performance of ISM methods using
the first CG directions to define the subspace and those using the extreme ones. One
also sees that, on average, the preconditioned ISM variants are all better in CPU time
than their unpreconditioned counterparts. When comparing with the other methods, the
unpreconditioned ISM variants with automatic choice of the subspace dimension require,
on average, more function evaluations than LANCELOT, but approximately the same
amount as limited memory and less than truncated-Newton. In the preconditioned case,
the total number of function evaluations is less for LANCELOT and truncated-Newton.
The overall CPU time for the unpreconditioned case indicates a better performance, on
average, for LANCELOT, directly followed (within less than ten per cent) by ISM variants
with automatic choice of the subspace dimension. The limited memory method did not
perform as well on these examples. This is more than likely because it uses less derivative
information. When preconditioning is used, the total CPU time for the ISM methods with
automatic choice of the subspace dimension is comparable with (and even slightly better
than) the total CPU time for LANCELOT and for truncated-Newton.

We next consider a more disaggregate presentation of what happens problem by problem
to refine our analysis. We present in Tables 3 and 4 the number of times that each of the
considered method ranks first, second, third, etc. for the two criteria used above. In these
rankings, two CPU times are reputed identical if they differ by less than five percent or by
less than half a second.

Table 3: Rankings (unpreconditioned case)

Method Function evaluations (#f) Time
1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th

LAN(n) 26 2 1 1 0 2 0 12 3 1 1 3 6 6
TN(n) 3 9 4 3 0 0 13 18 0 0 1 1 0 12
LM(n) 1 10 1 2 4 5 9 14 1 1 0 5 5 6
ISM(n,f,f) 1 6 6 3 5 9 2 19 0 1 3 4 2 3
ISM(n,e,f) 1 6 5 3 5 8 4 19 1 1 1 2 7 1
ISM(n,f,a) 3 9 7 9 4 0 0 22 1 2 4 1 2 0
ISM(n,e,a) 3 6 9 8 4 2 0 21 0 4 2 4 1 0

These tables strengthen the indications drawn above from average measures, except
that they indicate that the supremacy of LANCELOT in CPU time for the unpreconditioned
ISM variants is misleading. It appears indeed that all the ISM methods (with or without
preconditioner) are very competitive in CPU time. We further observe that truncated-
Newton is sometimes very good and sometimes rather poor for the unpreconditioned case
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Table 4: Rankings (preconditioned case)

Method Function evaluations (#f) Time
1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

LAN(p) 31 0 0 0 0 1 19 2 0 4 0 7
TN(p) 5 13 0 10 0 4 20 0 0 2 3 7
ISM(p,f,f) 5 2 3 5 16 1 17 2 1 3 7 2
ISM(p,e,f) 5 2 4 3 15 3 15 0 3 3 9 2
ISM(p,f,a) 5 13 9 1 3 1 19 4 6 2 0 1
ISM(p,e,a) 6 8 11 2 5 0 19 2 4 4 3 0

(as may be expected), while this dichotomy is less marked in the preconditioned case.
We thus conclude that in general ISM methods are efficient from the CPU time

point of view, even though they may require substantially more function evaluations than
LANCELOT (but not more than truncated-Newton and limited memory). Further, the
automatic determination of the subspace dimension is often quite helpful, both in the
unpreconditioned and the preconditioned cases. On the other hand, there is little difference
in performance between ISM variants that build the subspace from the first CG directions
and variants that use the extreme ones. As the former is easier to implement, one might
prefer it in practice. In fact ISM(p,f,a) is the best, slightly4.

5 Perspectives and Conclusions

In this paper, we have shown that it is possible to solve large-scale nonlinear optimization
problems using methods designed for small-scale problems. These methods may be regarded
as a generalization of linesearch-type methods more usually used to solve unconstrained
minimization problems. We have indicated that the convergence of our methods depends
upon using robust algorithms for the small-dimensional subproblems, and have suggested a
number of ways of selecting promising subspaces in which to search. Furthermore, we feel
that there are a number of important areas for future investigation.

• It is possible to extend the iterated-subspace minimization idea to treat linearly
constrained optimization problems. For example, if we suppose the original problem
is of the form

minimize
x∈ℜn

f(x) subject to l ≤ Ax ≤ u,(5.1)

where A is an m by n matrix, l and u are m-vectors and x(k) satisfies l ≤ Ax(k) ≤ u,
we may apply the following linearly-constrained ISM algorithm:

1. Stop if convergence tests are satisfied.

2. Determine a full-rank subspace matrix S(k) ∈ ℜn×s(k) , where s(k) ≪ n.

4One should also bear in mind, at this point, that LANCELOT is a much more sophisticated code than our
ISM variants, because it is designed for solving generally constrained in addition to unconstrained problems,
has been extensively tested and refined, and contains a number of safeguards that are not included in the
simpler ISM codes.
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3. Approximately solve the s(k)-dimensional minimization problem

minimize

y∈ℜs
(k)

f(x(k) + S(k)y) subject to l(k) ≤ A(k)y ≤ u(k),(5.2)

where A(k) = AS(k), l(k) = l−Ax(k) and u(k) = u−Ax(k), and set

x(k+1) = (approximate) arg min

y∈ℜs
(k)

f(x(k) + S(k)y)(5.3)

subject to l(k) ≤ A(k)y ≤ u(k).

