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This paper introduces a global approach to the semi-infinite programming problem that is based 
upon a generalisation of the g~ exact penalty function. The advantages are that the ensuing penalty 
function is exact and the penalties include all violations. The merit function requires integrals 
for the penalties, which provides a consistent model for the algorithm. The discretization is a 
result of the approximate quadrature rather than an a priori aspect of the model. 
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Introduction 

Recent ly  there has been  cons ide rab le  interest  in so-cal led semi-infini te  p rogram-  

ming p r o b l e m s - - t h e  op t imiza t ion  o f  an objec t ive  funct ion in finitely many  var iables  

over  a feas ible  region def ined  by an infinite number  of  constraints .  To date,  much 

of  the interest  has been  conf ined to theore t ica l  results  with, somet imes ,  suggest ions 

o f  imp lemen tab l e  a lgor i thms  (see, for  example ,  the conference  p roceed ings  edi ted  

by Het t ich  (1979) and Fiacco  and Kor t anek  (1983)). The major i ty  of  p r o p o s e d  

a lgor i thms have been l o c a l - - t h a t  is, convergence  to a local so lu t ion  o f  the semi- 

infinite p r o g r a m m i n g  p r o b l e m  can be gua ran teed  p rov ided  a "suff ic ient ly"  good  

initial es t imate  of  the so lu t ion  is given. 

To the best  of  our  knowledge ,  the only global  a lgor i thms for the p r o b l e m - - t h o s e  

a lgor i thms which guaran tee  convergence  to a s ta t ionary  poin t  of  the p rob lem from 

an a rb i t ra ry  init ial  e s t i m a t e - - h a v e  been  those  p roposed  by C o o p e  and  Watson  
(1985), Gf re re r  et al. (1983), and  Watson  (1981, 1983). 

An essential  ingred ien t  in the cons t ruc t ion  o f  g lobal  a lgor i thms for non l inear  

p r o g r a m m i n g  p rob lems  is the use o f  a meri t  funct ion  agains t  which progress  towards  

a solut ion may be measured .  Such meri t  funct ions  have a twofo ld  purpose ;  they 

ensure that  any  sequence  o f  i terates which decrease  the meri t  funct ion sufficiently 
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will converge to a stationary point, and they offer guidance as to how such successive 
iterates should be chosen. 

In this paper we describe an exact penalty function for semi-infinite programming. 
This function is a generalisation of the d~ exact penalty function for nonlinear 
programming (see, e.g. Corm and Pietrzykowski (1977)) and may be used as a merit 
function for semi-infinite programming methods. The only other exact penalty 
function suggested to date, that of  Watson (1981), may also be considered as such 
a generalization but, in our opinion, it is more closely related to the E~ exact penalty 
function (see, e.g. Bertsekas (1982)). 

In Section 2, we show that our proposed penalty function is exact under rather 
strong (convexity) assumptions. In Section 3, by restricting our attention to a certain 
class of commonly occurring semi-infinite programming problems, we are able to 

weaken considerably the assumptions of Section 2. Section 4 contains our con- 
clusions and future research. 

1. The problem and the penalty function 

We consider the following problem: Let T~ c R p, be a compact set and let ~b~(x, t) 
be a function whose domain is W ' x  T~ and whose range is R. Furthermore let 

f : W ' ~  be a given objective function. Finally let f and 6i be a continuously 
ditierentiable throughout their domains of  definition. Then we shall be interested 

in the following semi-infinite programming problem. 

SIP:minimize f (x )  subject to ck~(x,t)>~O, Vtc  T~, i = l , . . . , m .  

We make the following definitions and assumptions. Let x* he a local minimizer 

of SIP and let I~={tc T~l~i(x*, t)=O}. 

Assumption 1. The gradients Vx~b~(x*, t) for all t ~ li and all 1 ~ i<~ m are linearly 

independent. 

Under Assumption 1, the sets I~ are necessarily finite. Hence we may write 
L = {t* c T~ ] ~b~(x*, t * ) =  0, 1 <~ k ~< k~}. It then follows that necessary conditions for 
x* to be a local minimizer of  SIP (see e.g. Borwein (1983)) are that there exist finite 

Langrange multipliers A~k I>-0 such that 

i ~ l  k = l  

Assumption 2. For any x, there is a (possibly empty) finite set of  sets ~Qij(x) such that 

(i) [2q(x)c Ti, l<~j<~si=si(x)< oo, 
(ii) ch,(x, t)<~O, Vt~[2~j and ~b~(x, t ) > 0 ,  Vt~  T~\O~21 g2i~(x), 

(iii) [2~i(x) ~ S2~k(X) = {4~} i f j  ~ k, and 
(iv) $2o(x ) is connected and non-trivial, i.e., ~a , ,~ )dr>0 .  
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We note that almost all functions ~bi(x, t) will satisfy this assumption. 

Assumption 3. For any x, and any index i, there is no open region Ui strictly contained 

in T, such that ~b~(x, t ) =  0 for all t e Ui. 

The purpose of Assumption 3 is to guarantee that the penalty function which we 
shall construct is everywhere continuous. We note that any analytic function satisfies 
Assumption 3. 

The aim of the penalty function approach to any nonlinear programming problem 

is to construct a function, the penalty function, which has the following (penalty 
function) property: 

PFP: any local solution to the nonlinear programming problem 
(in our case SIP) is a local minimizer of the penalty function. 

The idea is then to minimize the "easy" penalty function rather than solve the 
"hard"  nonlinear programming problem. 

