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ON THE LOCATION OF DIRECTIONS OF INFINITE
DESCENT FOR NONLINEAR PROGRAMMING

ALGORITHMS*
ANDREW R. CONNt AND NICHOLAS I. M. GOULDt

Abstract. There is much current interest in general equality constrained quadratic programming
problems, both for their own sake and for their applicability to active set methods for nonlinear
programming. In the former case, typically, the issues are existence of solutions and their determination. In
the latter instance, nonexistence of solutions gives rise to directions of infinite descent. Such directions may
subsequently be used to determine a more desirable active set.

The generalised Cholesky decomposition of relevant matrices enables us to answer the question of
existence and to determine directions of infinite descent (when applicable) in an efficient and stable manner.

The methods examined are related to implementations that are suitable for null-space, range-space and
Lagrangian methods.

1.1. Introduction. The ability to solve equality constrained quadratic programs is
of fundamental importance in the theory of nonlinear programming. Firstly, it is the
simplest nonlinear programming problem and secondly, much of the basis for current
algorithms for nonlinear programming depends upon solving quadratic programming
problems as subproblems. Well-known examples include successive quadratic
programming (see, for example Chamberlain, Lemar6chal, Pedersen and Powell
(1982) and Powell (1978)), active set strategies (see, for example Murray and Wright
(1978) and Biggs (1975)) and the method of Coleman and Conn (Coleman and Conn
(1982a) and (1982b)).

Consequently, there is much interest in the design of robust and efficient methods
for handling general quadratic programs stably.

Our own particular interest in nonlinear programming concerns those methods
which attempt to minimize some quadratic modelling function in a particular subspace
that represents a linearization of the constraints that it is supposed are active at the
solution. Such methods give rise to equality constrained quadratic programs.

In this paper we consider the Equality Constrained Quadratic Program.

EQP: minimize
,e

pHp + gp =- Q(p)

subject to Ap O,

where H is n n symmetric, A is Xn, rank (t _< n), and g is an n-vector.
We take the point of view that it is important that our method of determining p

is not disjoint from our method of determining existence. Furthermore, if possible, we
would like to exploit any structure available, in the implementation.

In the special case when a finite solution to EQP exists, a number of different
procedures have been developed for locating it (see, for example, Fletcher (1981)).
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Recently, Gould (1983) has given a complete characterization of the existence of such
a solution appropriate for many of these procedures. In this paper, we shall be
principally concerned with the construction of a vector p along which it is possible to
decrease Q(p) whilst maintaining Ap 0 for the cases for which EQP has no finite
solution.

We say that the vector p, satisfying Ap 0, is a direction of infinite feasible
descent if Q(ap)..-,-o3 monotonically as the scalar t---, / o3: Our goal is to
investigate the existence of directions of infinite descent for Q(p) and to describe
practical algorithms for locating such directions. The existence of a direction of
infinite descent for a given EQP often indicates that the current estimate of the
solution to the nonlinear program is far from its correct value or that the prediction of
the constraints active at the solution (signified by their linearized form Ap 0) is
incorrect. Fortunately, a direction of infinite descent may then be used to improve the
estimate of the solution (by decreasing an appropriate merit function) and to improve
the prediction of the active set (by moving so that an inactive constraint becomes
active). In this paper, we consider how methods normally used to find a finite
solution to EQP can be adapted to find suitable directions of infinite descent
whenever this is appropriate.

We will consider three methods, termed, null, range and Lagrangian methods.
The null-space method is basically that of Bunch and Kaufman (1980).

The extensions to Lagrangian and range space methods are new. A discussion of
the usefulness of these extensions is given in 5, below.

1.2. A preliminary discussion on the existence of a finite solution to EQP. In this
section, we use the well-known characterization of the existence of a finite minimizer
of a quadratic function (see, e.g. Gill, Murray and Wright (1981, pp. 65-67)) to obtain
similar results for EQP.

Let Z be any n (n-t) matrix such that AZ O, rank (A T:Z) n (see, e.g.,
Gill and Murray (1974, pp. 57-62)). Then any vector p which satisfies Ap 0 may
be expressed as p--Zpz for some n-t vector Pz. Consequently EQP is
equivalent to the problem

NS minimize
pz’-’ " p(ZTHZ)pz d- p(Zrg).

It is well known that NS has
(i) a unique global minimizer if and only if ZTHZ is positive definite;
(ii) weak global minimizers if and only if ZTHZ is positive semi-definite and

ZTg. lies in the range of ZTHZ;
(iii) no finite minimizer if ZTHZ is positive semi-definite and ZTg does not lie

in the range of ZrHZ; and
(iv) no finite minimizer if ZTHZ is indefinite.