The central issues remain those discussed in Section 1. However, extra care must be
exercised when picking the subspace matrix, as it is now desirable for a constrained
steepest-descent and (truncated) Newton directions to lie in the subspace. The
real difficulty is in adding appropriate additional directions since, for example, a
straightforward analogue of the unconstrained case would require that we have
conjugate directions in the constrained (reduced) space. One instance where this
supposition is reasonable is when the constraints are just simple bounds. We also
now need to use efficient methods for solving small linearly-constrained minimization
problems when determining x(k+1), but fortunately the state-of-the-art here is as
advanced as it is for unconstrained minimization.

The ISM philosophy does not obviously extend to handle nonlinearly-constrained min-
imization problems except that, of course, any unconstrained or linearly-constrained
subproblems may be treated by existing ISM methods. This may be important for
nonlinearly-constrained minimization methods which are based on the sequential min-
imization of penalty or barrier functions, or their augmented or shifted counterparts.

• In our investigations, we found it convenient to use a linesearch (BFGS) method
to solve the inner-iteration subproblems. One might, of course, alternatively use a
trust-region method to solve the subproblem. However, as the performance of such
methods depends upon building a good model within an adequate trust region, and
as our ISM method will solve a sequence of subproblems, it may be that a good trust-
region radius for one subproblem is poor for the next, and inefficiencies may occur.
Thus care may be needed in determining interactions between successive models.

Another important issue is how to pick stopping rules, analogous to (2.5)–(2.7), which
are appropriate for trust-region based methods. The main difficulty here is that the
initial trust-region radius may interfere with a condition like (2.5).

• While we have suggested a number of methods for computing a good iterated
subspace, more work clearly needs to be performed. We believe that we have
identified some of the ingredients of a good subspace, but our understanding is far
from complete.
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Table 5: Results for LAN(n) (unpreconditioned LANCELOT) on large or hard problems.
problem n #f #it #cg time f

ARWHEAD 1000 6 5 2 0.95 1.6903D-10
BDQRTIC 1000 13 12 66 2.01 3.9838D+03
BROWNAL 100 3 2 3 0.17 1.1263D-13
BRYBND 1000 14 13 177 3.53 2.8797D-13
CRAGGLVY 1000 14 13 166 2.40 3.3642D+02
DIXMAANA 1500 7 6 10 1.40 1.0000D+00
DIXON3DQ 1000 6 5 1427 5.04 7.7032D-09
DQDRTIC 1000 3 2 0 0.73 1.6602D-23
DQRTIC 1000 36 35 223 2.87 3.7687D-06
EDENSCH 1000 15 14 35 1.58 6.0033D+03
EIGENALS 110 16 15 142 0.76 2.7564D-11
ENGVAL1 1000 8 7 20 1.08 1.1082D+03
FLETCHCR 1000 3529 3528 20619 219.85 5.0581D-14
FMINSURF 1024 190 189 527 15.69 1.0000D+00
FREUROTH 1000 21 20 40 1.76 1.2147D+05
GENROSE 1000 1214 1213 6640 77.43 1.0000D+00
LIARWHD 1000 14 13 14 1.27 2.3011D-16
MANCINO 100 12 11 13 11.28 4.3367D-17
MOREBV 1000 3 2 265 2.01 2.0186D-09
NCB20B 1000 28 27 1274 96.53 1.6760D+03
NONDIA 1000 30 29 29 1.99 4.3483D-16
NONDQUAR 1000 92 91 853 6.43 9.5606D-06
PENALTY1 1000 56 55 44 8.15 9.6862D-03
POWELLSG 1000 16 15 60 1.35 1.1167D-06
POWER 1000 29 28 613 3.73 5.8399D-09
QUARTC 1000 36 35 223 3.07 3.7687D-06
SINQUAD 1000 70 69 126 5.54 6.3238D-05
SROSENBR 1000 11 10 20 1.06 6.6723D-12
TOINTGSS 1000 9 8 15 0.94 1.0010D+01
TQUARTIC 1000 14 13 14 1.26 1.0168D-16
TRIDIA 1000 5 4 91 1.14 8.5487D-14
VARDIM 1000 37 36 0 1.87 1.1203D-20
VAREIGVL 1000 13 12 313 4.32 3.0691D-08
WOODS 1000 58 57 194 3.42 3.5419D-16

Key: n = number of variables, #f = number of function evaluations, #it = number of
iterations, #cg = total number of CG iterations, time = total CPU time in seconds, f =

smallest function value obtained.
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Table 6: Results for LAN(p) (default preconditioned LANCELOT) on large or hard problems.
problem n #f #it #cg time f

