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Abstract. The (optimal) function/gradient evaluations worst-case complexity analysis available
for the adaptive regularization algorithms with cubics (ARC) for nonconvex smooth unconstrained
optimization is extended to finite-difference versions of this algorithm, yielding complexity bounds
for first-order and derivative-free methods applied on the same problem class. A comparison with the
results obtained for derivative-free methods by Vicente [Worst Case Complexity of Direct Search,
Technical report, Preprint 10-17, Department of Mathematics, University of Coimbra, Coimbra,
Portugal, 2010] is also discussed, giving some theoretical insight into the relative merits of various
methods in this popular class of algorithms.
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1. Introduction. We consider algorithms for the solution of the unconstrained
(possibly nonconvex) optimization problem

(1.1) min
x

f(x),

where we assume that f : Rn → R is smooth (in a sense to be specified later) and
bounded below. All numerical methods for the solution of the general problem (1.1)
are iterative and, starting from some initial guess x0, generate a sequence {xk} of
iterates approximating a critical point of f . A variety of algorithms of this form exist,
and they are often classified according to their requirements in terms of computing
derivatives of the objective function. First-order methods are methods which use
f(x) and its gradient ∇xf(x), and derivative-free (or zeroth order) methods are those
which only use f(x), without any gradient computation. This paper is concerned with
estimating worst-case bounds on the number of objective function and/or gradient
calls that are necessary for the specific methods in these two classes to compute
approximate critical points for (1.1), starting from arbitrary initial guesses x0. These
bounds in turn provide upper bounds on the complexity of solving (1.1) with general
algorithms in the first-order or derivative-free classes.

Worst-case complexity analysis for optimization methods probably really started
with Nemirovski and Yudin (1983), where the notion of oracle (or black-box) com-
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plexity was introduced. Instead of expressing complexity in terms of simple operation
counts, the complexity of an algorithm is measured by the number of calls this al-
gorithm makes, in the worst case, to an oracle (the computation of the objective
function or the gradient values, for instance) in order to successfully terminate. Many
results of that nature have been derived since, mostly on the convex optimization
problem (see, for instance, Nesterov (2004), (2008), Nemirovski (1994), Agarwal et al.
(2009)), but also for the nonconvex case (see Vavasis (1992a), (1992b), (1993), Nes-
terov and Polyak (2006), Gratton, Sartenaer, and Toint (2008), Cartis, Gould, and
Toint (2011a), (2011c), (2010), (2012), or Vicente (2010)). Of particular interest
here is the adaptive regularizations with cubics (ARC) algorithm independently pro-
posed by Griewank (1981), Weiser, Deuflhard, and Erdmann (2007), and Nesterov
and Polyak (2006), whose worst-case iteration complexity1 was shown in the last of
these references to be of O(ε−3/2), for finding an approximate solution x∗ such that
the gradient at x∗ is smaller than ε in norm. This result was extended by Cartis,
Gould, and Toint (2011c) to an algorithm no longer requiring the computation of ex-
act second derivatives, but merely of a suitably accurate approximation.2 Moreover,
Cartis, Gould, and Toint (2010), (2011b) showed that when exact second derivatives
are used, this complexity bound is tight and is optimal within a large class of second-
order methods.

The purpose of the present paper is to use the freedom left in Cartis, Gould,
and Toint (2011c) to approximate the objective function’s Hessian so as to derive
complexity bounds for finite-difference methods in exact arithmetic, and thereby es-
tablish upper bounds on the oracle complexity of methods for solving unconstrained
nonconvex problems, where the oracle consists of evaluating objective-function and/or
gradient values. The ARC algorithm and the associated known complexity bounds
are recalled in section 2. Section 3 investigates the case of a first-order variant in
which the objective function’s Hessian is approximated by finite differences in gradi-
ent values, while section 4 considers a derivative-free variant where the gradient of
f is computed by central differences and its Hessian by forward differences. These
results are finally discussed and compared to existing complexity bounds by Vicente
(2010) in section 5.

2. The ARC algorithm and its oracle complexity. The adaptive regular-
ization with cubics (ARC) algorithm is based on the approximate minimization, at
iteration k, of (the possibly nonconvex) cubic model

(2.1) mk(s) = f(xk) + 〈gk, s〉+ 1
2 〈s,Bks〉+ 1

3σk‖s‖3,

where 〈·, ·〉 denotes the Euclidean inner product and ‖·‖ the Euclidean norm. Here Bk

is a symmetric n × n approximation of ∇xxf(xk), σk > 0 is a regularization weight,
and

(2.2) gk = ∇xmk(0) = ∇xf(xk).

1That is, its oracle complexity for a choice of the oracle corresponding to the computation of the
objective function and its first and second derivatives.

2This method also abandoned global optimization of the underlying cubic model and avoided an
a priori knowledge of the objective function’s Hessian’s Lipschitz constant, two assumptions made
by Nesterov and Polyak (2006).
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By “approximate minimization,” we mean that a step sk is computed that satisfies

〈gk, sk〉+ 〈sk, Bksk〉+ σk‖sk‖3 ≤ 0,(2.3)

〈sk, Bksk〉+ σk‖sk‖3 ≥ 0,(2.4)

mk(sk) ≤ mk(s
C
k ),(2.5)

with

(2.6) sCk = −αC
k gk and αC

k = argmin
α≥0

mk(−αgk)

and

(2.7) ‖∇xmk(sk)‖ = ‖gk +Bksk + (σk‖sk‖)sk‖ ≤ κθ min[1, ‖sk‖] ‖gk‖
for some given constant κθ ∈ (0, 1).

As noted in Cartis, Gould, and Toint (2011c), conditions (2.3) and (2.4) must
hold if sk minimizes the model along the direction sk/‖sk‖, while (2.7) holds by
continuity if sk is sufficiently close to a first-order critical point of mk. Moreover,
(2.5)–(2.6) are nothing but the familiar Cauchy-point decrease condition. Fortunately,
these conditions can be ensured algorithmically. In particular, conditions (2.3)–(2.7)
hold if sk is a (computable) global minimizer of mk (see Griewank (1981), Nesterov
and Polyak (2006); see also Cartis, Gould, and Toint (2011a)). Note that, since
∇xmk(0) = ∇xf(xk), (2.7) may be interpreted as requiring a relative reduction in
the norm of the model’s gradient at least equal to κθ min[1, ‖sk‖].

The ARC algorithm may then be stated as follows.

Algorithm 2.1: ARC.