In order to distinguish between cases (iii) and (iv) we make the following definitions.
Any vector p such that Ap O, pTHp 0 and gTp < 0 is known as a feasible

direction of linear infinite descent, henceforth referred to as a dolid, for EQP. Any
vector p such that Ap 0 and prHp < 0 is known as a quadratic feasible direction
of infinite descent or a direction of negative curvature, henceforth referred to as a
donc. (Note it is often convenient to introduce scaling in the definition and thus we
will sometimes require pTHp =--1 or grp =--1 rather than pTHp < 0 or
grp < 0.) The importance of such definitions is that for any dolid, p is feasible and
Q(ap) tt(grp) (and hence approaches minus infinity linearly as a--, o3) and for
any doric, p is feasible and Q(ap)= a2prHP + agrp (which approaches minus
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infinity quadratically as a---, c).
We are interested in the calculation of doncs and dolids. We have a preference

(whenever possible) for determining doncs rather than dolids because of the faster
asymptotic behaviour of the former.

LEMMA 1.1. (a) There exists a direction of negative curvature if and only if
ZrHZ is indefinite. (b) There exists a direction of linear infinite descent if ZrHZ
is positive semi-definite and Zrg does not lie in the range ofZrHZ.

Proof. (a) follows from the definition. (b) Suppose ZrHZ is positive semi-
definite, Zrg does not lie in the range of ZrHZ and that any vector p which satisfies
Ap O, prHp -----0 also satisfies grp 0. In particular, all vectors p ----Zpz
which satisfy ZrHZpz 0 satisfy p(Zrg) 0 also. As ZrHZ is singular there is
at least one Pz which satisfies ZrHZpz 0. Then Zrg is orthogonal to the null-
space of ZrHZ and therefore lies in its range. This contradicts the assumptions
made and hence there is at least one dolid.

Lemma 1.1 motivates the following: conceptually we should like to obtain the
unique global minimizer of EQP. However, if ZrHZ is indefinite, such a minimizer
does not exist, and we then wish to locate directions of negative curvature. If ZTHZ
is positive semi-definite, neither a unique global minimizer nor a direction of negative
curvature exists. In this case we wish to determine a weak global minimizer, if
possible, or otherwise determine a suitable dolid.

In the section which follows we will describe three approaches to finding
stationary points for EQP, when such points exist. Each gives rise to particular
matrix decompositions. Whenever minimizers do not exist, a significant feature of the
approach in this paper is the method used to determine a suitable done or dolid.

In the calculation of doncs and dolids, we shall explicitly exploit the matrices that
arise in the particular underlying method for finding stationary points for EQP.

1.3. Methods for finding a stationary point for EQP. We briefly survey the
existing procedures for finding a stationary point for EQP. Such methods normally
assume that second order sufficiency conditions will be satisfied at the stationary point
and hence that the stationary point found will be a strong global minimizer for the
problem.

(a) Null-space methods. Find an appropriate n X(n-t), matrix Z such that
AZ 0 and rank (A T:Z) n. Then solve the null-space equations

ZrHZpz Zrg,

(b) Lagrangian or Kuhn-Tucker methods. Find the vector p and the t-vector
(a vector of first order estimates of the Lagrange multipliers at the solution) by
solving the Kuhn-Tucker equations

(c) Decomposition or range-space methods.
structure in the Lagrangian matrix,

These methods make use of the
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to decompose the Kuhn-Tucker equations to obtain p and . separately. For example,
if H is nonsingular, p and , may be found from the range-space equations

AH-1A r. AH-Ig,
Hp AT,-- g.

The matrix equations defining each of the methods a), b) and c), are either solved
directly, (by appropriate matrix factorizations) or iteratively. The decision as to
which method to use and how to solve the resulting linear equations depends on the
number of variables, n, and the number of constraints, t. In what follows, we shall
assume that n is sufficiently small that we are able to solve the relevant equations
directly. Normally it is most efficient to use null-space methods when is large
relative to n, and Lagrangian or range-space methods otherwise.

For a more detailed discussion of the linear equation solving techniques
appropriate for these methods, and the reasons for choosing a particular method, see,
for example Fletcher (1981), Gill, Murray and Wright (1981), Gill et al. (1982) and
Gould (1983).

1.4. The nature of solutions to EQP. In 1.2, the existence of finite solutions to
EQP was discussed in terms of the definiteness of the matrix ZrHZ normally
associated with null-space methods for EQP. In this section the question of existence
of finite solutions to EQP is extended to the other methods introduced in 1.3.

For the remainder of this paper we shall use the following notation. We define
the (n + t) X (n + t) Kuhn-Tucker matrix K by

K-- 0

We shall denote the inertia of any mm matrix M by

.In(M) (m +, m_, mo),

where m+, m_ and mo are respectively the number of positive, negative and zero
eigenvalues of M (counted with appropriate multiplicities) such that

Define

and

m =m++m_+mo

In(H) (h+, h_, ho),

In(K) (k+, k_, ko)

In(ZTHZ) (z+, z_, Zo)

for any appropriate Z. Furthermore if H is nonsingular (ie. ho 0) define

In(AH- 1A T) (a +, a_, ao).

The following lemma, a special case of Lemma 3.4 (Gould (1983)), is crucial to our
discussion.

LEMMA 1.2. In(K) In(ZTHZ) + (t, t, 0). Furthermore if ho --’0

In(K) In(H) + In(--An-lAr).
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We may thus derive the following results (see Gould (1983)).
THEOREM 1.3. Let EQP be as given. Then the statements (i), (ii) and (iii),

below, are equivalent.
(i) EQP has a unique global minimizer,

(ii) z_ z0----0(orz+ n ) and
(iii) k_ t, k0= 0 (or k+ n).