An early attempt to define a penalty function for semi-infinite programming is 

that of  Pietrzykowski (1970) (see also Germeyer  (1969) and Eremin and Mazurov 
(1967)). Pietrzykowski defines the function 

p,(x ,  I~) = i x f ( x ) -  Y~ d~i(x, t) d t  (1.2) 
i = l  j = l  OIx) 

where /x is a positive scalar and shows that p, (x ,  IS) satisfies PFP in the limit as 
p. ~ 0. Unfortunately simple examples may be constructed to show that p~(x, ~x) is 
not an exact penalty function. That is, it is necessary that Ix -* 0 for the PFP to hold. 
It is well known that having to let the penalty parameter /x  ~ 0 may be undesirable 
for any practical method for solving a nonlinear program based upon penalty 

function minimization (see for example Gill, Murray and Wright (1981)). 
The trouble with Pietrzykowski's penalty function appears to be that the penalty 

for infeasibility is too weak. This leads us to consider the following penalty function: 

i =  I j =  1 l'~j(~:) , j l x l  

where/x is a positive scalar. 
It is possible to show that this function is an exact penalty function. That is, there 

is a threshold value ~ o > 0  such that PFP holds for all 0<p .~<#o . However, this 
penalty function has the unfortunate drawback of being discontinuous--this 
difficulty can be overcome by suitably redefining the SIP but this leads to implementa- 
tional difficulties we prefer to avoid. 

In this paper  we consider the following alternative to (1.2); 

(f.)) p(x ,  I~) = I~f(x)  - ~ _ _ ch,(x, t) dt  d t  , (1.3) 
i=1  . j = t  2jr (.x-) 1 ii(x) 

where ~ is a positive scalar. 
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Such a funct ion is easy to motivate as it is just the limit o f  an {t penal ty function 

for nonl inear  p rogramming  as the number  of  constraints increases to infinity. 

Furthermore,  under  Assumpt ion  3, it is clearly cont inuous and thus from 

Pietrzykowski 's  result it satisfies PFP in the limit as /x  tends to zero. 
We now intend to show that (1.3) is actually an exact penalty function. We shall 

find it convenient  to define 

Ao(x ) = f dt, (1.4a) 
d -Qir(x ) 

qS!j(x) = f &i(x, t) dt  (1.4b) 
d Fl~j(x) 

and thus we may write (1.3) as 

) p ( x ,  ~ )  = M ( x )  - v 4~i~(x ) a ~ ( x )  . 
i = 1 j = 1 j 1 

2. The convex-concave case 

We start by showing that under  certain assumptions any solution to SIP is also 

a minimizer of  p(x,  ~).  In this section, we assume 

Assumption 4. f ( x )  is convex and &i(x, t) is concave in x for 1 ~< i<~ m. 

Assumption 5. For  all 1 ~ i ~< m and 1 ~<.j ~ s~, there is a constant  fl > 0 such that 

si s 

6bo(x)~Bd~i(x , t) Y. Aij(x) (2.1) 
j = l  ) = 1  

s 
for any t ~ _ ) / ~  Oii(x) and for all x ~ W ' .  

We shall subsequently show that Assumpt ion 5 is automatical ly satisfied if T~ 

is convex and 4~i(x, t) is convex in t over T~ for 1 <~ i ~  < m. We note that, under 

Assumpt ion 4, any local solution to SIP is a global solution. We now prove 

Theorem 2.1. Suppose Assumptions 1-5 hold. Then x* is a global minimizer of p(x, Ix) 
for all t z such that 0 ~  i ~ ~ i ~ * .for some I~ * > O. 

Proof. Let x be any feasible point for SIP. Then p(x,  t z )= lx f ( x )>~l~ f (x* )=  
p(x*,  tz). Thus x* is a global minimizer of  p(x,  I~) over all feasible points x. 

Conversely,  let x be any infeasible point for SIP. Then, Assumption 4, elementary 
properties o f  differentiable convex functions (see for example Rockafel lar  (1970)) 
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and (1.1) give 

rn 

f (x)- f (x*)  >-v.f(x*)~(x-x *) = 2 ~ A,~vxr tg)~(x-x*) 
i = 1  k = l  

nl  k 

> Z 2 aMC,(x, t~)-r t~7) 
i = I  k = l  

m k i 

= Y. ~ h,k~i(X,t*), whereaik~>O. 
i = l  k = l  

Consider t*. Either r t*) ~< 0, in which case t* c g2u(x) for some index j, or 
&~(x, t*) > 0. Hence 

k I tH S 

f ( x ) - f ( x * )  >1 g a,kda,(x, t~)= Z 2 Z &ke,(X, t~). (2.2) 
i ~ l  k = l  i = I j = l  t~r 

Let n~ be the number of t* contained in U/=~ ~2u(x). 
If n~ = 0 there is no contribution from ~2~ (Y.,,~,,~,.~AMb~(x, t*))--thus, in what 

follows, there is no loss of generality in assuming n~/> 1. From Assumption 1, n~ ~ n. 
If tg ~ U)~2~ Do(x), (2.1) gives 

s i s 

r ~u(x)<-Br t*) E gu(x), for any t*r  0 [2u(x). 
j = 1 i = t j = l 

Hence 

q~u(x) <~- 2 2 &,(x, t*) ~2 Au(x ). (2.3) 
j = l  n i  I = 1  t , ~ 2 i # x )  j = l  " 

Combining (2.2) and (2.3), 

( /, ) o(x,~)-p(x*.~)=~(f(x)-f(x*))-,E ~, Co(x) s %(x) 
= J = l  J l 

Hence, provided 

#Aik - ~ < 0  
r t  i 

m s i m 5 f~ 
~>~ z 2 ~A,kr162163 Z Z --~r 

i = I  j = l  t~,~,z$') i l ix) i = 1  j = l  t ~ - g l l i ( x )  gl i  

=2  2 2 .,lik- r 
i = l j = l  t ~ c ~ f l i i ( x )  

for all indices i such that n~/> 1, 

p(x, tx ) >~ p(x*, tx ). 