ARWHEAD 1000 6 5 1 0.72 1.6903D-10
BDQRTIC 1000 12 11 13 1.56 3.9838D+03
BROWNAL 100 4 3 40 0.97 6.3470D-11
BRYBND 1000 17 16 30 2.53 1.8775D-12
CRAGGLVY 1000 15 14 11 1.51 3.3642D+02
DIXMAANA 1500 8 7 10 1.14 1.0000D+00
DIXON3DQ 1000 3 2 2 0.40 0.0000D+00
DQDRTIC 1000 3 2 0 0.40 1.6602D-23
DQRTIC 1000 36 35 27 2.31 3.6952D-06
EDENSCH 1000 13 12 9 1.24 6.0033D+03
EIGENALS 110 25 24 56 1.18 1.4887D-12
ENGVAL1 1000 8 7 7 0.81 1.1082D+03
FLETCHCR 1000 2138 2137 2136 119.01 2.8160D-12
FMINSURF 1024 316 315 436 106.32 1.0000D+00
FREUROTH 1000 11 10 7 1.06 1.2147D+05
GENROSE 1000 1095 1094 1158 63.37 1.0000D+00
LIARWHD 1000 15 14 21 1.29 2.0274D-20
MANCINO 100 16 15 8 17.39 9.2449D-18
MOREBV 1000 2 1 1 0.39 7.3289D-13
NCB20B 1000 23 22 568 50.35 1.6760D+03
NONDIA 1000 30 29 47 2.18 6.9910D-16
NONDQUAR 1000 18 17 19 1.21 1.3932D-09
PENALTY1 1000 64 63 432 23.16 9.6862D-03
POWELLSG 1000 16 15 15 1.06 2.2324D-06
POWER 1000 28 27 53 7.60 1.8888D-08
QUARTC 1000 36 35 27 2.32 3.6952D-06
SINQUAD 1000 132 131 341 14.82 9.0365D-07
SROSENBR 1000 11 10 10 0.82 5.8309D-13
TOINTGSS 1000 3 2 2 0.44 1.0000D+01
TQUARTIC 1000 13 12 24 1.19 2.9487D-11
TRIDIA 1000 3 2 1 0.49 1.3827D-32
VARDIM 1000 37 36 0 19.03 1.1203D-20
VAREIGVL 1000 13 12 199 7.06 4.1621D-08
WOODS 1000 72 71 69 4.18 2.4231D-11

Key: n = number of variables, #f = number of function evaluations, #it = number of
iterations, #cg = total number of CG iterations, time = total CPU time in seconds, f =

smallest function value obtained.
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Table 7: Results for the unpreconditioned truncated-Newton method TN(n) on large or
hard problems.

problem n #f #its #cg time f

ARWHEAD 1000 1545 389 395 26.63 0.00D+00
BDQRTIC 1000 43 17 97 1.68 3.98D+03
BROWNAL 100 5 3 4 0.04 2.45D-08
BRYBND 1000 37 14 48 1.49 1.22D-12
CRAGGLVY 1000 45 16 129 1.98 3.36D+02
DIXMAANA 1500 189 64 73 7.10 1.00D+00
DIXON3DQ 1000 7 4 1748 3.91 1.25D-11
DQDRTIC 1000 10 5 12 0.23 1.91D-14
DQRTIC 1000 48 17 70 0.38 5.14D-08
EDENSCH 1000 46 17 44 1.35 6.00D+03
EIGENALS 110 69 22 179 0.98 8.43D-12
ENGVAL1 1000 31 13 28 0.81 1.11D+03
FLETCHCR 1000 3046 1184 13315 100.03 3.04D-15
FMINSURF 1024 156 26 5559 46.24 1.00D+00
FREUROTH 1000 92 19 110 2.42 1.21D+05
GENROSE 1000 2896 540 9838 71.28 1.00D+00
LIARWHD 1000 78 28 32 1.42 1.43D-16
MANCINO 100 72 21 29 68.27 1.87D-21
MOREBV 1000 3 2 549 2.14 1.34D-09
NCB20B 1000 74 19 1053 81.98 1.68D+03
NONDIA 1000 156 55 58 3.46 5.93D-21
NONDQUAR 1000 382 94 26963 67.04 3.76D-08
PENALTY1 1000 124 52 78 1.73 9.69D-03
POWELLSG 1000 837 281 575 6.04 5.31D-08
POWER 1000 5636 1414 1419 29.24 4.19D-09
QUARTC 1000 48 17 70 0.38 5.14D-08
SINQUAD 1000 285 119 216 9.06 1.33D-06
SROSENBR 1000 26 12 15 0.29 6.11D-20
TOINTGSS 1000 298 101 202 8.52 1.00D+01
TQUARTIC 1000 57 20 27 0.74 1.24D-13
TRIDIA 1000 16 9 576 1.40 1.31D-14
VARDIM 1000 60 15 15 0.33 2.28D-21
VAREIGVL 1000 3018 1007 1010 103.70 6.02D-11
WOODS 1000 75 24 63 0.96 6.63D-18

Key: n = number of variables, #f = number of function evaluations, #its = total
number of iterations, #cg = total number of CG iterations, time = total CPU time in

seconds, f = smallest function value obtained.
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Table 8: Results for the preconditioned truncated-Newton method TN(p) on large or hard
problems.

problem n #f #its #cg time f

ARWHEAD 1000 20 8 10 0.68 0.00D+00
BDQRTIC 1000 30 11 15 1.17 3.98D+03
BROWNAL 100 74 26 213 7.10 1.21D-11
BRYBND 1000 72 15 41 2.65 1.91D-16
CRAGGLVY 1000 122 42 42 4.91 3.36D+02
DIXMAANA 1500 91 31 35 4.56 1.00D+00
DIXON3DQ 1000 3 1 1 0.05 0.00D+00
DQDRTIC 1000 3 1 1 0.09 0.00D+00
DQRTIC 1000 43 15 15 0.45 7.86D-08
EDENSCH 1000 42 12 13 1.30 6.00D+03
EIGENALS 110 140 36 162 2.19 8.15D-12
ENGVAL1 1000 26 10 10 0.82 1.11D+03
FLETCHCR 1000 2962 1169 1172 79.57 4.78D-14
FMINSURF 1024 248 28 1438 25.48 1.00D+00
FREUROTH 1000 47 9 1008 19.38 1.21D+05
GENROSE 1000 2290 748 1548 58.31 1.00D+00
LIARWHD 1000 48 16 27 1.24 3.51D-15
MANCINO 100 105 23 55 88.31 3.43D-21
MOREBV 1000 2 1 1 0.08 7.33D-13
NCB20B 1000 47 16 565 49.92 1.68D+03
NONDIA 1000 50 19 35 1.57 8.47D-20
NONDQUAR 1000 20 9 17 0.39 2.45D-09
PENALTY1 1000 106 32 223 9.71 9.69D-03
POWELLSG 1000 21 10 16 0.37 5.55D-08
POWER 1000 43 15 15 3.81 1.00D-10
QUARTC 1000 43 15 15 0.45 7.86D-08
SINQUAD 1000 784 307 861 37.85 2.35D-10
SROSENBR 1000 36 12 13 0.53 8.11D-25
TOINTGSS 1000 3 1 1 0.14 1.00D+01
TQUARTIC 1000 25 9 16 0.55 6.46D-21
TRIDIA 1000 3 1 1 0.05 1.97D-26
VARDIM 1000 78 28 3241 29.14 9.73D-16
VAREIGVL 1000 179 49 1932 38.61 2.35D-14
WOODS 1000 144 35 48 2.11 3.78D-15