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy
threshold ε ∈ (0, 1) and constants γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and
σ0 > 0. Set k = 0.

Step 1: If ‖∇xf(xk)‖ ≤ ε, terminate with approximate solution xk.
Step 2: Compute any Hessian approximation Bk.
Step 3: Compute a step sk satisfying (2.3)–(2.7).
Step 4: Compute f(xk + sk) and

(2.8) ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
.

Step 5: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise.

Step 6: Set

(2.9) σk+1 ∈
⎧⎨
⎩

(0, σk] if ρk > η2,
[σk, γ1σk] if η1 ≤ ρk ≤ η2,
[γ1σk, γ2σk] otherwise.

Step 7: Increment k by one and return to Step 1.
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We denote by

S = {k ≥ 0 | ρk ≥ η1}

the set of successful iterations, and by

(2.10) Sj = {k ∈ S | k ≤ j} and Uj = {0, . . . , j} \ Sj

the sets of successful and unsuccessful iterations up to iteration j.
It is not the purpose of the present paper to discuss implementation issues or con-

vergence theory for the ARC algorithm, but we need to recall from Cartis, Gould, and
Toint (2011c) the main complexity results for this method, as well as the assumptions
under which these hold.

We first restate our assumptions.
A.1. The objective function f is twice continuously differentiable on R

n, and its gradi-
ent and Hessian are Lipschitz continuous on the path of iterates with Lipschitz
constants Lg and LH , respectively, i.e., for all k ≥ 0 and all α ∈ [0, 1],

(2.11) ‖∇xf(xk)−∇xf(xk + αsk)‖ ≤ Lgα‖sk‖

and

(2.12) ‖∇xxf(xk)−∇xxf(xk + αsk)‖ ≤ LHα‖sk‖.

A.2. The objective function f is bounded below; that is, there exists a constant
flow > −∞ such that

f(x) ≥ flow

for all x ∈ R
n.

A.3. For all k ≥ 0, the Hessian approximation Bk satisfies

(2.13) ‖Bk‖ ≤ κB

and

(2.14) ‖(∇xxf(xk)−Bk)sk‖ ≤ κBH‖sk‖2

for some constants κB > 0 and κBH > 0.
We start by noting that the form of the cubic model (2.1) ensures a crucial bound

on the step norm and model decrease.
Lemma 2.1. Suppose that we apply the ARC algorithm to problem (1.1), and also

that (2.3), (2.4), and (2.5) hold. Then

(2.15) ‖sk‖ ≤ 3

σk
max

[
‖Bk‖,

√
σk‖gk‖

]
and

(2.16) mk(sk) ≤ f(xk)− 1
6σk‖sk‖3.

Proof. See Lemma 2.2 in Cartis, Gould, and Toint (2011a) for the proof of (2.15)
and Lemma 4.2 in Cartis, Gould, and Toint (2011c) for that of (2.16).
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For our purposes it is also useful to consider the following bounds on the value of
the regularization parameter.

Lemma 2.2. Suppose that we apply the ARC algorithm to problem (1.1), and
also that A.1 and (2.13) hold. Then there exists a problem-dependent constant κσ > 0
such that, for all k ≥ 0,

(2.17) σk ≤ max
[
σ0,

κσ

ε

]
.

If, in addition, (2.14) also holds, then there exists a problem-dependent constant
σmax > 0 independent of ε such that, for all k ≥ 0,

(2.18) σk ≤ σmax.

Proof. See Lemmas 3.2 and 3.3 in Cartis, Gould, and Toint (2011c) for the proof
of (2.17) and Lemma 5.2 in Cartis, Gould, and Toint (2011a) for that of (2.18). Note
that both of these proofs crucially depend on the identity (2.2), which means they
have to be revisited if this equality fails.

Without loss of generality, we assume in what follows that ε is small enough
for the second term in the max of (2.17) to dominate, and thus that (2.17) may be
rewritten to state that, for all k ≥ 0,

(2.19) σk ≤ κσ

ε
.

If (2.18) holds, then, crucially, the step sk can then be proved to be sufficiently long
compared to the gradient’s norm at iteration k + 1.

Lemma 2.3. Suppose that we apply the ARC algorithm to problem (1.1), and also
that A.1 and A.3 hold. Then, for all k ≥ 0, one has that, for some κg > 0,

(2.20) ‖sk‖ ≥ κg

√
‖∇xf(xk + sk)‖.

Proof. See Lemma 5.2 in Cartis, Gould, and Toint (2011c).
The final important observation in the complexity analysis is that the total num-

ber of iterations required by the ARC algorithm to terminate may be bounded in
terms of the number of successful iterations needed.

Lemma 2.4. Suppose that we apply the ARC algorithm to problem (1.1), and also
that A.1 and A.3 hold and, for any fixed j ≥ 0, let Sj and Uj be defined in (2.10).
Assume also that

(2.21) σk ≥ σmin

for all k ≤ j and some σmin > 0. Then one has that

(2.22) |Uj | ≤
⌈
(|Sj |+ 1)

1

log γ1
log

(
σmax

σmin

)⌉
.

Proof. See Theorem 2.1 in Cartis, Gould, and Toint (2011c). Observe that this
proof uniquely depends on the mechanism used in the algorithm for updating σk, and
it is independent of the values of gk or Bk.

Combining those results and using A.2 then yields the following oracle complexity
theorem.
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Theorem 2.5. Suppose that we apply the ARC algorithm to problem (1.1), and
also that A.1–A.3 hold, that ε ∈ (0, 1) is given, and that (2.21) holds. Then the
algorithm terminates after at most

(2.23) Ns
1

def
= 1 +

⌈
κs
Sε

−3/2
⌉

successful iterations and at most

(2.24) N1
def
=

⌈
κSε

−3/2
⌉

iterations in total, where

(2.25) κs
S

def
= (f(x0)− flow)/(η1αS), αS

def
= (σminκ

3
g)/6,

and

(2.26) κS
def
= (1 + κu

S)(2 + κs
S), κu

S
def
= log(σmax/σmin)/ log γ1,

with κg and σmax defined in (2.20) and (2.18), respectively. As a consequence, the
algorithm terminates after at most Ns

1 gradient evaluations and at most N1 objective
function evaluations.

Proof. See Corollary 5.3 in Cartis, Gould, and Toint (2011c).
The bound given by (2.23) is known to be qualitatively3 tight and optimal for a

wide class of second-order methods (see Cartis, Gould, and Toint (2010), (2011b)).