If Aik = 0, (2.4) is trivially satisfied. Otherwise, if 

/x ~< fl /[(max ni)(max ,Lk)], 
i ik 

(2.47 

(2.57 
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(2.4) is satisfied. Specifically, ifp.* = ~/[n max (A,k)], (2.4) is satisfied for all 0 ~  < ix <~ 

ix* and ix*> 0. Thus p(x, ix)>-p(x*, ix) for all x provided (2.5) is satisfied which 
proves the theorem. [ ]  

As we have ment ioned,  Assumption 5 is satisfied if T~ is convex, and if ~b~(x, t) 

is convex for all t E Ti for 1 <~ i <~ m. To show this we need 

Lemma 2.2 Suppose g2 is a closed bounded convex non-trivial subset of  NP and that 
h(t) is a non-negative concave function in g2. Then 

In  h(t) dt >~ /3pl, hl[~, f~ at (2.6) 

where Ilhll~= max,~a h(t) and/3p =pP/ (p+ 1) p+~. 

Proof. See Appendix  1. []  

Now identify h(t) with -da,(x, t). As ~b~(x, t) is convex in t, h(t) is concave. 

Moreover ,  on identifying g2 with Y2,j(x), .qii(x) is clearly closed, bounded  and 

convex as ~bi(x, t) is convex and FLj(x) c T, c_ R p, with T, convex and compact .  From 

the lemma, we thus obtain 

fn  chi(x't) dt<~/3{ min chi(x,t)} f dt<~flcbi(x,t) f a  dt 
l] t ~ .Oii (x)  [l,j 0 

for any t c ~ ( x ) ,  where /3  = pP/(p + 1)P+~ > 0 and p = rain ~<_i_<m pi. 

Furthermore,  a simplification occurs when the ~b,(x, t) are convex in t as then 

s~ = 1, 0<~ n ~  1, and the penalty function becomes 

p(x. .)= ixf(x)- ~, { f~,,,~ r t) dt/ fa,~ dt } (2.7) 

where O~(x) = {t c T~ ] 0~(x, t) <- 0}-- in other words j is fixed at one. 

We thus have 

Corollary 2.3. Suppose Assumptions 1-4 are satisfied and dpi(x, t) is convex in t over 
the convex region T~, 1 <~ i <~ m. Then x* is a global minimizer of (2.7) for all ix sueh 
that 

O<~<~ix*=[pP/(p+l)r+~][1/(max max (Aik))], 

where p = mif i~ i~ . ,  Pi. 

Theorem 2.1 shows that, under  the stated assumptions,  any solution to SIP is also 

a global minimizer of  the penalty function p(x, tz). We next give a partial converse 
to this result. 
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Theorem 2.4 (partial converse to Theorem 2.1). Suppose Assumptions 1-5 hoM and 
.furthermore that x(ix) is the global minimizer of p(x, IX). Then, if IX is sufficiently 
small, x(ix ) = x*. 

Proof. From Assumption 5, 

- @o(x) ~ Ao(x) >! -r162 t) >~ 0 for all t e $2~(x). 
j = l  j = l  j = l  

{2i(x, t~) i f t ~ c  0 ~Oo(x), 
As min(0, &i(x, t*)) = j=l 

otherwise, 

- 2 qbij(x) Ai~(x)>~-[3min(O,&i(x,t*)) forl~<k<~ki. 
j = |  1 

Hence, summing over k, 

- ~ _ qbo(x ) A/j(x)~> ~2 rain(0, 05,(x, t*)) 
j = l  

ki 
~>-/3 Z min(0, qSi(x, t*)) 

nk=l 

By definition and (2.8), 

P(x ' t l " )= ix f ( x ) -Z (~ f ] ) i i ( x )L  s i = l  j = l  ' -=12 A / j ( x ) )  

>-ixf(x)-  ~ min 0, d a~(x,t*) ~pc(x ,  ix). 
"= k=l 

Thus pL(x, Ix) is the 11 e x a c t  penalty function associated with the nonlinear program- 
ming problem 

minimizef(x)  subjectto fi--~i(x,t*)>~O, i = l , . . . , m ,  k = l  . . . .  ,ki. 
xel~ n 

This problem has the global solution x* and from Pietrzykowski's Theorem 2 (1969), 
x* is also a global solution of pL(x,/~) for ~ sufficiently small. Hence 

Ixf(x*) = [L(X*, Ix) <~ pc(X, Ix) ~ p(x, Ix) 

for all x and for/z sufficiently small. Hence, in particular, 

I~f(x*) <~ p(x(Ix ), Ix). (2.9) 

But x(Ix) is the global minimizer of p(x, Ix) and thus 

p(x(Ix 3, Ix) ~< p(x*, Ix) = Ixf(x*). (2.10) 
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Combining (2.9) and (2.10) we obtain 

p(x*,  It) = I t f (x*)  = p (x ( i t ) ,  It), fo r /z  sufficiently small. 

As x(/z) is the global minimizer of  p(x, It), x ( i t )  =x*.  [] 

The missing ingredient to a full converse to Theorem 3.1 is the need to assume 

that x( i t )  is the global minimizer of p(x,  It). Ideally we should just like to assume 
x (~ )  is a local minimizer of  p(x,  It) and hope that the conditions on f and 4~ are 
sufficient to imply that any local minimizer of p(x,  p~) is global. Indeed, if p(x,  It) 
were convex, the result would be immediate. However, to date, we have been unable 
to demonstrate the convexity of p(x, ~)  or produce a counterexample. 

Although there is considerable theoretical interest in convex-concave problems, 
we are primarily interested in solving more general problems. Below we consider 
how this may be achieved. 

3. The general case 

We now dispense with the strong Assumptions 4 and 5. We have already remarked 
that Assumption 2 is quite weak. Assumption 1 is essentially the condition that 
makes the semi-infinite programming problem tractable since it implies that one is 
able to replace the infinite number  of constraints by a finite number of significant 
constraints. As one would expect, results concerning global minimizers in Section 
2 are now replaced by local minimizers. 

Before proving the main theorem of this section we require three additional 

assumptions and a lemma. 

Assumption 6. Recall that T, ~ EP,. We assume that T~ is described by a finite number 

of continuously differentiable constraints. 