Key: n = number of variables, #f = number of function evaluations, #its = total
number of iterations, #cg = total number of CG iterations, time = total CPU time in

seconds, f = smallest function value obtained.
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Table 9: Results for the (unpreconditioned) limited memory method LM(n) on large or
hard problems.

problem n #f #its #cg time f

ARWHEAD 1000 22 13 20 0.70 0.000D+00
BDQRTIC 1000 294 196 1104 11.84 3.984D+03
BROWNAL 100 22 9 18 0.12 2.449D-08
BRYBND 1000 31 24 80 1.39 2.152D-11
CRAGGLVY 1000 94 81 467 5.50 3.364D+02
DIXMAANA 1500 10 7 10 0.58 1.000D+00
DIXON3DQ 1000 9999 9668 343.62 5.065D-05
DQDRTIC 1000 18 11 31 0.52 9.088D-14
DQRTIC 1000 48 38 73 0.86 8.112D-06
EDENSCH 1000 31 23 77 1.29 6.003D+03
EIGENALS 110 444 408 2565 6.30 1.609D-09
ENGVAL1 1000 24 17 52 0.87 1.108D+03
FLETCHCR 1000 5795 5108 35941 255.57 7.962D-12
FMINSURF 1024 186 175 1219 11.29 1.000D+00
FREUROTH 1000 114 29 91 4.25 1.215D+05
GENROSE 1000 2460 2163 14874 111.52 1.000D+00
LIARWHD 1000 28 22 40 0.88 2.268D-16
MANCINO 100 11 9 11 15.46 8.786D-20
MOREBV 1000 75 71 526 3.32 9.964D-09
NCB20B 1000 2581 2393 18491 651.93 1.676D+03
NONDIA 1000 28 17 30 0.99 7.125D-21
NONDQUAR 1000 1073 961 7250 35.67 1.521D-05
PENALTY1 1000 121 85 166 2.76 9.687D-03
POWELLSG 1000 48 37 116 0.99 6.583D-06
POWER 1000 149 131 773 4.11 1.218D-08
QUARTC 1000 48 38 73 0.84 8.112D-06
SINQUAD 1000 141 104 385 6.41 1.129D-04
SROSENBR 1000 21 15 24 0.41 1.037D-09
TOINTGSS 1000 8 5 9 0.36 1.001D+01
TQUARTIC 1000 25 19 34 0.62 4.907D-17
TRIDIA 1000 912 871 5992 29.15 1.606D-11
VARDIM 1000 21 1 0 0.17 1.242D+22
VAREIGVL 1000 107 99 646 6.97 9.973D-09
WOODS 1000 77 52 178 2.01 1.287D-11

Key: n = number of variables, #f = number of function evaluations, #its = total
number of iterations, #cg = total number of CG iterations, time = total CPU time in

seconds, f = smallest function value obtained.
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Table 10: Results for ISM(n,f,f) on large or hard problems, in which no preconditioning is
used and the subspace is chosen from the first 10 CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 11 2 6 3 1.50 0.25 0.00D+00
BDQRTIC 1000 85 10 47 63 5.40 2.12 3.98D+03
BROWNAL 100 5 2 3 3 1.50 0.04 2.45D-08
BRYBND 1000 105 10 80 60 5.90 3.62 8.79D-14
CRAGGLVY 1000 108 12 90 126 7.58 4.46 3.36D+02
DIXMAANA 1500 24 7 15 7 1.00 1.09 1.00D+00
DIXON3DQ 1000 7 4 4 1748 9.00 3.97 1.25D-11
DQDRTIC 1000 10 5 5 12 2.40 0.24 1.91D-14
DQRTIC 1000 188 8 145 21 2.63 1.18 9.10D-09
EDENSCH 1000 65 7 44 25 3.57 1.76 6.00D+03
EIGENALS 110 101 8 64 86 9.00 1.16 1.90D-10
ENGVAL1 1000 52 7 34 22 3.14 1.19 1.11D+03
FLETCHCR 1000 13014 1049 10640 13187 9.92 316.24 3.60D-14
FMINSURF 1024 189 11 103 2309 10.00 21.61 1.00D+00
FREUROTH 1000 261 11 69 47 4.09 4.92 1.21D+05
GENROSE 1000 5985 411 4327 6827 9.90 138.24 1.00D+00
LIARWHD 1000 29 3 24 4 1.33 0.57 1.46D-14
MANCINO 100 68 12 37 17 1.42 67.72 1.34D-18
MOREBV 1000 4 3 3 519 10.00 1.98 1.37D-09
NCB20B 1000 174 17 101 1034 9.88 99.47 1.68D+03
NONDIA 1000 14 3 10 4 1.33 0.38 1.48D-15
NONDQUAR 1000 466 40 368 2643 9.05 10.84 2.11D-06
PENALTY1 1000 72 3 58 4 1.33 0.85 9.69D-03
POWELLSG 1000 41 3 37 9 3.00 0.35 4.92D-09
POWER 1000 105 10 80 150 7.20 1.18 1.43D-10
QUARTC 1000 188 8 145 21 2.63 1.18 9.10D-09
SINQUAD 1000 171 11 129 25 2.27 4.48 9.92D-07
SROSENBR 1000 16 2 12 3 1.50 0.17 2.45D-16
TOINTGSS 1000 7 1 4 1 1.00 0.22 1.00D+01
TQUARTIC 1000 27 2 19 3 1.50 0.34 4.05D-15
TRIDIA 1000 17 10 10 643 9.80 1.63 7.32D-15
VARDIM 1000 56 3 48 3 1.00 0.41 3.77D-23
VAREIGVL 1000 66 9 57 179 6.89 4.22 7.52D-11
WOODS 1000 75 5 42 14 2.80 0.83 9.56D-15