Furthermore if ho 0, (i), (ii), (iii) and
(iv) h_ + a+ (or h_ a_),ao O,

are equivalent.
Proof Follows directly from case (i) in 1.2 and Lemma 1.2.
THEOREM 1.4. Let EQP be as given. Then the statements (i), (ii) and (iii),

below, are equivalent.
(i) EQP has weak global minimizers,

(ii) z_ 0, Zo > 0 and Zrg lies in the range ofZTHZ and
(iii) k_ t, ko > 0 and (-og) lies in the range of K.

Furthermore, if ho 0, (i), (ii), (iii) and
(iv) h_ + a+ t, ao 0 and AH-lg lies in the range ofAH-IAT,

are equivalent.
Proof Follows directly from case (ii) 1.2 and Lemmas 1.1 and 1.2.
THEOREM 1.5. Let EQP be as given. Then the statements (i) and (ii),

below, are equivalent.
(i) z_ 0, Zo > 0 and Zrg does not lie in the range ofZTHZ and

(ii) k_ t, ko > 0 and (-g) does not lie in the range of K.
Furthermore., if ho 0, (i), (ii) and

(iii) h_ + a + t, ao 0 and AH-g does not lie in the range ofAH-A r,
are equivalent.
The existence of a direction of linear infinite descent is implied by any of (i), (ii) and
(iii).

Proof Follows directly from cases (iii), 1.2 and Lemmas 1.1 and 1.2.
THEOREM 1.6. Let EQP be as given. Then the statements (i), (ii) and (iii)

below, are equivalent.
(i) There exists a direction of negative curvature for EQP,

(ii) z_ >0and
(iii) k_ > t.

Furthermore, if ho 0, (i), (ii), (iii) and
(iv) h_ + a+ >

are equivalent.
Proof The proof follows directly from case (iv) in 1.2 and Lemmas 1.1 and

1.2.
The remainder of this paper will be taken up with a discussion of appropriate

techniques for obtaining doncs and dolids.

2. The calculation of feasible directions of infinite descent.
2.1. Using the generalized Cholesky factorization. The numerical implementation

of any method for the solution of EQP’s depends essentially upon the technique used
to solve the resulting system(s) of linear equations. All the systems in 1.3 have
symmetric coefficient matrices whose inertias are required to determine the existence
of optimal solutions.

It is this latter requirement that predisposes us to consider an approach based
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upon the Bunch-Parlett-Fletcher-Kaufman generalized Cholesky factorization (Bunch
and Parlett (1971), Fletcher (1976), Bunch and Kaufman (1977)).

The basis of the generalised Cholesky factorization is a matrix formulation of the
classical approach to diagonalizing a quadratic form by completing the square, with
the additional observation that xy u2- v2 whenever x u + v and
y u v. Essentially, a permutation matrix P is found such that a given real
symmetric matrix G is factored as PrGP- MDMT where M is unit lower
triangular and D is block diagonal, with X and 2X2 diagonal blocks. The matrix
D has the same inertia as G and this inertia is easily recoverable. For instance the
number of negative eigenvalues of G is the number of 2 X 2 blocks plus the number
of negative elements which occur in blocks. Such a factorization may be
achieved in about n3/6 multiplications and n2 comparisons.

The generalized Cholesky factorization has been used to calculate directions of
negative curvature in the context of unconstrained optimization problems (see eg.
Fletcher and Freeman (1977), Sorensen (1977), Mor6 and Sorensen (1979), Goldfarb
(1980) and in a particular null-space method for EQP (Bunch and Kaufman (1980)).

Bunch (1971), Bunch and Kaufman (1977) and Fletcher (1976), have developed
"stable" implementations in the sense that Bunch (1971) is as stable as Gaussian
elimination with total pivoting and the other two methods are as stable as Gaussian
elimination with partial pivoting.

2.2. Calculating dolids. We have already remarked that, whenever possible, we
prefer to calculate directions of negative curvature rather than dolids. Consequently,
as a done exists if and only if ZrHZ is indefinite, for this section we shall assume
that ZrHZ is positive semi-definite.

The methods we propose to use to determine dolids all depend fundamentally on
the following well-known elementary result.

LEMMA 2.1. Let N be any real symmetric, m >(m matrix and b be any m-
vector. Then either a) ax’Nx b orb) ly’Ny o, bTy 1.

Proof Let P denote the orthogonal projector into the null-space of N.
Pb 0 > b Nx. Otherwise define y Pb / Pb 12.

Considering the separate methods of 1.3 in turn, we then obtain as corollaries to
Lemma 2.1, constructive means of obtaining dolids whenever they exist.

(a) Null-space methods. Identifying ZrHZ with N and -Zrg with b in
Lemma 2.1, it is apparent that, either a) Pz such that zTHZpz --ZTg (in
which case there is a weak global minimizer) or b) 51Pz such that ZrHZpz 0
and p Zrg --1 (in which case p Zpz is a dolid).