Assumption 7. There is a neighbourhood S(x*)  of x* such that there are differentiable 
functions t~k ( x ) c T~, 1 <~ i <~ m, 1 <~ k <~ k~ with the following properties: 

(i) t~k(X) are strong local minimizers of  d,~(x, t) on 7-,., for any given x c  S(x*), 
that satisfy the usual second-order sufficiency and strict complementary slackness 
conditions (see for example Gill, Murray and Wright (1981, p. 82)), 

(ii) t ik(X*)= t~k 

(iii) If  t* lies on a certain (possibly null) set of  the constraints defining the 
boundary of T~, hk(X) lies on the same set for all x E  S(x*) ,  

(iv) There is a positive number e such that any other stationary point t (x)  of 
4,~(x, t) satisfies I~b~(x, t(x))l > e for all x in S(x*) .  

Note: It is possible to relax part (iii) of this assumption. However the presentation 

of the following results is significantly complicated by such a relaxation. 
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This assumption is similar to those made by Coope and Watson (1985) and 
Hettich and Van Honstede (1979). It is relatively weak in that it will be satisfied by 
almost all constraint functions. Moreover, the assumption is entirely local in 

character. 

Assumption 8. We shall assume that the Lagrange multipliers Mk at any local solution 
of SIP are strictly positive. 

Remark. This assumption is commonly made in nonlinear programming, although 
its motivation appears to be practical rather than theoretical, since in active set 
strategies it is assumed that there exists some neighbourhood of a local solution for 
which the multiplier's sign can be used to indicate inequality constraint activity. 

Under the conditions given in Assumption 7, we define functions qJik(X), 1 <<- i <~ m, 

1 ~< k ~< ki, such that 

0,k(x) = 6i(x,  t,k(x)). 

Before proving theorem 3.3, we need a result concerning the derivative of the ~b~k(X). 

Lemma 3.1. Suppose t ( x ) c  Tc_R  p' is a local minimizer o f  ~b(x, t) for  f ixed x. Then, 
provided assumptions 6 and 7 hold, 

p, O&(x, 7; t (Xl )vx t~(x)=O.  
k 1 c3tk 

Proof. Suppose T is described by the constraints q(t) /> 0 and that t (x)  lies on the 
first l of  these curves, i.e., c j ( t ( x ) ) = 0  for 1 <~j~< l, where we allow the possibility l 
is zero. 

Now Kuhn-Tucker  theory implies the existence of non-negative numbers Aj(x) 
such that 

O&(x, t (x) )  , , a c j ( t (x ) )  k =  ! ,2 ,  ,p,, (3.1) 
Otk j= l  A jaX)  ?)tk 

(or zero, in the case where l is zero). As we have the identity c j ( t ( x ) )=  0, we may 
differentiate to obtain 

p, ocj(t(x)) 
~] Vtk(x) =0.  (3.2) 

k-1 Otk 

Multiplying (3.1) by Vxtk(x) and summing over 1 <~ k<~pi, we obtain 

P, 04~(x, P, 5~ t ( x ) ) v , . t k ( x ) =  )~ V,.tk(x) ~ Aj(x) acj(t(x))  
k--I Otk k - I  j= l  Otk 

Pi 
= ~ Aj(x) ~. OCj(t(X))Vxtk(X)=O, 

j = ~ k = ~ c3 t k 

using (3.2). [] 
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Corollary 3.2. Recalling ~,k(x) = <bs(x, t~k(x)), we have 

V,,b,(x, t)l . . . . .  (~!. 

that V &,k(x)  = 

P r o o f  

from Lemma 3.1. 

P, (J&i(x, tik(x)) 
Vx@,k(X)=V~O,(X, t)l ,~ ,x+ ~2 Vx(t~k(x)), 

t= i 0tl 

= V:,4,i(x, t)l ..... ~,-), 

[] 

Theorem 3.3. Under Assumptions 1, 2, 6, 7, 8, and the additional assumption that x* 
is a strong local minimizer of SIP with f and &i's twice continuously differentiable, 
there exists ix* > 0 such that .for all 0 < i-t <~ tz *, p(x, t.t ) has a local minimizer at x*. 

P r o o f .  Let us suppose the converse, namely that for each arbitrarily small positive 
/x, there exists an x(bt) ~ x*, where x0x) indicates a local minimizer of p(x,/x)  such 
that lim,~o~ x (~ )  = x*. The existence of a sequence x(tx) such that x(/z) is a local 
minimum of p(x, ix) and l i m ~ o  ~ x(/x) = x* is guaranteed by Pietrzykowski's result 

(Pietrzykowksi (1970)). 
Suppose in addition, x(p.) is feasible for the semi-infinite programming problem. 

Then we easily arrive at a contradiction as follows. Since x(/z) is a local minimizer 

of  p(x, it), 

p(x(~),~)~p(x*,~),  

for /z  sufficiently small, But, by the feasibility assumption, this is equivalent to 

f (x( tx  ) ) <~ f (x*) ,  

which, fo r / z  sufficiently small, contradicts the hypothesis that x* is a strong local 

minimizer o f f .  
It remains to consider the case where x(/x) is infeasible. 
Let g be any infeasible point within the neighbourhood S(x*) defined in Assump- 

tion 7. Now consider the functions Oik(x)=~b~(x, t~k(x)), defined for l<~i<-m, 
1 <~ k ~  n~. There are three possibilities for each such function, namely (i) $~k(2) <0 ,  

(ii) ~bik(2) = 0, and (iii) Oik(.f) > 0. Let the index set V~(x) for any point x e S(x*) 
be given as V~(x)= {k: O~k(x)<0}. We note that, as ~ is infeasible, there is at least 

one nonempty set VA2). Without loss of  generality we may assume that V~(2)= 
{k: 1 <~ k ~  < m~}. Then, it is straightforward to show that, as g e  S(x*), each index 
pair ik with 1 <~ k < m~ gives rise to non-zero functions C])~k(X) and a~k(x) (defined 
by (1.4)) in the sense that t~k is contained in g2~k(x) and is the only t~ (x )e  O~k(x). 
Finally it is clear that O,k(x) and zLk(x) are differentiable in some neighbourhood 

of :L 
Now define the function 

/.,,) 
fi(x,t~)=l.Lf(x)-- ~ O,.(x) ~ A,.(x) . 

i = 1  \ k = l  k I 
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Notice that  fi(-t  Ix) = P(~, IX) and that fi(x, Ix) is differentiable,  in a ne ighbourhood  
of  ~. 