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 11: Results for ISM(p,f,f) on large or hard problems, in which preconditioning is used
and the subspace is chosen from the first 10 CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 23 4 17 5 1.25 0.67 0.00D+00
BDQRTIC 1000 62 7 40 7 1.00 1.55 3.98D+03
BROWNAL 100 125 10 108 134 7.70 3.31 1.05D-11
BRYBND 1000 159 11 97 26 2.36 4.58 7.78D-14
CRAGGLVY 1000 93 9 48 9 1.00 2.76 3.36D+02
DIXMAANA 1500 21 1 18 3 3.00 0.97 1.00D+00
DIXON3DQ 1000 3 1 1 1 1.00 0.05 0.00D+00
DQDRTIC 1000 3 1 1 1 1.00 0.09 1.24D-21
DQRTIC 1000 46 2 40 2 1.00 0.33 5.20D-08
EDENSCH 1000 73 6 37 6 1.00 1.73 6.00D+03
EIGENALS 110 213 13 118 58 4.46 2.24 1.25D-11
ENGVAL1 1000 32 5 21 5 1.00 0.83 1.11D+03
FLETCHCR 1000 12749 1212 10320 1212 1.00 266.31 4.00D-19
FMINSURF 1024 248 9 89 459 9.44 11.15 1.00D+00
FREUROTH 1000 113 6 40 15 2.50 2.55 1.21D+05
GENROSE 1000 6586 598 4955 985 1.65 135.03 1.00D+00
LIARWHD 1000 30 2 24 4 2.00 0.63 1.92D-14
MANCINO 100 111 13 46 14 1.08 97.22 3.03D-18
MOREBV 1000 2 1 1 1 1.00 0.08 7.33D-13
NCB20B 1000 110 15 76 656 6.67 69.90 1.68D+03
NONDIA 1000 116 7 84 17 2.43 2.74 9.90D-01
NONDQUAR 1000 86 11 73 18 1.64 0.98 2.18D-09
PENALTY1 1000 145 7 114 64 5.00 3.76 9.69D-03
POWELLSG 1000 92 14 71 16 1.14 0.94 6.14D-11
POWER 1000 61 4 51 4 1.00 1.37 3.44D-10
QUARTC 1000 46 2 40 2 1.00 0.33 5.20D-08
SINQUAD 1000 184 13 147 41 3.15 5.71 2.93D-10
SROSENBR 1000 36 7 26 7 1.00 0.50 6.14D-25
TOINTGSS 1000 3 1 1 1 1.00 0.14 1.00D+01
TQUARTIC 1000 21 2 18 3 1.50 0.36 2.01D-19
TRIDIA 1000 3 1 1 1 1.00 0.05 1.01D-25
VARDIM 1000 91 14 77 2660 6.86 20.02 5.72D-12
VAREIGVL 1000 70 9 56 154 7.33 6.98 1.25D-09
WOODS 1000 486 35 321 45 1.29 6.27 6.79D-16