3. A first-order finite-difference ARC variant. The objective of this section
is to extend the ARC algorithm to a version using finite differences in gradients to
compute the Hessian approximationBk. If the accuracy of the finite-difference scheme
is high enough to ensure that (2.14) holds, then one might expect that a worst-case
iteration complexity similar to (2.23)–(2.24) would hold, thereby providing a first
worst-case oracle complexity estimate for first-order methods applied to nonconvex
unconstrained problems.

For defining this algorithm, which we will refer to as the ARC-FDH algorithm,
we only need to specify the details of the estimation of Bk. We consider computing
this latter matrix by first using n forward gradient differences at xk with stepsize hk,
and then symmetrizing the result, that is,

(3.1) [Ak]i,j =

[∇xf(xk)−∇xf(xk + hkej)

hk

]
i

and Bk = 1
2 (Ak + AT

k )

(where ej is the jth vector of the canonical basis). It is well known (see Nocedal and
Wright (1999, section 7.1)) that

(3.2) ‖∇xxf(xk)−Bk‖ ≤ κeHghk

for some constant κeHg ∈ [0, LH ]. The only remaining issue is therefore to define a
procedure guaranteeing that

(3.3) hk ≤ κhs‖sk‖
3The constants may not be optimal.
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for some κhs > 0 and all k ≥ 0. As we show below, this can be achieved if we consider
the ARC-FDH algorithm given next, where κhs ≥ 1.

Algorithm 3.1: ARC-FDH.

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy
threshold ε ∈ (0, 1) and constants γ2 ≥ γ1 > 1, γ3 ∈ (0, 1), 1 > η2 ≥ η1 >
0, and σ0 > 0. If ‖∇xf(x0)‖ ≤ ε, terminate. Otherwise, set k = 0, j = 0
and choose an initial stepsize h0,0 ∈ (0, 1].

Step 1: Estimate Bk,j using (3.1) with stepsize hk,j .
Step 2: Compute a step sk,j satisfying (2.3)–(2.7).
Step 3: Compute ∇xf(xk + sk,j). If ‖∇xf(xk + sk,j)‖ ≤ ε, terminate with

approximate solution xk + sk,j .
Step 4: If

(3.4) hk,j > κhs‖sk,j‖,

set hk,j+1 = γ3hk,j , increment j by one, and return to Step 1. Otherwise,
set sk = sk,j and hk = hk,j .

Step 5: Compute f(xk + sk) and

(3.5) ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
.

Step 6: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise.

Step 7: Set

(3.6) σk+1 ∈
⎧⎨
⎩

(0, σk] if ρk > η2,
[σk, γ1σk] if η1 ≤ ρk ≤ η2,
[γ1σk, γ2σk] otherwise.

Step 8: Set hk+1,0 = hk and j = 0. Increment k by one and return to Step 1 if
ρk ≥ η1, or to Step 2 otherwise.

By convention and analogously to our notation for sk and hk, we denote by Bk the
approximation Bk,j obtained at the end of the loop between Steps 1 and 4. Clearly,
the test (3.4) in Step 4 ensures that (3.3) holds, as requested. Observe that because
the norm of the step is monotonically decreasing as a function of σk (see Lemma 6.4
in Cartis, Gould, and Toint (2011a)), it decreases at an unsuccessful iteration, which
might then possibly require a new evaluation of the approximate Hessian in order to
preserve (3.3). Observe also that the mechanism of the algorithm implies that the
positive sequence {hk} is nonincreasing and bounded above by h0,0 ≤ 1.

It now remains to show that this algorithm is well defined, which we do under the
additional assumption that the (true) gradients remain bounded at all iterates. Since
the sequence {f(xk} is monotonically decreasing, this condition can, for instance, be
ensured by assuming bounded gradients of the level set {x ∈ R

n | f(x) ≤ f(x0)}.
A.4: There exists a constant κubg ≥ 0 such that, for all k ≥ 0,

‖∇xf(xk)‖ ≤ κubg.
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Lemma 3.1. Suppose that we apply the ARC-FDH algorithm to problem (1.1),
and also that A.1 and A.4 hold. Then (2.13) holds with

(3.7) κB

def
= max[κeHg + Lg,

√
κσκubg ] ≥ √

κσκubg

and, for all k ≥ 0 and all j ≥ 0,

(3.8) ‖sk,j‖ ≥ (1− κθ) ε

max
[
4κB, κB + 3

√
σkκubg

] .
Proof. We first note that (2.11) ensures that ‖∇xxf(xk)‖ ≤ Lg for all k ≥ 0 and

therefore that

(3.9)
‖Bk,j‖ ≤ ‖Bk,j −∇xxf(xk)‖+ ‖∇xxf(xk)‖

≤ κeHg + Lg ≤ max[κeHg + Lg,
√
κσκubg ],

where we used the triangle inequality, the bound hk,j ≤ h0,0 ≤ 1, and (3.2). Hence
(2.13) holds with (3.7). Observe now that (2.2) and the mechanism of the algorithm
then imply that, as long as the algorithm has not terminated,

(3.10) ‖gk‖ > ε.

We know from (2.7) and (2.2) that, for all k ≥ 0,

κθ min[1, ‖sk,j‖] ‖gk‖ ≥ ‖∇xmk(0) +Bk,jsk,j + (σk‖sk,j‖)sk,j‖
≥ ‖gk‖ − ‖Bk,jsk,j + (σk‖sk,j‖)sk,j‖,

and thus, using (3.10), that

‖Bk,jsk,j + (σk‖sk,j‖)sk,j‖ ≥ (1 − κθ)‖gk‖ > (1 − κθ)ε.

Taking this bound, (2.13) with (3.7), (2.15), (2.2), and A.4 into account, we deduce
that

(1 − κθ)ε < κB‖sk,j‖+ σk‖sk,j‖2

≤
{
κB + 3max

[
‖Bk,j‖,

√
σk‖gk‖

]}
‖sk,j‖

≤ {
κB + 3max

[
κB,

√
σkκubg

] } ‖sk,j‖,
proving (3.8).

We are now able to deduce that the inner loop of the ARC-FDH algorithm ter-
minates in a bounded number of iterations and hence that the desired accuracy on
the Hessian approximation is obtained.