Our  intention is to show that .~ cannot  be a local minimizer  of  p(x, lx) by 

construct ing a non-zero vector  1~ so that p( J? + t~, ix)< pC~, Ix). We shall achieve this 
by finding a suitable vector  h and a positive scalar 7" such that 

p(.~ + rh, ix) <~ fi(g + rh, Ix) + Mr  2 (3.3a) 

and 

fi( X + rh, # )  < fi(.r tx ) - ,n"c (3.3b) 

for  some positive scalars M and m. It then follows that 

p(.~ + rh, tz ) < fi( g, Ix) - mr+  Mr  2 = p( g, IX) - mr+ Mr2 <~ p( ~:, IX) 

for r sufficiently small. The vector  I~ can then be set to rh for small r and 

p ( g  +/~, IX) < p(X, IX). 
Observe that significant (i.e., O( rh ) )  differences between p ( ~ +  rh, Ix) and f i (~+  

rh, Ix) can only occur  if, for any i, V~(g+rh)  # V~(:~) and this can only happen  if 

one or more  of  the funct ions O~k(X), for which ~b~k(g)=O , attains a significantly 
negative value at .~ + rh. (We may  assume that  any O~k which is strictly positive or 
strictly negative at ~ will remain so for  small per turbat ions  ;~+rh.)  In order  to 
prevent  this, we choose h so that 

O~k(g+~h)= t)ik(-f,)+O(r 2) for all indices ik for which O~k(~)=O. 

(3.4) 

i = l  k~mi+l 

m(i <~ fi ( ~ + rh, ix ) - 
i = l  k = m i + l  

/ "  ) ~,k(g+~ 'h )  2 Aik (x+rh)  
/ k = m , + l  

~ik (X + rh )/ A,k (~ + rh ))  

using the inequali ty (a+b)/(c+d)<~ a/c+b/d, if a, b, c, d > 0 ,  

<~f i (g+rh ,  i x ) -  ~ ( ~ ~ k ( g + r h ) )  
/=1  \ k = m , + l  

<~ fi(~ + rh, IX)+ Mr", 

for some M i> O, using (3.4). 

Without  losing generali ty,  we suppose  that ~Jik(X)= 0 for m~ + 1 <~ k <~ n~. 

To see that this has the desired effect, we note that  (see for example  Apostol  (1974)) 

--r <~ --~',k(X) 

for any index k, follows f rom the mean value theorem for mult iple  integrals. Hence  

( ) p (g +rh ,  i x ) = l ~ f ( ~ + r h ) -  ~ ~ @,k(g+rh) A~k(g+rh) 
i = l  k = l  k I 
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Thus (3.3a) is established. 

We may ensure that 0;k(:~ + r h ) =  O(r 2) by picking h so that 

~ T x 0 i k ( ) c ) T h  = 0 m i + 1 <~ k <~ hi, 1 <~ i <~ m. (3.5) 

The existence of  a non-trivial solution to (3.5) is guaranteed by virtue o f  the fact 

that the number  o f  indices ik with mi + 1 ~< k ~< n, is at most n - 1 (since the number  

of  indices ik with 1 ~ k ~ k, is at most  n, using Assumpt ion 1, and at least one index 
lies in V~(.~) for some i) and hence the system of  equat ions (3.5) has a null-space 

o f  d imension one or greater. Thus it is possible to find h for which (3.3a) is satisfied. 

In order  to satisfy (3.3b) we use the remaining degrees of  f reedom given to h. 

Thus we choose h to be the projection of  the steepest descent direction for iS(x, ~*) 

at ~ into the subspace defined by (3.5). In fact, all we need to show is that such an 

h is a descent direction for/5(x, tz) at if, as (3.3b) then follows from Taylor 's  theorem. 

We now give a formal definition of  h. We first note that 

V&ik(x) = Vx~b,(x, t)l ..... ~), 

f rom Corol lary 3.2. 

Moreover ,  the Vxg'~k(X*), 1 ~< i~< m, 1 ~ k <~ n~, are linearly independent  and, 

provided x is within a suitable ne ighbourhood of  x*, V.~g%(x), 1 <~ i ~< m, 1 <~ k ~< ki 

are therefore linearly independent .  The set V~O~k(X), 1 ~< i<~ m, m~+ 1 ~ k ~  m~, is 

thus linearly independent .  Now,  let the columns of  the matrix Z ( x )  represent a 
Lipshitz cont inuous  basis (see for example Coleman and Sorensen (1984)) for the 
null-space of  the vector space spanned by {V~jk(x):  1 ~< i <~ m, m~ + 1 ~< k ~< n~}. 

We define the vectors h ( x ) = - 2 ( x ) 2 ( x ) ~ V , ~ ( x ,  ~) and h = h(2).  Clearly such 

an h satisfies (3.5). It remains to show that hVV,fi(~,/~) < 0; i.e. we require 

2(.~)TV,fi(.~, /*) # 0 (3.6) 

Let Y ( x )  = {x  e S(x*)14, ik (x)  ~ O, 1 <~ i ~ m, 1 <~ k <~ n,}. Y has a non-empty  interior, 
as follows directly from the linear independence Assumption 1. We shall show that 

lim Z(x )VVx f i ( x ,  ~ )  ~ O. 

x ~ Y ( x )  

It then follows that there is a ne ighbourhood  o f  x* contained in Y ( x )  for which 

2(;)Tv~*5(-L t*) # 0 for all .~ in this ne ighbourhood.  
Consider  

lim V , ~ ( X , l ~ ) = l . t V ~ f ( x * ) -  ~ lim V~ @ik(X) A~k(X) �9 
x~.x'* " " i=I ~ ' * \  " \ k = l  1 

xe Y(x )  