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 12: Results for ISM(n,e,f) on large or hard problems, in which no preconditioning is
used and the subspace is chosen from 10 extreme CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 11 2 6 3 1.50 0.25 0.00D+00
BDQRTIC 1000 63 10 46 56 5.20 1.89 3.98D+03
BROWNAL 100 5 2 3 3 1.50 0.04 2.45D-08
BRYBND 1000 106 9 81 58 6.33 3.57 1.01D-12
CRAGGLVY 1000 109 12 91 113 7.58 4.42 3.36D+02
DIXMAANA 1500 24 7 15 7 1.00 1.08 1.00D+00
DIXON3DQ 1000 7 4 4 1748 9.00 4.03 1.25D-11
DQDRTIC 1000 10 5 5 12 2.40 0.24 1.91D-14
DQRTIC 1000 188 8 145 21 2.63 1.18 9.10D-09
EDENSCH 1000 65 7 44 25 3.57 1.76 6.00D+03
EIGENALS 110 108 10 70 102 8.40 1.28 1.08D-10
ENGVAL1 1000 52 7 34 22 3.14 1.19 1.11D+03
FLETCHCR 1000 12762 1075 10268 13810 9.93 314.35 8.11D-14
FMINSURF 1024 226 12 107 2140 10.00 20.82 1.00D+00
FREUROTH 1000 223 9 68 45 4.78 4.44 1.21D+05
GENROSE 1000 6642 431 4689 7088 9.90 150.00 1.00D+00
LIARWHD 1000 29 3 24 4 1.33 0.58 1.46D-14
MANCINO 100 68 12 37 17 1.42 67.98 1.34D-18
MOREBV 1000 4 3 3 519 10.00 1.99 1.37D-09
NCB20B 1000 284 18 131 1135 9.78 119.17 1.68D+03
NONDIA 1000 14 3 10 4 1.33 0.38 1.48D-15
NONDQUAR 1000 390 39 303 1636 8.62 7.79 2.67D-06
PENALTY1 1000 72 3 58 4 1.33 0.85 9.69D-03
POWELLSG 1000 41 3 37 9 3.00 0.36 4.92D-09
POWER 1000 105 10 80 150 7.20 1.20 1.43D-10
QUARTC 1000 188 8 145 21 2.63 1.19 9.10D-09
SINQUAD 1000 171 11 129 25 2.27 4.47 9.92D-07
SROSENBR 1000 16 2 12 3 1.50 0.17 2.45D-16
TOINTGSS 1000 7 1 4 1 1.00 0.22 1.00D+01
TQUARTIC 1000 27 2 19 3 1.50 0.35 4.05D-15
TRIDIA 1000 17 10 10 644 9.80 1.67 5.18D-15
VARDIM 1000 56 3 48 3 1.00 0.41 3.77D-23
VAREIGVL 1000 66 9 57 161 6.89 4.09 1.50D-10
WOODS 1000 75 5 42 14 2.80 0.83 9.56D-15

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 13: Results for ISM(p,e,f) on large or hard problems, in which preconditioning is used
and the subspace is chosen from 10 extreme CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 23 4 17 5 1.25 0.67 0.00D+00
BDQRTIC 1000 62 7 40 7 1.00 1.57 3.98D+03
BROWNAL 100 122 12 107 140 7.08 3.82 6.64D-13
BRYBND 1000 159 11 97 26 2.36 4.58 7.78D-14
CRAGGLVY 1000 93 9 48 9 1.00 2.73 3.36D+02
DIXMAANA 1500 21 1 18 3 3.00 0.97 1.00D+00
DIXON3DQ 1000 3 1 1 1 1.00 0.05 0.00D+00
DQDRTIC 1000 3 1 1 1 1.00 0.09 1.24D-21
DQRTIC 1000 46 2 40 2 1.00 0.33 5.20D-08
EDENSCH 1000 73 6 37 6 1.00 1.73 6.00D+03
EIGENALS 110 213 13 118 58 4.46 2.24 1.25D-11
ENGVAL1 1000 32 5 21 5 1.00 0.82 1.11D+03
FLETCHCR 1000 12749 1212 10320 1212 1.00 265.25 4.00D-19
FMINSURF 1024 214 11 99 487 9.55 12.12 1.00D+00
FREUROTH 1000 113 6 40 15 2.50 2.55 1.21D+05
GENROSE 1000 6586 598 4955 985 1.65 135.23 1.00D+00
LIARWHD 1000 30 2 24 4 2.00 0.63 1.92D-14
MANCINO 100 111 13 46 14 1.08 97.85 3.03D-18
MOREBV 1000 2 1 1 1 1.00 0.08 7.33D-13
NCB20B 1000 117 15 78 520 6.67 62.12 1.68D+03
NONDIA 1000 116 7 84 17 2.43 2.83 9.90D-01
NONDQUAR 1000 86 11 73 18 1.64 1.00 2.18D-09
PENALTY1 1000 244 16 187 155 5.25 7.70 9.69D-03
POWELLSG 1000 92 14 71 16 1.14 0.95 6.14D-11
POWER 1000 61 4 51 4 1.00 1.38 3.44D-10
QUARTC 1000 46 2 40 2 1.00 0.34 5.20D-08
SINQUAD 1000 184 13 147 41 3.15 5.76 2.93D-10
SROSENBR 1000 36 7 26 7 1.00 0.50 6.14D-25
TOINTGSS 1000 3 1 1 1 1.00 0.14 1.00D+01
TQUARTIC 1000 21 2 18 3 1.50 0.36 2.01D-19
TRIDIA 1000 3 1 1 1 1.00 0.05 1.01D-25
VARDIM 1000 105 19 89 2842 7.21 23.54 4.61D-13
VAREIGVL 1000 84 10 61 269 7.60 8.84 3.95D-10
WOODS 1000 486 35 321 45 1.29 6.27 6.79D-16