Lemma 3.2. Suppose that we apply the ARC-FDH algorithm to problem (1.1),
and also that A.1, A.4, and (2.21) hold. Then the total number of times where a
return from Step 4 to Step 1 is executed in the algorithm is bounded above by

(3.11)

⌈
log κh + 3

2 log ε

log γ3

⌉
+

,

where κh > 0 is a problem-dependent constant and where �α+ denotes the maximum
of zero and the first integer larger than or equal to α. Moreover A.3 holds.
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Proof. Inequality (3.8) and (2.19) give that, for j ≥ 0,

(3.12) (1 − κθ)ε ≤ max

[
4κB, κB + 3

√
κσκubg

ε

]
‖sk,j‖ ≤ 4κB

ε1/2
‖sk,j‖,

where we have used the bound κB ≥ √
κσκubg and the inclusion ε ∈ (0, 1) to deduce

the last inequality. Now the loop between Steps 1 and 4 of the ARC-FDH algorithm
terminates as soon as (3.4) is violated, which must happen if j is large enough to
ensure that

(3.13) hk,j = γj
3hk,0 ≤ γj

3 ≤ κhs(1 − κθ)

4κB

ε3/2 ≤ κhs‖sk,j‖,

where we have successively used the mechanism of the algorithm, and (3.12). The
second inequality in (3.13) and the decreasing nature of the sequence {hk} then ensures
that (3.3) must hold for all j after at most (3.11) (with κh = κhs(1 − κθ)/4κB)
reductions of the stepsize by γ3, which proves the first part of the lemma. Finally,
(3.3) and (3.2) imply also that (2.14) holds for Bk. This with (2.13) ensures that A.3
is satisfied.

We may then conclude with our main result for this section.
Theorem 3.3. Suppose that we apply the ARC-FDH algorithm to problem (1.1),

and also that A.1, A.2, and A.4 hold, that ε ∈ (0, 1) is given, and that (2.21) holds.
Then the algorithm terminates after at most

(3.14) Ns
1

def
= 1 +

⌈
κs
Sε

−3/2
⌉

successful iterations and at most

(3.15) N1
def
=

⌈
κSε

−3/2
⌉

iterations in total, where κs
S and κS are given by (2.25) and (2.26), respectively. As a

consequence, the algorithm terminates after at most

(3.16) (n+ 1)Ns
1 + n

⌈
log κh + 3

2 log ε

log γ3

⌉
+

gradient evaluations and at most N1 objective function evaluations.
Proof. Lemma 3.2 ensures that A.3 holds. Theorem 2.5 is thus applicable and

the number of successful iterations is therefore bounded by (2.23), while the total
number of iterations is bounded by (2.24). The bound (3.16) and the bound of the
number of function evaluations then follow from Lemma 3.2 and the observation that,
in addition to the computation of ∇xf(xk) (at successful iterations only) and f(xk),
each successful iteration involves an estimation of the Hessian by finite differences,
each of which requires n gradient evaluations, plus possibly at most (3.11) additional
Hessian estimations at the same cost.

Very broadly speaking, we therefore require at most

(3.17) O

(
n

[⌈
1

ε3/2

⌉
+ �| log ε|

])

gradient and

O

(⌈
1

ε3/2

⌉)
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function evaluations in the worst case. Both bounds are qualitatively very similar to
the bound (2.24) for the original ARC algorithm.

We close this section by observing that better bounds may be obtained by re-
considering the technique used to decrease hk. The technique described in Algorithm
ARC-DFH is based on a linear decrease, specifically by the choice hk,j+1 = γ3hk,j ,
leading, as explained in the proof of Lemma 3.2, to a factor log ε (see (3.11)). We
could equally choose a faster exponential decrease, with hk,j+1 = hα

k,j for any α > 1,
and hk,0 < 1, leading to a bound of the form

⌈
log[log κh + 3

2 log ε]− log log hk,0

logα

⌉
+

instead of (3.11). In fact, an arbitrarily slow increase in ε for the latter bound can
be achieved by selecting a suitably fast decreasing scheme for hk. However, the
significance of such improvements is limited when one measures their impact on the
overall complexity of the algorithm. Indeed, for values of ε sufficiently small to be
of interest, | log ε| < ε−3/2 and the term (n+ 1)Ns

1 completely dominates the second
term in the bound (3.16). Decreasing the second term, even significantly, therefore
results in a very marginal theoretical improvement.

Better bounds can also be obtained if we assume that the Hessian has a known
sparsity pattern. The finite-difference scheme may then be adapted (see Powell and
Toint (1979), or Goldfarb and Toint (1984)) to require much fewer than n gradient
differences to obtain a Hessian approximation, in which case the factor n in (3.17)
may often be replaced by a small constant. Similar gains can be obtained if f is
partially separable (Griewank and Toint (1982)). Finally, parallel evaluations of the
gradient in Step 1 may also result in substantial computational savings.

4. A derivative-free ARC variant. We are now interested in pursuing the
same idea further and considering a derivative-free variant of the ARC algorithm,
where both gradients and Hessians are approximated by finite differences. However,
this introduces two additional difficulties: the approximation techniques used for the
gradient and Hessian should be clarified, and some results we relied on in the previous
section (in particular Lemmas 2.2 and 2.3) have to be revisited because they depend
on the true gradient of the objective function, which is no longer available.

Consider the approximation of gradients and Hessians first. From the discussion
above, we see that preserving (2.14) is necessary for using results for the original ARC
algorithm. It is then natural to seek a higher degree of accuracy for the gradient itself,
since this is the quantity that the algorithm drives to zero. We therefore suggest using
a central difference scheme for the gradient, approximating the ith component of the
gradient at xk by

(4.1) [gk]i =
f(xk + tkei)− f(xk − tkei)

2tk

for some stepsize tk > 0. It is well known (see Nocedal and Wright (1999, section 7.1))
that such a scheme ensures the bound

(4.2) ‖∇xf(xk)− gk‖ ≤ κegtt
2
k

for some constant κegt ∈ [0, LH ], where gk is now the vector approximating ∇xf(xk),
i.e., whose ith component is given by (4.1). Similarly, we may approximate the (i, j)th
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entry of the Hessian at xk by a difference quotient and symmetrize the result, yielding

(4.3)
[Ak]i,j =

f(xk + tkei + tkej)− f(xk + tkei)− f(xk + tkej) + f(xk)

t2k
and Bk = 1

2 (Ak +AT
k )

(see Nocedal and Wright (1999, section 7.1)). This implies the error bound

(4.4) ‖∇xxf(xk)−Bk‖ ≤ κeHttk

for some constant κeHt ∈ [0, LH ]. Note that (4.4) gives the same type of error bound
as (3.2) above, and we are again interested in an algorithm which guarantees (2.14)
from (4.4), i.e., such that