(b) Lagrangian methods. Identifying K with N, b with -() and writing
x (_P), we obtain that either a) such that Kx ----b or b) tx such that
Kx 0 xTb 1. Case a) implies that p is a weak minimizer of EQP. b) implies
that Hp Ar 0 (and thus ZrHp 0) and Ap 0 (from Kx 0) and that
pTg _1 (fromxTb 1). Thusp isadolid.

(c) Range-space methods. In this case we identify AH-A r with N and b with
AH-g. Case a) implies p is a weak minimizer of EQP, case b) implies p is a dolid
where p-----H-1ATu, and u is any vector such that AH-IAru 0 and
uTAH-lg 1.

Thus in each of the three cases considered above we have that, either a weak
minimizer is determined, or a dolid is given by the orthogonal projection of the right-
hand side into the null-space of the corresponding coefficient matrix.
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Assuming we have a generalised Cholesky factorization of N, it is a straightfor-
ward task to determine the existence or otherwise of a solution to Nx b, and thus
establish optimality or find a dolid. We now give the necessary construction.

Suppose we have a generalized Cholesky factorization of N given by

prNp MDMr

where P is a permutation matrix. Let I denote the index set for the zero 1 X
blocks of D. Let Prb, prx. Define r such that Mr . The existence
or otherwise of a solution to Nx b depends upon whether the equation Ds r has
a solution. This equation has a solution if and only if ri 0 for all I. If ri 0
for all I, then the nonzeros of D determine si I and the si I may be
chosen arbitrarily. The equation Mr s may be solved to give and x P
then satisfies Nx b. Conversely suppose ri 0 for some i I. Let s be any
nonzero solution of Ds 0. Then si 0 for all I necessarily. Let " be such
thatMr =s and x P. Then, using PrNP =MDMr, x P andDs 0
we have that Nx PMDs O. Similarly, using Mr b and b Pb we have
that brx rrs. Now, suppose we chose our si such that si 0 land
s---ttr,, I for some t, O, then rrs O. The latter result follows from

i.l il i.l

which is nonzero, since at least one ri * 0. Finally, upon letting tt--- 1/ iiri2,
and using brx rrs, we have that brx 1.

2.3. Locating directions of negative curvature. In this section we show how
directions of negative curvature may be calculated for null-space, range-space and
Lagrangian methods.

DEFINITION. We say that x is a negative vector for N if and only if
xrNx < 0. We say that x is a positive vector for N if and only if xrNx > 0. We
say that vectors u and v are N-conjugate if u rNv O.

(a) Null-space methods. Suppose z_ > 0. Then there is a vector Vz such that
vzTHZvz < 0. On letting v Zvz vTHv < 0 and Av AZvz 0. Hence v
is a done.

In general, suppose that z_ s > 0.
that

Then there are s vectors Vz,...,Vzs such

(2.1) v

_
ct,Z Vz,

i----1

is a done. We note that different choices of t result in different doncs. Little is
known concerning the best choices for the ti’s (see Bunch and Kaufman (1980)for a
discussion of this issue). Ideally, one would like to chose the zi’s so that the cost,
measured in terms of number of iterations and work per iteration, is minimized.

r (ZTHZ)Vz, <0, <_ <_ S,

v,(zrnZ)vzj O, 1 <_ j <_ s.

For instance, the eigenvectors of ZrHZ corresponding to the negative eigenvalues are
such a set. (The two conditions above imply that on the span of the set of vectors
Vz, 1,...,s the matrix ZrHZ is negative definite, and on this subspace the Vz,
satisfy the usual definition of conjugacy.) Then the vector
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(b) Lagrangian methods. Let

Let k k_ > t. Then there are k K-conjugate negative vectors V l,...,Vk (for in-
stance v l,...,vk might be the eigenvectors of K corresponding to the negative eigen-
values). Then v ilctivi is a negative vector for K for any scalars ch,...,ck not
all zero. Choose the scalars cq,...,ck so that

k
(2.2) (A :O)v cti(A :O)vi O.

i----1

(Since (A :O)vi is a t-vector and k > t, it is always possible to find such a
combination.) Then if v (), p is a direction of negative curvature.

(c) Range-space methods. We shall only be concerned with the ease that H is
nonsingular. For other eases, range-space methods are difficult to implement and
Lagrangian methods may be preferred. It is easy to see that

, o o(2.3) K 0 AH- I --AH- 1A r I

Let h_ k, a+ 1 and k + 1 > t, (thus ensuring the existence of a donc, from
Theorem. 1.6). Let h ,...,hk be a set of H-conjugate negative vectors, a,...,at be a set
of AH-A r. conjugate positive vectors. Then from (2.3), it follows that

(’ (1 <i <k) and(-H-IArai}ai
(1 i 1)

are K-conjugate negative vectors. Hence

u + i
=1 il

is a negative vector for any scalars ai, i (not all zero). Furthermore, since
k + l > t, it is always possible to choose the scalars a, i so that

O O)u 0.

Then, writing u (), p is a direction of negative curvature for EQP.