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 14: Results for ISM(n,f,a) on large or hard problems, in which no preconditioning is
used and the subspace dimension is chosen automatically from the first CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 11 2 6 3 2.00 0.25 0.00D+00
BDQRTIC 1000 52 11 40 62 2.18 1.69 3.98D+03
BROWNAL 100 5 2 3 3 2.00 0.04 2.45D-08
BRYBND 1000 55 10 37 74 2.40 2.27 8.21D-14
CRAGGLVY 1000 64 12 52 122 3.17 2.85 3.36D+02
DIXMAANA 1500 22 7 14 7 2.00 1.00 1.00D+00
DIXON3DQ 1000 7 4 4 1748 23.00 3.98 1.25D-11
DQDRTIC 1000 10 5 5 12 2.40 0.24 1.91D-14
DQRTIC 1000 58 9 45 18 2.00 0.38 1.75D-08
EDENSCH 1000 60 8 33 29 2.50 1.47 6.00D+03
EIGENALS 110 96 15 74 138 3.87 1.37 1.23D-11
ENGVAL1 1000 33 8 27 23 2.25 0.91 1.11D+03
FLETCHCR 1000 7720 1258 6300 14645 2.04 194.48 1.07D-12
FMINSURF 1024 190 11 106 2346 12.09 23.10 1.00D+00
FREUROTH 1000 59 9 32 25 2.44 1.75 1.21D+05
GENROSE 1000 5170 497 3674 7780 4.91 128.63 1.00D+00
LIARWHD 1000 25 5 19 8 2.00 0.54 7.19D-14
MANCINO 100 31 11 20 13 2.00 39.91 1.01D-16
MOREBV 1000 4 3 3 519 11.00 2.13 1.37D-09
NCB20B 1000 147 21 89 1095 2.71 103.56 1.68D+03
NONDIA 1000 13 3 10 4 2.00 0.37 1.48D-15
NONDQUAR 1000 280 47 231 2491 2.28 8.75 9.81D-07
PENALTY1 1000 79 14 58 19 2.00 1.03 9.69D-03
POWELLSG 1000 58 11 49 32 2.27 0.56 5.24D-11
POWER 1000 94 10 72 140 5.20 1.13 6.64D-10
QUARTC 1000 58 9 45 18 2.00 0.39 1.75D-08
SINQUAD 1000 186 34 139 67 2.21 5.91 2.02D-06
SROSENBR 1000 16 5 13 7 2.00 0.21 1.88D-15
TOINTGSS 1000 7 1 4 1 2.00 0.23 1.00D+01
TQUARTIC 1000 44 9 36 13 2.00 0.69 3.27D-16
TRIDIA 1000 17 10 10 591 9.70 1.51 7.14D-14
VARDIM 1000 58 9 40 9 2.00 0.40 1.14D-19
VAREIGVL 1000 52 9 44 162 3.78 3.66 1.77D-10
WOODS 1000 37 7 29 17 2.57 0.60 2.76D-11

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 15: Results for ISM(p,f,a) on large or hard problems, in which preconditioning is used
and the subspace dimension is chosen automatically from the first CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 22 4 15 5 2.00 0.63 7.22D-14
BDQRTIC 1000 38 7 29 8 2.00 1.27 3.98D+03
BROWNAL 100 55 10 46 126 2.80 3.08 1.75D-11
BRYBND 1000 61 10 36 25 2.40 2.33 6.05D-14
CRAGGLVY 1000 54 10 42 10 2.00 2.06 3.36D+02
DIXMAANA 1500 20 6 15 8 2.17 1.23 1.00D+00
DIXON3DQ 1000 3 1 1 1 2.00 0.05 0.00D+00
DQDRTIC 1000 3 1 1 1 2.00 0.09 1.24D-21
DQRTIC 1000 48 8 40 8 2.00 0.41 8.23D-09
EDENSCH 1000 33 6 26 6 2.00 1.09 6.00D+03
EIGENALS 110 122 16 79 55 2.56 1.62 4.21D-11
ENGVAL1 1000 26 5 17 5 2.00 0.70 1.11D+03
FLETCHCR 1000 7053 1246 6220 1246 2.00 161.54 3.32D-16
FMINSURF 1024 199 11 77 540 5.91 11.94 1.00D+00
FREUROTH 1000 65 7 29 8 2.00 1.68 1.21D+05
GENROSE 1000 3682 593 2950 957 2.00 81.75 1.00D+00
LIARWHD 1000 124 15 65 31 2.07 2.26 1.11D+01
MANCINO 100 53 14 32 16 2.00 62.23 1.09D-18
MOREBV 1000 2 1 1 1 2.00 0.08 7.33D-13
NCB20B 1000 94 15 69 534 5.20 59.05 1.68D+03
NONDIA 1000 142 19 99 44 2.53 3.69 9.90D-01
NONDQUAR 1000 124 18 102 57 2.39 1.53 1.07D-07
PENALTY1 1000 77 13 60 60 2.08 4.30 9.69D-03
POWELLSG 1000 73 14 63 16 2.07 0.81 1.17D-09
POWER 1000 48 8 40 8 2.00 2.22 1.05D-11
QUARTC 1000 48 8 40 8 2.00 0.41 8.23D-09
SINQUAD 1000 283 56 215 177 2.29 11.50 6.90D-08
SROSENBR 1000 30 7 23 7 2.00 0.44 9.58D-26
TOINTGSS 1000 3 1 1 1 2.00 0.14 1.00D+01
TQUARTIC 1000 26 5 20 8 2.00 0.49 3.50D-16
TRIDIA 1000 3 1 1 1 2.00 0.05 1.01D-25
VARDIM 1000 78 22 57 2887 2.27 24.91 5.87D-13
VAREIGVL 1000 47 9 40 147 3.67 6.06 1.57D-10
WOODS 1000 143 23 105 25 2.00 2.19 1.21D-26