(4.5) tk ≤ κts‖sk‖

for all k ≥ 0 and some constant κts > 0.
The gradient approximation scheme also raises the question of proper termina-

tion of any algorithm using gk rather than ∇xf(xk). Since this latter quantity is
unavailable by assumption, it is impossible to test its norm against the threshold ε.
The next best thing is to test ‖gk‖ for a sufficiently small difference stepsize tk. More
specifically, if

(4.6) ‖gk‖ ≤ 1
2ε and tk ≤

√
ε

2κegt

def
= tε,

then (4.2) and the triangle inequality ensure that ‖∇xf(xk)‖ ≤ ε, as requested. In
what follows, we assume that we know a suitable value for κegt or, equivalently, of tε,
and then use (4.6) for detecting an approximate first-order critical point. The worst-
case complexity is therefore to be understood as the maximum number of function
evaluations necessary for the test (4.6) to hold.

Using these ideas, we may now state the ARC-DFO variant of the ARC algorithm
(see Algorithm 4.1).

As was the convention for the ARC-FDH algorithm above, we denote by Bk, gk,
and g+k the quantities Bk,j , gk,j , and g+k,j obtained at the end of the loop between
Steps 3 and 7 (we show below that this loop terminates finitely). It is also clear
that the stepsizes tk are monotonically decreasing. We also see that Step 7 ensures
(4.5). We next verify that the Hessian approximations remain bounded and that loop
between Steps 3 and 7 always terminates after a finite number of iterations.

Lemma 4.1. Suppose that we apply the ARC-DFO algorithm to problem (1.1),
and also that A.1 and A.4 hold. Then there exist constants κB > 1 and κng > 0 such
that if Bk,j is estimated at Step 3, then

(4.7) ‖gk‖ ≤ κng and ‖Bk‖ ≤ κB

for all k ≥ 0. Moreover, we have that, for all j ≥ 0,

(4.8) ‖sk,j‖ ≥ (1 − κθ) ε

max
[
4κB, κB + 3

√
σkκubg

]
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Algorithm 4.1: ARC-DFO.

Step 0: An initial starting point x0 is given, as well as a user-defined accuracy
threshold ε ∈ (0, 1) and constants γ2 ≥ γ1 > 1, γ3 ∈ (0, 1), 1 > η2 ≥ η1 >
0, and σ0 > 0. Choose a stepsize t0,0 ≤ tε. Set k = 0 and j = 0.

Step 1: Estimate g0,0 using (4.1) with stepsize t0,j .
Step 2: If ‖g0,j‖ ≤ 1

2ε, terminate with approximate solution x0.
Step 3: Estimate Bk,j using (4.3) with stepsize tk,j .
Step 4: Compute a step sk,j satisfying (2.3)–(2.7).
Step 5: Estimate g+k,j using (4.1) with xk replaced by xk+sk,j and the stepsize

tk,j .
Step 6: If ‖g+k,j‖ ≤ 1

2 ε, terminate with approximate solution xk + sk,j .
Step 7: If

(4.9) tk,j > κts min[‖sk,j‖, ‖gk,j‖],

set tk,j+1 = γ3tk,j , increment j by one, and return to Step 3. Otherwise,
set sk = sk,j and tk = tk,j .

Step 8: Compute f(xk + sk) and

(4.10) ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
.

Step 9: Set

xk+1 =

{
xk + sk if ρk ≥ η1,
xk otherwise

and gk+1,0 =

{
g+k,j if ρk ≥ η1,

gk,j otherwise.

Step 10: Set

(4.11) σk+1 ∈
⎧⎨
⎩

(0, σk] if ρk > η2,
[σk, γ1σk] if η1 ≤ ρk ≤ η2,
[γ1σk, γ2σk] otherwise.

Step 11: Set tk+1,0 = tk and j = 0. Increment k by one and return to Step 3
if ρk ≥ η1, or to Step 4 otherwise.

and there exists a κ(σk) > 0 such that, at iteration k of the algorithm, the loop between
Steps 3 and 7 terminates in at most

(4.12)

⌈
log κ(σk) + log ε

log γ3

⌉
+

iterations. Finally, the inequalities

(4.13) ‖gk −∇xf(xk)‖ ≤ κegtκts‖sk‖2,

(4.14) ‖g+k −∇xf(xk + sk)‖ ≤ κegtκts‖sk‖2,
and

(4.15) ‖Bk −∇xxf(xk)‖ ≤ κeHtκts‖sk‖
hold for each k ≥ 0.
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Proof. Consider iteration k. As in Lemma 3.1, we obtain that ‖Bk,j‖ ≤ κB and
therefore that the second inequality in (4.7) holds. The proof of the first is similar in
spirit:

‖gk‖ ≤ ‖gk −∇xf(xk)‖+ ‖∇xf(xk)‖ ≤ κegt + κubg

def
= κng,

where we used (4.2), the inequality tk,j ≤ t0,0 ≤ 1, and A.4. Observe now that the
mechanism of the algorithm implies that, as long as the algorithm has not terminated,

(4.16) ‖gk‖ ≥ 1
2ε.

As in the proof of Lemma 3.1 (using (4.16) instead of (3.10)), we may now derive that
(4.8) holds for all k and all j ≥ 0. Defining

μ(σk)
def
=

1− κθ

max
[
4κB, κB + 3

√
σkκubg

] ,
we may then use this lower bound to deduce that the loop between Steps 3 and 7
terminates as soon as (4.9) is violated, which must happen if j is large enough to
ensure that

(4.17) tk,j = γj
3tk,0 ≤ γj

3 ≤ κts min [μ(σk), 1
2 ] ε ≤ κts min[‖sk,j‖, ‖gk‖],

where we used (4.16) to derive the last inequality. This implies that j never exceeds⌈
log {[κts min [μ(σk), 1

2 ]}+ log ε

log γ3

⌉
+

,

which in turn yields (4.12) with κ(σk)
def
= κts min [μ(σk), 1

2 ]. Since the loop between
Steps 3 and 7 always terminates finitely, (4.5) holds for all k ≥ 0, and the inequalities
(4.13)–(4.15) then follow from (4.2) and (4.4).

Unfortunately, several of the basic properties of the ARC algorithm mentioned
in section 2 can no longer be extended here. This is the case of (2.19), (2.18), and
(2.20), which we thus need to reconsider.