3. Calculatin directions of negative curvature. In this section we present methods
for calculating doncs for the three classes of algorithm discussed in 1.3. All three
methods require the calculation of negative and/or positive vectors of appropriate
coefficient matrices as indicated in 2.3. Such vectors may be obtained directly from
the generalised Cholesky factorization of the given matrices. However, modifications
of the direct procedure results in simplifications and significant savings.

3.1. Calculating negative and positive vectors. Let the real symmetric m m
matrix, N have a generalized Cholesky factorization

N PMDMrPr

where P is a permutation matrix, M is a unit lower triangular matrix and D is block
diagonal with X 1 and 2 X 2 diagonal blocks.
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Define the ordered index sets

I-I(D) {i dii < 0 and di+
I+(D) {i dii >Oanddi+
I-2(D) {i di+l #: 0},

I+2(D)--{i d-li 0},
where D has elements dij and, by convention, dio dim+l 0. These sets identify
the indices of X blocks with negative and positive eigenvalues and the first and
second index of each 2 X 2 block (which by construction has one positive and one
negative eigenvalue) respectively. Let I_(D) I-I(D) t3 I-2(D) and
I+(D) I+l(D) t3 I+2(D). Then II-w) n_ and II+w) n+ where
In(N) (n +, n_, no). In order to construct an N-conjugate set of n_ nega ve and
n + positive vectors, we proceed as follows. Let et be the th column of the identity
matrix.

Define the vectors ui(i I_(D)) and ui(i I+(D)) such that

I_I(D),
ui y(ei + [ e+),

_
I-2(D),. I+ I(D),

ui
rli (ei- + Oi- ei), . I+2(3),

where f3i (,- dii)/dii+, Oi (,+ dii)/dii+,g- and g+ are the negative and
positive eigenvalues of

d+l d+l+l
and the scalars / and rl are arbitrary. Then it is easy to see that the vectors
vi,(i I_(D)), obtained from

(3.1) MrpTvi ui,

are N-conjugate negative vectors. Similarly
MTpTvi U, are N-conjugate positive vectors.

the vectors v, I+(D), where
Hence any vector

i.l_(D)

(with the scalars at not all zero) is a negative vector and any vector

v+ v
i.i+(O)

(for scalars 5 not all zero) is a positive vector.

3.2. Practical aspects. Null-space methods. Let ZrHZ have a generalised
Cholesky factorization Pz Mz Dz Mrz P. From (2.1), the vector

v Z( ., Vz)
il-(Dz)

is a direction of negative curvature for any (nonzero) set of scalars (z and any set of



INFINITE DESCENT FOR NONLINEAR ALGORITHMS 1171

ZrHZ-conjugate negative vectors Vz,.
described above.

However as

Suitable negative vectors may be obtained as

v fti Vz, . tiPM-r rUz PM-

_
iUzt,

t_(Dz) l_(Dz) e1_(Oz)

it is more efficient to obtain

fl, UZ
il_(gz)

and then perform one backsolve to find v. A particularly appealing direction of
negative curvature is obtained by picking tti 0 for all (j) I-(Dz) and
tj where j is the smallest index in I-(Dz). With this choice the "backsolve"
M-r

Uzj may be performed relatively efficiently since the last n-t-j
components of M-r Uzj are then zero.

3.3. Practical aspects. Lagrangian methods. Let K have a generalised Cholesky
factorization PKMKDKM[P[.T T Let vi (i I_(DK)) be K-conjugate negative vectors
obtained from the vectors ui by (3.1) as described in 3.1. According to (2.2), we
require scalars ai such that

a Q( "0)v 0,
i.l-(Dx)

where the permutation matrix Q is introduced for convenience. As
K TT TTPKMKDKMkPk, we may write (A "0)----(0" I) PKMKDKM[P, where I is
the identity matrix. Therefore we must find scalars tti such that

(3.2) tiM DK Ui O,
i6l-(Ox)

where M Q(O’It)PKMK. The matrix (O’It)PKMK is made up of rows of the
unit lower triangular matrix MK and Q is now chosen so that the rows of M occur in
the same order as in MK (see Fig. 1).

1000000
xl00000
uul0000
xxxlO00
uuuulO0
uuuuulO
xxxxxxl

i
ul0000
uuulO0
uuuulO

FIG. 1. An example of how M is obtained from Mx by deleting those rows indicated with entries x.

Thus 3 and Px points to rows 3, 5 and 6.

Now DKUi 7i d, ei if I-I(Dr) and DKUi ,-li(ei + i ei+l) if
I-2(DK). Suppose )’i 1/dii if i. I-I(DK) and )’i 1/,_ /’1 + if
I_2(DK). Hence DkU e,. if .I_I(DK) and Dtcui Oiei + iei+, if
I-2(DK), where tI)i 1//1 + I/2, and Vi-- fSi//1 + fS. These Choices of
$i and i are made so that DKui is a unit vector in all cases.



1172 A.R. CONN AND N. I. M. GOULD

Using this construction, (3.2) gives

(3.3) Z aiMDcu, Z cMei + Z
.I_(Dx) .I_ l(Dtc) .I_2(Dg)

t2iM(Ce q- ei+l) 0.

As Mei is the ith column of M and M(ei + wei+l) is a linear combination of the
th and (i + 1)st columns of M, (3.3) is equivalent to finding a suitable linear
combination of columns of M which is zero.