We show in Appendix  2 that 

x - ~  . ' ; *  k k " 
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where the C~k are constants, the O;k(x) are differentiable as x ~ x *  and satisfy 

@k(X*) = 0. Hence, it can be seen that 

where O(x*) lies in the span ofV~O~k(X*), 1 ~< k <~ m~, and where O(x*)  is independent 

of/~. Thus we may write 

lim Vx~(X, lZ) , V ~ f ( x * ) -  ~ ' '  = Z o~,kV,r 
x ~ x *  i = l  k = l  

for some coefficients tO~k, independent of #. 
Now suppose 

lim Z(x)TVx/5(X, ~)  =0.  
x ~ x *  

Then 

rn m~ m n~ 

~Vd(x*)-  Y v ,o,kV~0,~(x*)= X X v,~v~,k(x*) 
i = 1  k = l  i = 1  k = m i + l  

for some coefficients vik. But, from (1.1), 

m m 

~,vd'(x*)= Y E ~,~v~q,,~(x*) 
i = 1  k - - I  

and from the linear independence of V,qJ~k(x*), 

/.tACk=tOOk forl<~i<~rn, l~k~<m~.  

As not all the rn~ are zero, the positivity of  the A,k (Assumption 8) contradicts the 
non-dependence of OJ~k upon p.. 

Thus l imx.~. ;Z(x)TVxfi(x, ~ )  ~ O, (3.4) is true for all x sufficiently close to x* for 
which V~(x)= V,-(g). As there are only a finite number  of  different possibilities for 

V~(x), (3.4) is therefore true for all x sufficiently close to x*, (3.3b) is true and 
therefore there is a neighbourhood of x* for which an infeasible point ff cannot be 

a local minimizer of  p(x ,  tz). As x(~)  can be made as close to x* as we please, 
x(p.) cannot be infeasible for sufficiently small ~. [] 

4. Conclusions and future research 

In this paper  we have demonstrated the existence of a new exact penalty function 
for the semi-infinite programming problem. The function proposed is a generalisation 

of the exact l~ penalty function of nonlinear programming. In fact, the theoretical 
results are based essentially upon the results given in the case of  the l~ penalty 
function by Pietrzykowski (1969), complicated by the presence of an infinite number 
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of constraints. As such, the proofs are constructive and indeed, the authors are 
currently developing a globally convergent, second-order algorithm for semi-infinite 
programming based on these ideas. 

However, in order to indicate that the method is viable numerically, the following 
problems from Coope and Watson (1985) were all solved numerically using a 
prototype second order algorithm. The results were comparable to those of Coope 
and Watson. 

Example 1 

Minimize f ( x , y )  =-~x2+~x+y: -y  

subject to s i n t - x  2-2xyt>10, t~[0,2] ,  

with starting point [x ~ yO] = [1, 2], and optimal solution [x*, y*] = [0, 0.5]. 

Example 2 

Minimize f (x ,y )=~x2+y2+�89  

subjectto x t2+y2- (1 -x2 t2 )2 -y>~O,  t e l 0 , 1 ]  

with [x ~ yO] = [1,2] and [x*, y*] = [-0.75, -0.618034]. 

Example 3 

Minimize f (x ,  y, z )= x2 + y2 + z 2 

subjectto 2 s i n 4 t - x - y e ~ ' - e 2 ' > ~ O ,  t e l0 ,1 ] ,  

with [x ~ y0, z o] = [1, 1, 1] and Ix*, y*, z*] -- [-0.213313, -1.361450, 1.853547]. 

Example 4 

t~ 

Minimize f ( x ) =  Y xi / i  
"~" E ~ n i =  I 

n 

subjectto • x~t' t - t an t>~0 ,  t c [0 ,1 ] ,  
i - - I  

for n = 3, 6 and 8 with starting point x ~ 0. 

x* = [0.089096, 0.423052, 1.045260], 

x* = [0.0, 1.023260, -0.240604, 1.221679, - 1.388257, 0.941331 ], 

x* = [0.0, 1.002913, -0.053486, 0.709802, - 1.299414, 2.499344, -2.205328, 0.903576]. 
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Example 5 

3 

Minimize f ( x l ,  x2, x3) = Y, e x' 
i = 1  

1 
sub jec t to  x~+x2t+x3t2-1+t~---5>~O , t e [O ,  1], 

x ~ = [1, .5, 0], x* = [1.006607, -0.126904, 0.379703]. 
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Example 6 

Minimize f ( x ,  y)  = (x - 23, + 5y 2 - y 3  _ 13)2 + (x - 14y + y2 + y3 _ 29)2 

sub jec t to  e ' - x 2 - 2 y t 2 - e X + Y > ~ O ,  t ~ [ 0 , 1 ] ,  

(x o, yO) = (1,2)  and (x*, y*) = (0.719961, -1.450487).  

Example 7 

Minimize f ( x ,  y) = 1.21eX+e '', 

sub jec t to  eX+~'-t>~0, t o [ 0 , 1 ] ,  

[x o, yO] = [0.8, 0.9], [x*, y*] = ( - I n  1.1, In 1.l). 

The proofs  above explicitly determine a first order  descent  direction for the penal ty  
function. Future  research entails refining the algori thm, the details o f  the global 
convergence results and considerat ion of  both  convergence rates and numerical  

implementa t ion .  
As was already ment ioned  in Section 1, the p rob lem of  generalising the 11 penal ty  

funct ion of  nonl inear  p rog ramming  to the semi-infinite case is not entirely straightfor- 
ward. In part icular ,  as is true in the nonl inear  p rogramming  case, the penal ty  funct ion 
may  introduce undesi rable  local min ima and some of  the assumpt ions  required for 

the theoretical  results may  be unnecessar i ly  restrictive. 
Finally, we also wish to investigate an app roach  based upon  the penal ty  funct ion 

p~(x, l z ) : t z f ( x ) -  min { min ~bi(x, t)}. 