The proof of (2.19) is involved and needs to be restarted from the Cauchy condi-
tion (2.5)–(2.6). This condition is known to imply the inequality

(4.18) f(xk)−mk(sk) ≥ κC‖gk‖min

⎡
⎣ ‖gk‖
1 + ‖Bk‖ ,

√
‖gk‖
σk

⎤
⎦

for some constant κC ∈ (0, 1) (see Lemma 1.1 in Cartis, Gould, and Toint (2011a)).
We may then build on this relation in the next two useful lemmas inspired by Cartis,
Gould, and Toint (2011a).

Lemma 4.2 (see Lemma 3.2 in Cartis, Gould, and Toint (2011a)). Suppose that
we apply the ARC-DFO algorithm to problem (1.1), and also that A.1 and A.4 hold
and that

(4.19)
√
σk‖sk‖ ≥ 108

√
2

1− η2
(Lg + κegtκ

2
ts(κubg + κegt) + κB)

def
= κHB.

Then iteration k of the algorithm is successful with (ρk ≥ η2) and

(4.20) σk+1 ≤ σk.
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Proof. From (4.19), we have that gk �= 0, since otherwise the algorithm would
have stopped. Thus (4.18) implies that f(xk) > mk(sk). It then follows from (4.10)
that

ρk > η2 ⇔ νk
def
= f(xk + sk)− f(xk)− η2[mk(sk)− f(xk)] < 0.

We immediately note that, for k ≥ 0,

νk = f(xk + sk)−mk(sk) + (1− η2)[mk(sk)− f(xk)].

We then develop the first term on the right-hand side of this expression using a Taylor
expansion of f(xk + sk), giving that, for k ≥ 0,

(4.21) f(xk + sk)−mk(sk) = 〈∇xf(ξk)− gk, sk〉 − 1
2 〈sk, Bksk〉 − 1

3σk‖sk‖3

for some ξk in the segment (xk, xk + sk). But we observe that

‖∇xf(ξk)− gk‖ ≤ ‖∇xf(ξk)−∇xf(xk)‖ + ‖∇xf(xk)− gk‖
≤ Lg‖sk‖+ κegtt

2
k

≤ Lg‖sk‖+ κegtκ
2
ts‖sk‖ ‖gk‖

≤ [Lg + κegtκ
2
ts
(‖∇xf(xk)‖+ ‖∇xf(xk)− gk‖)]‖sk‖

≤ [Lg + κegtκ
2
ts
(κubg + κegt)]‖sk‖,

where we successively used the triangle inequality, (2.11), (4.2), the negation of (4.9),
A.4, and the inequality tk ≤ 1. Thus the Cauchy–Schwarz inequality, (4.21), and the
second inequality of (4.7) give that, for k ≥ 0,

(4.22) f(xk + sk)−mk(sk) ≤ [Lg + κegtκ
2
ts(κubg + κegt) + κB] ‖sk‖2.

The proof of the lemma then follows exactly as in Lemma 3.2 in Cartis, Gould,
and Toint (2011c), using (4.18), with (4.22) playing the role of inequality (3.9) and
Lg + κegtκts(κubg + κegt) playing the role of κH.

We may then recover boundedness of the regularization parameters.
Lemma 4.3. Suppose that we apply the ARC-DFO algorithm to problem (1.1),

and also that A.1 and A.4 hold. Then there exists a κσ > 0 such that (2.17) holds for
all k ≥ 0.

Proof. The proof is identical to that of Lemma 3.3 in Cartis, Gould, and Toint

(2011a), giving κσ
def
= γ2κ

2
HB.

Again, we replace (2.17) by (2.19) and, since κσ does not depend on κB, possibly
increase κB to ensure that κB ≥ κσκubg without loss of generality. Armed with these
results, we may return to Lemma 4.1 above and obtain stronger conclusions.

Lemma 4.4. Suppose that we apply the ARC-DFO algorithm to problem (1.1),
and also that A.1 and A.4 hold. Then there exists a constant κt > 0 such that the
return from Step 7 to Step 3 of the algorithm can only be executed at most

(4.23)

⌈
log κt + 3

2 log ε

log γ3

⌉
+

times during the entire run of the algorithm.
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Proof. Replacing (2.17) into (4.8) and using the fact that sk is just the last sk,j ,
we obtain that, for all k ≥ 0,

‖sk‖ ≥ (1− κθ) ε

max
[
4κB, κB + 3

√
κσκubg/ε

] ≥ (1− κθ) ε
3/2

4κB

def
= κsεε

3/2.

Thus no return from Step 7 to Step 3 of the ARC-DFO algorithm is possible from the
point where j ≥ 0, the total number of times this return is executed, is large enough
to ensure that

tk,j = γj
3t0,0 ≤ γj

3 ≤ κts min
[
κsεε

3/2, 1
2ε
]
≤ κts min [ ‖sk,j‖, ‖gk,j‖ ] ,

where we have derived the last inequality using the fact that ‖gk,j‖ ≥ 1
2ε as long as

the algorithm has not terminated. This imposes that

j ≤ 1

log γ3
min [ log (κtsκsε) + 3

2 log ε, log (
1
2κts) + log ε ] ,

and the desired bound on j follows with κt = κts min[κsε, 1
2 ].

We may also revisit the second part of Lemma 2.2 in the derivative-free context.
Our proof is directly inspired by Lemma 5.2 in Cartis, Gould, and Toint (2011a).

Lemma 4.5. Suppose that we apply the ARC-DFO algorithm to problem (1.1),
and also that A.1 and A.4 hold. Then there exists a σmax > 0 independent of ε such
that (2.18) holds for all k ≥ 0.

Proof. Using (2.1), the Cauchy–Schwarz and the triangle inequalities, (4.13),
(2.12), and (4.15), we know that

|f(xk + sk)−mk(sk)| ≤ ‖∇xf(xk)− gk‖ ‖sk‖
+ 1

2 [ ‖∇xxf(ξk)−∇xxf(xk)‖+ ‖∇xxf(xk)−Bk‖ ] ‖sk‖2
− 1

3σk‖sk‖3
≤ [κegtκts + 1

2 (LH + κeHtκts)− 1
3σk] ‖sk‖3

for some ξk ∈ [xk, xk + sk]. Thus, using (4.10) and (2.16),

|ρk − 1| =
∣∣∣∣f(xk + sk)−mk(sk)

f(xk)−mk(sk)

∣∣∣∣ ≤ κegtκts + 1
2 (LH + κeHtκts)− 1

3σk

1
6σk

≤ 1− η2

as soon as

σk ≥ 2κegtκts + LH + κeHtκts

1− 1
3η2

.