Let N be the )< k matrix whose columns are Mei if I-(DK) and
M(ei + wei+ 1) if I-2(DK) and let these columns be arranged in increasing order
according to the set I-(DK) (see Fig. 2).

uuulO0 u 0
uuuulO uuO

M N

FIG. 2. An example of how N is obtained from M. In this case l-l(Dx)"-{4,5,7} and
l-2(Dx) }. The entries v in column of N are obtained from an appropriate linear combination of
columns and 2 ofM.

Let a be the vector make up of the unknown scalars ai ordered according to I-(Dtc).
Then (3.3) is the same as finding a nontrivial solution to

(3.4) Net 0.

There may be many independent solutions to (3.4). Our intention is to obtain such a
solution in an efficient manner. By the construction of N from Mc, any column of N
which has a structural zero as its jth entry will also have structural zeros in its th
entry for all _< j. (A structural zero of N is an element of N which is obtained as a
linear combination of elements of the upper-triangular (zero) part of Mtc.)
Furthermore the introduction of the permutation matrix Q in the definition of N
ensures that any row which has a structural zero in its jth entry will also have a
structural zero in its th entry for all >_ j. Hence the matrix N may be thought of
as being "lower triangular-like". In practice the matrix N may be anything from
completely dense to the zero matrix. Our hope is that, for a given problem, N is
closer to the latter than the former (see 4).

We propose to find a nontrivial solution to (3.4) by (lower) triangulating the last
)< block of N using elementary row operations to eliminate super-diagonal

elements and row interchanges to limit growth of the off-diagonal elements. No
structural fill-in occurs as a result of the partial pivoting because of the structure of
N. Recall that N is a )< k_ (k_ > t) matrix. The process starts in the k_th

column of N and proceeds one column backwards through N until either there are no
nonzero pivots in the current column or columns have been triangulated. If the
former case is reached at column k_ k, the last k + columns of N are linearly
dependent. Furthermore the last k + columns of N have then been reduced to the
form

where N is a k N k lower triangular matrix and a k-vector.
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A suitable solution to (3.4) is then found as {z (,) where tz’ is a k + vector whose
first entry is 1 and whose remaining entries 5 are found by forward substitution in the
system N ft. In the latter case (3.4) has been reduced to the equivalent sys-
tem

(N N)c 0

where N is X triangular. If we form any nonzero linear combination NlZl, a
xz) where (z2 is found by forwardsuitable solution z to (3.4) is given by z--re2

substitution in the system N z2 --Nlal.
Obviously the efficiency of this method depends upon how triangular-like N is

and how many columns of N must be processed before a suitable dependency may be
found. In the worst case, when N is completely dense and no dependencies are found
until the final stage, t3/3 + O(t 9) operations will be carried out to find z. This cost
may be acceptable if is relatively small. This is an assumption which is normally
made whenever Lagrangian methods are to be used. In practice we should hope that
the cost will be substantially smaller than t3/3. (See 4 for numerical results.)

Once the scalars tt have been obtained, the calculation of a direction of negative
curvature proceeds exactly as described in 2.3. Namely the vector , iI_(D) Cti Ui
is formed and a single back-solve is used to obtain the direction of negative curvature
as the first n components of the vector v where

M e v= X a,u,.
i.l_(Dx)

3.4. Practical aspects. Range-space methods. Recall, that we assume ho O.
Suppose we have a generalised Cholesky factorization P1M1DIMP for H and

T T -1ATPEMEDEMEP2 for AH Thus we may determine vectors hi(i . I_ (D1)) and
ai (i I+ (D2)-- I-(D2)) such that the hi’s are a set of h_ negative vectors for H
and the ai’s are a set of a + positive vectors for AH-1A r where

airAH-1Araj----O, j Following 2.3c, the vector (ho’) and (-H-’ra’)
at

are

(H 0r) conjugate vectors. However, we need to satisfy (A 0) u 0 where

il-(DI) il_(--D2)

and the tt,.’s and 13’s are suitably chosen.
As before, it is computationally more attractive to work with the negative vectors

of the block diagonal matrices D1 and D_ rather than the ai’s and hi’s. Thus we
consider the following development:

It is not difficult to see that one may write, using H P1M1DMP and
A P2ND1MTP,

(M1 0 )(1 0 )/lT NT) (Po 0 )N ME --DE M" P"
where N P APM{-r D (Recall that ho

In addition, we note that
0 =>D exists.)
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and

MPH-1A ra’ +NrPa’

Thus, writing MTprh, u/(1), MPa, u/(2), and

(3.4) becomes

(3.5) O,i PEN DlUi(1)
’I_(D) ir(-D,)

(PEN PEME)

i P2 M2 D2 ui
(2) 0.

Let the matrix 57 be made up of columns ND ui(1)(i I_(D)). By
construction these columns are either single columns or linear combinations of two
columns of N. Similarly let T be made up of the columns MEDEui(E) (i I+(DE)).
As MEDEui() is either a single column of ME or a linear combination of two adjacent
columns, T preserves the "triangular-like" structure of ME. Moreover, given ME, T is
trivial to obtain. Defining the vectors a and 3 to have elements ai(i I_(D)) and
]3.(i I+(D2)), (3.5) becomes

(3.6) (2" r) () 0.