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 16: Results for ISM(n,e,a) on large or hard problems, in which no preconditioning is
used and the subspace dimension is chosen automatically from extreme CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 11 2 6 3 2.00 0.25 0.00D+00
BDQRTIC 1000 52 11 40 62 2.18 1.69 3.98D+03
BROWNAL 100 5 2 3 3 2.00 0.04 2.45D-08
BRYBND 1000 53 10 36 72 2.40 2.21 9.91D-14
CRAGGLVY 1000 66 12 55 126 3.58 3.00 3.36D+02
DIXMAANA 1500 22 7 14 7 2.00 1.00 1.00D+00
DIXON3DQ 1000 7 4 4 1748 23.00 4.19 1.25D-11
DQDRTIC 1000 10 5 5 12 2.40 0.24 1.91D-14
DQRTIC 1000 58 9 45 18 2.00 0.38 1.75D-08
EDENSCH 1000 60 8 33 29 2.50 1.47 6.00D+03
EIGENALS 110 94 17 73 127 3.47 1.35 5.34D-11
ENGVAL1 1000 33 8 27 23 2.25 0.93 1.11D+03
FLETCHCR 1000 7722 1262 6300 14691 2.03 195.36 3.98D-15
FMINSURF 1024 216 12 100 2259 8.33 22.14 1.00D+00
FREUROTH 1000 80 9 32 28 2.56 1.92 1.21D+05
GENROSE 1000 5445 475 3895 7394 5.71 126.73 1.00D+00
LIARWHD 1000 25 5 19 8 2.00 0.49 7.19D-14
MANCINO 100 31 11 20 13 2.00 38.06 1.01D-16
MOREBV 1000 4 3 3 519 11.00 1.97 1.37D-09
NCB20B 1000 159 21 95 1139 3.62 105.14 1.68D+03
NONDIA 1000 13 3 10 4 2.00 0.35 1.48D-15
NONDQUAR 1000 341 53 257 3507 2.42 11.35 1.64D-06
PENALTY1 1000 79 14 58 19 2.00 0.96 9.69D-03
POWELLSG 1000 58 11 49 32 2.27 0.52 5.24D-11
POWER 1000 94 10 72 140 5.20 1.06 6.64D-10
QUARTC 1000 58 9 45 18 2.00 0.39 1.75D-08
SINQUAD 1000 208 41 156 88 2.20 6.43 1.71D-07
SROSENBR 1000 16 5 13 7 2.00 0.19 1.88D-15
TOINTGSS 1000 7 1 4 1 2.00 0.21 1.00D+01
TQUARTIC 1000 44 9 36 13 2.00 0.65 3.27D-16
TRIDIA 1000 17 10 10 591 9.40 1.57 8.20D-14
VARDIM 1000 58 9 40 9 2.00 0.38 1.14D-19
VAREIGVL 1000 54 10 46 228 4.40 4.18 2.07D-11
WOODS 1000 37 7 29 17 2.57 0.54 2.76D-11

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subspace dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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Table 17: Results for ISM(p,e,a) on large or hard problems, in which preconditioning is
used and the subspace dimension is chosen automatically from extreme CG directions.

problem n #f #min #its #cg s(k) time f

ARWHEAD 1000 22 4 15 5 2.00 0.59 7.22D-14
BDQRTIC 1000 38 7 29 8 2.00 1.17 3.98D+03
BROWNAL 100 56 11 48 140 3.27 3.28 3.25D-13
BRYBND 1000 66 11 40 26 2.27 2.58 2.06D-14
CRAGGLVY 1000 54 10 42 10 2.00 2.04 3.36D+02
DIXMAANA 1500 20 6 15 8 2.17 1.20 1.00D+00
DIXON3DQ 1000 3 1 1 1 2.00 0.05 0.00D+00
DQDRTIC 1000 3 1 1 1 2.00 0.09 1.24D-21
DQRTIC 1000 48 8 40 8 2.00 0.42 8.23D-09
EDENSCH 1000 33 6 26 6 2.00 1.08 6.00D+03
EIGENALS 110 112 16 70 56 2.44 1.53 2.50D-13
ENGVAL1 1000 26 5 17 5 2.00 0.70 1.11D+03
FLETCHCR 1000 7053 1246 6220 1246 2.00 162.80 3.32D-16
FMINSURF 1024 190 13 86 549 6.54 12.77 1.00D+00
FREUROTH 1000 65 7 29 8 2.00 1.67 1.21D+05
GENROSE 1000 3682 593 2950 957 2.00 81.89 1.00D+00
LIARWHD 1000 124 15 65 31 2.07 2.24 1.11D+01
MANCINO 100 53 14 32 16 2.00 64.59 1.09D-18
MOREBV 1000 2 1 1 1 2.00 0.08 7.33D-13
NCB20B 1000 101 15 70 505 4.00 57.74 1.68D+03
NONDIA 1000 142 19 99 44 2.53 3.66 9.90D-01
NONDQUAR 1000 122 17 96 46 2.47 1.46 9.13D-08
PENALTY1 1000 80 14 64 62 2.07 4.60 9.69D-03
POWELLSG 1000 73 14 63 16 2.07 0.80 1.17D-09
POWER 1000 48 8 40 8 2.00 2.24 1.05D-11
QUARTC 1000 48 8 40 8 2.00 0.41 8.23D-09
SINQUAD 1000 440 93 301 281 2.15 17.97 1.11D-08
SROSENBR 1000 30 7 23 7 2.00 0.44 9.58D-26
TOINTGSS 1000 3 1 1 1 2.00 0.14 1.00D+01
TQUARTIC 1000 26 5 20 8 2.00 0.49 3.50D-16
TRIDIA 1000 3 1 1 1 2.00 0.05 1.01D-25
VARDIM 1000 82 22 59 2804 2.32 24.92 1.24D-12
VAREIGVL 1000 49 9 42 134 3.67 6.03 3.26D-10
WOODS 1000 143 23 105 25 2.00 2.20 1.21D-26

Key: n = number of variables, #f = number of function evaluations, #min = number of
minimizations, #its = total number of iterations, #cg = total number of CG iterations,
s(k) = average subsparce dimension, time = total CPU time in seconds, f = smallest

function value obtained.
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