As a consequence, iteration k is then successful, ρk ≥ η2, and σk+1 ≤ σk. It then
follows that (2.18) holds with

σmax = max

[
σ0,

γ2(2κegtκts + LH + κeHtκts)

1− 1
3η2

]
.

It then remains to show that, under (4.13)–(4.15), an analogue of Lemma 2.3
holds for the derivative-free case.
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Lemma 4.6. Suppose that we apply the ARC-DFO algorithm to problem (1.1),
and also that A.1 and A.4 hold. Then there exists a constant κg > 0 such that, for all
k ≥ 0,

(4.24) ‖sk‖ ≥ κg

√
‖g+k ‖.

Proof. We first observe, using the triangle inequality, (4.14), and (2.7), that

(4.25)

‖g+k ‖ ≤ ‖g+k −∇xf(xk + sk)‖ + ‖∇xf(xk + sk)−∇xmk(sk)‖
+ ‖∇xmk(sk)‖

≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)−∇xmk(sk)‖+ κθ min[1, ‖sk‖] ‖gk‖
for all k ≥ 0. The second term on this last right-hand side may then be bounded for
all k ≥ 0 by
(4.26)
‖∇xf(xk + sk)−∇xmk(sk)‖ ≤ ‖∇xf(xk)− gk‖

+

∥∥∥∥
∫ 1

0

[∇xxf(xk + αsk)−Bk] sk dα

∥∥∥∥+ σk‖sk‖2

≤ ‖∇xf(xk)− gk‖+ σk‖sk‖2

+

∥∥∥∥
∫ 1

0

[∇xxf(xk + αsk)−∇xxf(xk)]sk dα

∥∥∥∥
+

∥∥∥∥
∫ 1

0

[∇xxf(xk)−Bk]sk dα

∥∥∥∥
≤ maxα∈[0,1] ‖∇xxf(xk + αsk)−∇xxf(xk)‖ ‖sk‖

+(κeHt + κegt)κts‖sk‖2 + σmax‖sk‖2

≤ [LH + (κeHt + κegt)κts + σmax]‖sk‖2,
where we successively used the mean-value theorem, (2.1), the triangle inequality,
(2.12), (4.13), (4.15), and (2.18). We also have, using the triangle inequality, (4.13),
(2.11), and (4.14), that

‖gk‖ ≤ ‖gk −∇xf(xk)‖+ ‖∇xf(xk)‖
≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)‖+ Lg‖sk‖
≤ κegtκts‖sk‖2 + ‖∇xf(xk + sk)− g+k ‖+ ‖g+k ‖+ Lg‖sk‖
≤ 2κegtκts‖sk‖2 + ‖g+k ‖+ Lg‖sk‖,

which implies that, for all k ≥ 0,

(4.27) κθ min[1, ‖sk‖] ‖gk‖ ≤ (2κθκegtκts + κθLg)‖sk‖2 + κθ‖g+k ‖.
Therefore, substituting (4.26) and (4.27) into (4.25), we obtain that, for all k ≥ 0,

‖g+k ‖ ≤ κegtκts‖sk‖2+[LH+(κeHt+κegt)κts+σmax]‖sk‖2+(2κθκegtκts+κθLg)‖sk‖2+κθ‖g+k ‖.
Thus

(1− κθ)‖g+k ‖ ≤ [κθLg + LH + κts(κeHt + 2κegt(1 + κθ)) + σmax] ‖sk‖2
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for all k ≥ 0. This gives (4.24) with

κg
def
=

√
1− κθ

κθLg + LH + κts(κeHt + 2κegt(1 + κθ)) + σmax
.

We are thus in principle again ready to apply the oracle complexity results for
the ARC algorithm. Unfortunately, Theorem 2.5 may no longer be applied as such
(as it requires the true gradient of the objective function), but our final theorem is
derived in a very similar manner.

Theorem 4.7. Suppose that we apply the ARC-DFO algorithm to problem (1.1),
and also that A.1, A.2, and A.4 hold, that ε ∈ (0, 1) is given, and that (2.21) holds.
Then the algorithm terminates after at most

(4.28) Ns
1

def
= 1 +

⌈
κs
Sε

−3/2
⌉

successful iterations and at most

(4.29) N1
def
=

⌈
κSε

−3/2
⌉

iterations in total, where κs
S and κS are given by (2.25) and (2.26), respectively. As a

consequence, the algorithm terminates after at most

(4.30) (N1 −Ns
1)(1 + 2n) + Ns

1

[
n2 + 5n+ 2

2

]
+

[
n2 + 3n

2

] ⌈
log κt + 3

2 log ε

log γ3

⌉
+

objective-function evaluations.
Proof. If the ARC-DFO algorithm does not terminate before or at iteration k, we

know that

min[ ‖gj‖, ‖gj+1‖ ] ≥ 1
2ε

for j = 1, . . . , k. As a consequence, we deduce from the definition of successful itera-
tions, (2.16), and (4.24) that

f(xk)− f(xk+1) ≥ η1[f(xk)−mk(sk)] ≥ 1

48
σminη1κ

3
gε

3/2 for all k ∈ Sk.

Since the mechanism of the ARC-DFO algorithm ensures that the iterates remain
unchanged at unsuccessful iterations, summing up to iteration k, we therefore obtain
that

f(x0)− f(xk+1) =
∑
i∈Sk

[f(xi)− f(xi+1)] ≥ 1

48
σminη1κ

3
gε

3/2|Sk|.

Using now A.2, we conclude that

|Sk| ≤ 48(f(x0)− flow)

σminη1κ3
gε

3/2
,

from which (4.28) follows with

κs
S =

48(f(x0)− flow)

σminη1κ3
g

.
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We then use Lemma 2.4 to deduce (4.29). If we ignore the estimations of Bk,j in Step 3
after a return from Step 7, we now observe that each successful iteration involves up
to

1 + 2n+

(
n(n+ 1)

2

)

function evaluations, while unsuccessful iterations involve 1+2n evaluations. Adding
the two, we obtain a number of

(N1 −Ns
1)(1 + 2n) + Ns

1

[
1 + 2n+

n(n+ 1)

2

]

evaluations at most, to which we have to add those needed in the loop between Steps 3
and 7, whose number does not exceed[

n+
n(n+ 1)

2

] ⌈
log κt + 3

2 log ε

log γ3

⌉
+

.