Each column of N, and hence /, must be calculated from the definition
N PAP Mr-r Di-. As this could prove expensive if many columns of/ are
required, we try to obtain a solution to (3.6) which has as few nonzero components of
et as possible. As a dependence amongst the columns of (1" T) may require + 1
columns, we look for such a dependence in the a+ columns of T and any

a + + columns at 1. Clearly it is not possible to make statements about a +
being close to t, but since we are using a range-space method we do at least expect t
to be reasonably small. Certain columns of N are easier to obtain than others.
Observing that Ui

(1) is either 7(il)ei or 7l)(e/ q- /(1)ei+l) for appropriate 7/(1) and /(1),
and that NDlU(1) PAPrMi-ru(1), it is easy to show that DNlU() may be
calculated in about i2/2 + Xi multiplications. (This may be a significant
overestimate if A or M are sparse.) Therefore it is advisable to select those columns
of 2 corres_.ponding to small indices in preference to larger indices.

Let N be made up of any -a+ + 1 columns of and let be the
corresponding elements of

Then (3.6) gives

(3.7) (2" T) () 0.

Suppose N (b "B). A solution of (3.7) may be found from the solution () to the
equations (B’T)()= b by letting 1 -1, + xi and ]3 yi. This later
equation is triangular-like and may be reduced to lower triangular form in a similar
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fashion to that described for Lagrangian methods. In this case, however T is of rank
a+ and so unlike the Lagrangian case there is little chance of obtaining "easy"
solutions.

3.5. Operation counts. Table provides a summary of the operation counts
required to calculate dolids and doncs. In addition, we provide a breakdown of the
costs of the necessary factorizations and their totals. Our calculations for doncs are in
the worst case. Moreover, it is assumed that factorizations are done from scratch
given A and H.

TABLE

Null space Lagrangian Range space

factorizations Z (eg. orthogonal columns) H

calculate

factorizations

total

calculate

DOLID

calculate

DONC

ZTHz

nt2--1t find Z
3

/1 )2n2(n t)-t- (n find ZTHZ

)3 factor ZTHZ(n
6

61_..(2n )__ 3nt
--(n -b t)2q --t

2t
2 3

(2n --t)2--n

O(n --t)

AH-IA T

factor H

nt(n+t/2) find AH-IA r

factor AH-AT

n2t
-(nq-t -t

2

T+O(n) --(3n d- 9nt 2) -+-O(n 2)

4. Numerical experience. There are two unresolved issues connected with the
methods for calculating directions of nega_tive curvature suggested in 3. Firstly, it
has been noted that although the matrix N, associated with the Lagrangian method, is
"triangular-like", it is not clear just how triangular it will be. It is obviously desirable
that this matrix be small and as triangular as possible. However, examples may be
constructed where it is (in the worst case) and totally dense. Our hope is that
in practice N is much more likely to be almost triangular. Secondly, the efficiency of
the procedure suggested for r_ange-space methods depends crucially upon the number
of columns a + + of N needed to determine a dependency among the columns
of (/ T). We should like a + + to be as small as possible.

In this section, numerical results are presented which indicate experience with
both of these issues. The numerical experiments are by no means exhaustive; it is
merely intended that they illustrate that the approaches discussed in 3 are viable.

Directions of negative curvature were obtained for EQP’s for which the matrices
H and A were generated (pseudo-) randomly. The number of variables, n, for each
problem solved was fixed at 30, while the number of constraints, t, was allowed to
vary from to 29. As Lagrangian and range-space methods are normally only
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TABLE 2

Numerical experiments with Lagrangian and range-space methods.

Lagrangian

Number of

columns of N
processed

2

3

4

5

6

7

8

9

10 4

11 3

12 4

13 5

14 6

15 7

16 8

17 10

18 16

19 18

20 19

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 NO DONC
29 NO DONC

Proportion
nonzero super
diagonals in

N

o/o
o/o
o/o
o/o
o/o

o/o
o/o
o/o
o/o
0/3

0/1
0/3
0/6
o/o
0/15

0]21
0/36

9/105
10/136
10/153

28/190
29/210
22/231
27/253
27/276

20/300
24/325

NO DONC
NO DONC

t--a+ + 1

6

6

NO DONC
NO DONC

Range-space
Approximate
no. mults.

to calculate

N

2

3

4

47

54

61

68

75

241

547

581

615

649

683

717.

751

785

1417

1472

1527

2466

2547

2628

2709
2790

2871

2952

NO DONC
NO DONC

Proportion
nonzero

super-dings.
in (B:T)

0/1
0/3
2/6

2/10

2/15
2/21
2/28
8/36
17/45

16/55
18/66
18/78
19/91

19/105

19/120
18/136
35/153
33/171
33/190

53/210
54/231
53/253
54/276
54/300

54/325
55/351

NO DONC
NO DONC

appropriate when is relatively small (compared to n), it would be unlikely that they
would be used when H has many negative eigenvalues. The matrix H was chosen to
have 6 negative eigenvalues and for convenience was diagonal. The matrix A in every
case was full. The results obtained are indicated in Table 2. In each case a direction
of negative curvature was generated whenever possible; the residuals of the
constraints Ap for normalized directions of negative curvature tended to have
magnitudes of about 10-16 (using double precision on the Honeywell 6066 at the
University of Waterloo).