Appendix 1. Proof of Lemma 2.2 

As .O is closed and bounded ,  there is a point  z ~  at which h ( z ) =  [[h[l~:. The 
result is trivial if  ]lh [[,,= --- 0, so assume otherwise.  For any non-zero vector  p, there 
is a unique largest scalar a >i 0 such that  z + ap  ~ 0.O, the boundary  of  I2 (by convexity 

of  .(2). Let q = o~p be called a boundary-po in t ing  vector. 
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Now define the region 

12'(fl) = {t: t = z + y q V O < ~ y < ~ < l  

and all boundary  pointing vectors q}. 

As h ( z ) =  [Ihll~ and h( z+q)>~O for all q, 

h( t )  = h ( z +  yq) = h ( 1 -  y ) z +  y ( z +  q)/> ( l - y ) h ( z ) +  y h ( z + q )  

>I (1 - -v)h(z)/> (1 - / 3 ) h t z )  = (1 - /3) l l  h II_,-. 

Thus, for all t ~ 12'(/3), 

h( t )  ~> (1-/3)l lhl]~. .  

Hence 

We now 

f h(t)dt= f h(l)dt+ f 
s D'I~} .o-.f?'t/31 

~> (1 - f l ) ] /hl] : ,  f~ dt. 
l~/JI 

h( t )  dt>~ f h ( t )  d t  
~2'(t3) 

claim that 

fa.~t~ d t= /3P  f~, at" 

(as h/> O) 

(AI.1)  

(A1.2) 

For if we transform our  co-ordinate axes so that z becomes the origin and then 

consider any point  in 1"2'(/3) in terms of  spherical polar  co-ordinates (see, e.g., 

Edwards  (1922, p. 47)) 

t l = r c o s t o , , . . . ,  ( i = r s i n 6 ) , � 9  

tp-l = r sin 6)~ �9 - - sin top z cos top-b, 

6 = r s i n t o ~ , . . . . ,  s in6)p_2sintop_l.  

Then any point  on the boundary  of/-2 is at r ( 6 ) ~ , . . . ,  6)p ~) and any point  on the 

boundary  o f  12'(/3 is a t /3r( tol  . . . . .  Op _~). Hence 

dt  = " " rP t g (  6 ) t ,  . . .  , t o p - l )  dtol " " " d 6 ) p - i  dr  
,CI ' ( [3 ~ dO 

. . . .  P tot . . . .  , Op-l) dO1 " " " d t o p - t  

= /3P . . .  r( tol, . . . , Op_l)Pg( O1 . . . . .  top l) dOl  " " d6)p-i 
o 

= /3P f dr, r~ 
where g ( @ , . . . ,  top_l) = sin p 2 6)1" ' '  sin top 2. 
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Thus, combining (AI.1) and (A1.2), 

f h( t )  d t>- f lP (1 - f l ) l [h l [~ f~  dt  forall0~</3~<l. 

Therefore, 

PP 
h( t )  d t ~  max /3P(1-/3)llhl]~ d t - - -  

0 ~  ( p + l )  II h I1~ I~ dt 

which proves the lemma. [] 

Appendix 2 

We now justify the asymptotic formulae for ~ik and A~k needed in the proof of 
Theorem 3.3. 

Lemma A2. Suppose Assumptions 6 and 7 hold and that t ( x ) (= tik (X) for  some indices 
ik ) ~ T~ c RP,. Furthermore, suppose t( x ) lies on m~k constraints cj( t ) for  1 ~ j ~ mik, 
where we allow the possibility that m i k  ---- O. T h e n ,  a s  x ~ x * .  

cl)ik(x) ~ (2 / (p i  + mik + 2)) q~ik(X) Oik(X) and Aik(x) ~ Oik(x), 

where, Oik(X) is differentiable while &(x, t~)<~ 0 and Oik(x*)= O. 

Proof. For simplicity, in what follows we will drop the subscripts i and ik. We wish 
to evaluate 

q : ' ( x ) = f  &(x , t )  dt and A ( x ) = f  dt, 
,/~lx, t ) ~ 0  ~b(x,t)<<-O 
ci(t)~O , i--l,....m ci(t)~O , i l,...,m 

where we know that ~b(x, t (x ) )  < 0, 14,(x, t)[ is small for all t e S2(x) and ci( t (x))  = 0, 
i = l , . . . , m .  

Without loss of generality we may assume that t*= 0. As &(x, t) is assumed to 
be small for all t in the appropriate region we have 

4,(x, t) -~ 6(x, 0) + tTv,6(x, 0) + ~tTv.4,(x, 0)t, 

c,( t) = tTV,c (0) + �89 t. 

Hence qb(x) and A(x) will be approximated by 

,:/,(x) -~ ( (,/,(x, 0)+ t"v,O(x, o)+ �89 o)t) dt 
d J  (tl 

and 

A ( x ) ~ f .  dt, 
l(t)  



36 

where 

A.R. Corm, N.I.M. G o u l d / A n  exact penalty function 

J(t)  = {t: qS(x, 0) + tVV,eb(x, 0 ) +  ~tSV,,~b(x, 0)t ~< 0, tZVtc~(O) 

+}tTv,,Ci(O)t >10, i= 1 , . . . ,  m}. 

N o w  t ransform co-ordinates  as follows. Define 

s~ = tVV,c~(O)+~tTV,,ci(O)t, i= 1 , . . . ,  m. (A2.1) 

Let the m x n and n x n - m  matrices A( t ) and  Z( t )  be given by 

AT(t) = (V ,C l ( t ) , . . . ,  V,c,,,(t)), 

with Z( t )  satisying A ( t ) Z ( t ) = 0 ,  and Z ( t ) r Z ( t ) =  L ...... Further,  for any vector  A 

with ith c o m p o n e n t  A~, define 

M(x,  A) = V,~b(x, 0) - Z A,V,,c,(0). 
i = 1  

Let sm+i = (Z(0)rt)~,hen,~y and let s be the vector  whose componen t s  are the s~ viz. 