The resulting grand total is then given by (4.30).
We may again considerably simplify this result (at the cost of a weaker bound).

If we assume that the terms in n2 and n dominate the constants, we obtain that, in
the worst case, at most

(4.31) O

(
n2 + 5n

2

[
1 + �| log ε|+ +

⌈
1

ε3/2

⌉
+

])

function evaluations are needed by the ARC-DFO algorithm to achieve approximate
criticality in the sense of (4.6). Again, known sparsity of the Hessian or partial
separability may reduce the factor n2 in (4.31) to (typically) a small multiple of n
or a small constant, thereby bridging the gap between ARC-DFO and ARC itself.
The potential benefits of using parallel evaluations of the objective function are even
more obvious here than for the ARC-FDH algorithm. Finally notice that automatic
differentiation may often be an alternative to derivative-free technology when the
source code for the evaluation of f is available, in which case the ARC-FDH algorithm
is the natural choice.

We conclude this section by noting that, as was the case for Algorithm ARC-FDH,
the bound (4.30) can be (marginally) improved by increasing the speed at which tk
decreases to zero in Step 7 of Algorithm ARC-DFO: the last term in (4.30) then
decreases correspondingly, but remains dominated by the first two for all values of ε
of interest.

5. Discussion and conclusions. Comparing algorithms on the basis of their
worst-case complexity is always an exercise whose interest is mostly theoretical, but
this is especially the case for what we have presented above. Indeed, several factors
limit the predictive nature of these results on the practical behavior of the considered
minimization methods. The first is obviously the worst-case nature of the efficiency
estimates, which (fortunately) can be quite pessimistic in view of expected or observed
efficiency. The second, which is specific to the results presented here, is the intrinsic
limitation induced by the use of finite-precision arithmetic. In the context of actual
computation, not only is it unrealistic to consider vanishingly small values of ε, but
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the choice of arbitrarily small finite-difference stepsizes is also very questionable,4 even
if difficulties caused by finite precision may be attenuated by using multiple-precision
packages. The following comments should therefore be considered as interesting the-
oretical considerations throwing some light on the fundamental differences between
algorithms, even if their practical relevance to actual numerical performance is poten-
tially remote. Designing and studying worst-case analysis in the presence of round-off
errors remains an interesting challenge.

We first note that the gap in worst-case performance between second-order (ARC),
first-order (ARC-FDH), and derivative-free (ARC-DFO) methods is remarkably small
if one consider the associated bounds in the asymptotic regime where ε tends to zero.
The effect of finite-difference schemes is, up to constants, limited to the occurrence
of a multiplicative factor of size 1 + | log ε|, which may be considered as modest. The
most significant effect is not depending on the ε-asymptotics, but rather depending
on the dimension n of the problem: as expected, derivative-free methods suffer most
in this respect, with bounds depending on n2 rather than n for first-order methods or
a constant for second-order ones. The result may seem unsurprising when consider-
ing the mechanism of finite-difference schemes only, but the interaction between the
differencing stepsize and the user-specified accuracy makes them nontrivial, as can be
seem from the technicality of the proofs presented.

The bounds for derivative-free methods are also interesting to compare with those
derived by Vicente (2010), where direct-search-type methods are shown to require at
most O(ε−2) iterations to find a point xk satisfying ‖∇xf(xk)‖ ≤ ε when applied to
function with Lipschitz continuous gradients.5 At iteration k, such methods compute
the function values {f(xk + αkd) | d ∈ Dk}, where Dk is a positive spanning set
for R

n and αk an iteration-dependent stepsize. If one of these value is (sufficiently)
lower than f(xk), the corresponding xk +αkd is chosen as the next iterate and a new
iteration started. In the worst case, an algorithm of this type therefore requires n+16

function evaluations, and thus its function-evaluation complexity is

O

(
n

⌈
1

ε2

⌉)
.

Thus the ARC-DFO algorithm is more advantageous than such direct-search methods
(in the worst case and up to a constant factor) when the worst-case oracle complexity
of the former is better than that of the latter, namely, when

(n2 + 5n)

⌈
1 + | log ε|

ε3/2

⌉
= O

(
n

⌈
1

ε2

⌉)
,

which, taking into account just the leading coefficients, simplifies to

n = O

(
1

[ 1 + | log ε| ]√ε

)
.

4Recommended values for these stepsizes are bounded below by adequate roots of machine pre-
cision (see section 8.4.3 in Conn, Gould, and Toint (2000) or sections 5.4 and 5.6 in Dennis and
Schnabel (1983), for instance).

5Note that the use of this inequality as a stopping criterion is not explicitly covered in Vicente
(2010) but may nevertheless be constructed by using the stepsizes at unsuccessful iterations. The
complexity result in this paper may therefore be interpreted as an indication of how many iterations
will be performed by the algorithm before a stopping criterion in the spirit of (4.6) is activated.
Vicente also proposes a surrogate stopping rule that avoids the need to know ‖∇xf(xk)‖ but notes
that this too may be impractical unless Lg is known.

6The minimal size of a positive spanning set in R
n.
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It is interesting to note that this relation only holds for relatively small n, especially
for values of ε that are only moderately small, and for a more restrictive class of
functions (A.1 is required here, while Vicente (2010) only requires Lipschitz continuous
gradients). Direct-search methods are thus very often more efficient (in this theoretical
sense) than the ARC-DFO algorithm, even if the latter dominates for small values of
ε. These results could of course be used to select an optimal methods for given n and
ε, to define a method with best theoretical complexity bounds.

Finally notice that the central properties needed for proving the complexity re-
sult for the ARC-DFO algorithm are the bounds (4.13)–(4.15). These could as well
be guaranteed by more sophisticated derivative-free techniques where multivariate
interpolation is used to construct Hessian approximation from past points in a suit-
able neighborhood of the current iterate (see Conn, Scheinberg, and Vicente (2009),
Fasano, Nocedal, and Morales (2009), or Scheinberg and Toint (2010), for instance).
This suggests that a worst-case analysis of these methods might be quite close to that
of Algorithm ARC-DFO. Indeed, if gains in the number of function evaluations might
be possible by the reuse of these past points compared to using fresh evaluations for
establishing a local quadratic model at every iteration, it is not clear that these gains
can always be obtained in practice, in particular if every step is large compared the
necessary finite-difference stepsize.
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