For the Lagrangian method, it is seen that for problems for which _< _< 17,
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the matrix N is already triangular and therefore no effort need be expended to
triangularize it. For >_. 18, a small amount of elimination must be performed to
triangularize N. Typically between 3 and 15% of the super diagonal elements needed
to be eliminated. In no case did a column have more than 2 super diagonal elements.
Thus, for our test problems, the procedure described for the Lagrangian methods
proved extremely efficient.

In the case of the range-space method, it is seen that the number of columns of
/q which must be computed increases graduall.y as increases. We note the effect
that an increase in the number of columns of N has on both the effort to compute N
and the number of nonzero super diagonals of (B T). Although the extra amount of
work required to find a donc for range-space rather than Lagrangian methods is
relatively small for our test problems, it is significantly more work than required for
the Lagrangian methods themselves. This suggests that it may be preferable to use
Lagrangian methods rather than range-space methods for nonconvex problems for
which h_ is at all large.

5. Comments and conclusions. In this paper, different strategies for calculating
directions of infinite descent and directions of negative curvature for the problem
EQP have been presented. These methods differ according to whether a null-space,
Lagrangian or range-space method is being used to solve the EQP.

Problems of the form EQP arise in a variety of ways; two common occurrences
are as subproblems in active set methods for quadratic programming and as
subproblems in successive quadratic programming methods for nonlinear
programming. These two applications are slightly different, since for the first H will
remain constant whereas for the second H may change (significantly the inertia of H
may change). As a rule, null-space methods should be used if the number of
constraints, t, represented in A is large relative to n and Lagrangian or range-space
methods when is small. In general, this is not known before the sequence of
subproblems is solved. However if is less than the number of negative eigenvalues
of H, it is straightforward to show (see, e.g. Gould (1983, Theorem 2.1)) that there
exists a direction of negative curvature for EQP and hence EQP does not have a
finite solution. Therefore, if H has many negative eigenvalues there must be many
constraints active for a finite solution to exist. For quadratic programming
applications, a null-space method should always be used when H has many negative
eigenvalues. When H has few negative eigenvalues the converse does not apply
(namely it is not clear which is the best method to use). For successive Q.P.
applications, the changing inertia of H will make it more difficult to select the
appropriate method a priori; some upper bound on may be known and this may
enable a sensible choice to be made.

It is our opinion that, at least from the point of calculating directions of negative
curvature, Lagrangian methods are likely be superior to range-space methods, since,
for the former, the only extra overhead incurred while calculating a donc rather than
moving to a minimizer of the EQP is just that in solving (3.4). Although the solution
may require as many as 1/3t 3 multiplications (using Gaussian elimination with
interchanges), our limited experience is that N is already essentially triangular and a
solution may be obtained almost trivially. On the other hand, a direction of negative
curvature for range-space methods may require the calculation of a significant number
of columns in N, each of which is relatively expensive. Furthermore, we require the
solution of
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(a’T) ()= b

using Gaussian elimination. Here (B T) can be significantly nontriangular and the
elimination cost could be substantial. A possible remedy for the first drawback is to
calculate N during the factorizations of H and AH-AT However this can be
shown to be equivalent to finding the generalized Cholesky factorization of K while
insisting that row and column interchanges are only permitted in the leading n X n
and remaining X block of K. This is then just a variation on the theme of
Lagrangian methods (exemplifying the close connection between the two approaches).

More generally, one might wish to consider the problem

EQP’: minimize Q(P)
pER

subject to Ap d.

This problem is easily solved by expressing p P + P2, where p is chosen such
d (for instance by solving AArPa d and letting Pl A rpa, and thenthat Ap

solving

minimize
p,_E - pTHP2 + PI(HPl + c)

subject to Ap2 O.

For problems which are either structured or sparse, it may be worthwhile
compromising stability of the appropriate factorizations, in order to maintain, to some
extent, any available structure. We have in mind a variant of the generalized
Cholesky algorithm for which the choice of pivotal elements is made with respect to
the fill-in which may result. Of course, there should be some overriding stability
restrictions (e.g. threshold pivoting). For range-space methods for quadratic
programming, it is probably worth spending extra effort in.obtaining a factorization of
H which maintains some of the structure in H. For Lagrangian methods, it is
possible to insist that row and column interchanges are made so that the first n X n
blocks of the generalized Cholesky factors of K are the factors of H. This is
important since, for the range-space methods just discussed, it is possible that H can
be factored, so as to maintain any structure present. Furthermore, if H does not
change from one subproblem to the next, the factorization of K will only change in its
last rows and its last columns. It is to be expected that simple changes to the
matrix A (as may result from quadratic programming applications) will result in
simple changes to the appropriate factorizations. For a discussion of the changes
which become necessary, see Sorensen (1977) and Bunch and Kaufman (1980).
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