( c ( , )  '~ { a ( 0 ) ' ~  
s = \Z(O)Vt] = \ z - - ~ J  t for small per turbat ions  about  t = 0. 

Note ,  by assumpt ion ,  A(0) is o f  full rank and hence the t rans format ion  is 

well-defined and cont inuous  in some ne ighbourhood  of  t = t ( x )= O. 
We may  now write 

ks2/ 

( ) ]  

where 

and s is par t i t ioned into sl and s2 with sl an m-vector .  
As t = t(x) = 0 is a strong local minimizer  of  ~b(x, t) in T, by Assumpt ion  7, there 

are Lagrange mult ipl iers  A~ such that 

and 

Thus,  

V,~b(x, 0) = ~ A,(x)V,c,(0), (A2.3) 
i = 1  

A, (x )>  0, i =  1 , . . . ,  m (A2.4) 

Z(o ) rM(x ,  A(x))Z(O) is posit ive definite. (A2.5) 
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05 (x, 0) + tTV,05 (x, 0) + �89 tTV.05 (X, 0) t 

= 05(x, 0)+ ~ Ai(x)V,c,(O)Vt +~tXV.05(x, O)t, using (A2.3) 
i = l  

= 05(x, O) + Z (Ai(x)si- A,(x)~tTV.c,(O)t) +~tTv.05(X, 0)t 
i = 1  

= 05(x, O)+s~h(x)+�89 h(x) ) t  

= 05 (x, O) + sV~h (x) + ~sTBTM(x, h (x))Bs~ + ~s2VZT(0) M(x, h (x))Z(O)s2 

+ sTB~M(x, A (x))Z(O)s~ 

~- 05(x, O)+sV~A(x)+�89 h(x))Z(O)s2 for small s~, s2, 

since the terms sTBTM(x, A(x))Bs~ and sTBTM(x, h(x))Z(O)s2 are dominated by 
s-~h (x) if s~ and s2 are small. 

Thus, under our assumptions, 

~(x) -~ fK.~ (05(x, 0)+ sTa(x) 

1 T T +~_s2Z (O)M(x, A(x))Z(O)s2) det(B[Z(0))  ds, ds2, 

A(x)~-- f det (BtZ(0))  ds~ ds2, 
d K (.~') 

where K(s) = {s: s~/>0; sTA(x)+~sTZT(o)M(x, A(x))Z(O)s2<~ -05(x, 0)}. 

As zT(o)M(x,  A(x))Z(0) is positive definite from (A2.5), we may transform the 
s2 variables so that the new variables s3 =x/zT(O)M(x, A(x))Z(O)s2 are defined for 
some appropriate square root. This then gives 

Cb(x) ~- det(e]z(o)),/det(ZT(O)M(x, A (x))Z(0))(05(x, 0)I2(x) + I(x)), 
(A.6) 

~1 (x) = det(B]Z(O))~/det(ZT(O)M (x, A (x))Z(0))I2(x),  

where 

l(x)= fR (sxlA(x)+~s3rs3)dsl dS3, f d s l d s  3 
(s) R(s) 

Writing 

and 

K'(s) ~ s =  
$3 

) 
I> 0; sTA 1 v _< $1 (x) %s3 s3 - - 05(x, 0) 

J 

I ( x ) :  f ( f  (A(x)Tsl+�89 dsi, 
h (x)Vs I ~< --,t,( X, O) 
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we first evaluate 

f.i T I T ll(sl) = .-~ . . . . .  (6(~ o)+A x)lH, ('~ (x)  s 1-1-2s3s3) ds  3 

= r [_2(4)(x ,O)+A(x)Ts, )] , , /2(2A(x)Ts_qf)(x ,O)) ,  
F(�89 1) (q+2)  

where q = p - m  and F(u)  is the gamma function, using a variation of Apostol 
(1974, p. 431). 

By assumption (A2.4), the matrix A =diag(A(x)~) is non-singular. Using the 
change of variables s4 = As~, we may write 

I(X) = f,l~o, eqs4~-d,(:':, O) / ($4) ds4, 

where e is a vector of ones and 

rr q/2 [-2(d,(x,  O) + eVs4)]q/2[2eTs4 
f(s, ,)  = qd)( x, 0)] 

F(~q+ 1) (q+2)  H," ~ A(x), 

--TTq/2 
= F(~q + 1)(q + 2) [[i~, A (x), ( [ - 2 (4 (x ,  0)+ ers4)] q/:+~ 

+ (q + 2) a5 (x, 0)[-2(d~(x, 0) + ers4)]q/2). 

An elementary exercise in integral calculus then yields 

rrq/22q/2( q/ 2 + m )(--rb( x, 0)) . . . .  q / 2  I-1 

NI" , A ( x ) f ( ~ q +  m+ l ) ( q / 2 +  m+ l)" 

f f A •  ~,  +~d~:,~-,~(~. o~. ~:~o dst ds3 

77- q/2 1 
f [-2(aS(x, O)+ eTs4)] q/2 ds4 

F(~_q+ 1) ~i"-., a(x) ,  ,~o.,,' ...... ,,,.,..o, 

q/2 q/2 77" 2 ( - - r  O)) ''' '~/2 

[['," , A , ( x ) F ( ~ q +  m +  l)" 

rewrite 

( q / 2 +  m) �9 
l ( x )  = (q /2+ m + 1) (-cb(x' O))12(x)" 

Hence on reintroducing t ( x ) =  0, (A2.6) gives 

q ) ( x ) = 2 / ( p + m +  2)ch(x, t ( x ) )O(x) ,  z l (x)=  O(x) 

Thus we may 

I (x )  - 

Similarly, 

12(x) = 
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where 

6)(x) = det(B[Z(t(x)))~/det(zT(t(x))M(x, A (x))Z(t(x))) 

~ ? p - m ) / : 2 ~ - . , ~ / : ( _ e ~ ( x  ' t(x)))~,'+,,,)/: 
r n  

H , : ,  F(�89 m)+ l) 

Finally, it is easy to see that O(x) satisfies the conclusions o f  the theorem. []  
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