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This short note considers and resolves the apparent contradiction between known worst-case complexity
results for first- and second-order methods for solving unconstrained smooth nonconvex optimization
problems and a recent note by Jarre [On Nesterov’s smooth Chebyshev–Rosenbrock function, Optim.
Methods Softw. (2011)] implying a very large lower bound on the number of iterations required to reach
the solution’s neighbourhood for a specific problem with variable dimension.
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1. Introduction

The worst-case complexity of algorithms for unconstrained nonconvex smooth optimization
has recently been intensively studied by several authors. In particular, we refer the reader to
Vavasis [13], Nesterov [11] and Cartis, Gould and Toint [1] for an analysis of steepest descent,
to Gratton et al. [8] and Cartis et al. [4,6] for trust-regions algorithms, to Cartis et al. [1] for
Newton’s method, to Nesterov and Polyak [12] and Cartis et al. [3,4,6] for regularized variants,
or to Vicente [14] and Cartis et al. [5] for finite-difference and/or derivative-free schemes. The
common feature of all these contributions is that they discuss upper (and sometimes lower) bounds
on the number of function evaluations that are necessary for the algorithm under consideration to
produce an approximate first-order critical point, that is an iterate at which the Euclidean norm
of the objective function’s gradient is below some user-prescribed tolerance ε. Remarkably, these
results show that such bounds have the form ⌈ κ

εα

⌉
(1)
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2 C. Cartis et al.

where κ is a problem-dependent constant and α is an algorithm-dependent constant ranging
between 3

2 and 2. These bounds are often sharp [1] and are optimal for some regularization meth-
ods [4]. It is important for our purposes to note that κ typically depends, possibly exponentially,
on problem dimension via the relevant gradient and perhaps Hessian global Lipschitz constants
(which are assumed to exist). We also note that all the algorithms considered in these results
are descent methods, in the sense that they generate a sequence of iterates with non-increasing
objective function values.

An interesting development occured when Jarre recently published a report [10] where he
pointed out that, on a specific problem with variable dimension, any descent algorithm would
require a number of iterations (and hence of function evaluations) which is exponential in problem
dimension to reach the (unique) critical point. Since ε and α in (1) are independent of dimension,
this behaviour could easily be made compatible with the results mentioned above if the problem’s
Lipschitz constants depended exponentially on dimension on the domain of interest. However, it
turns out that, for the considered example, both these constants depend at most polynomially on
the problem size, implying that the bound (1) is also depending sub-exponentially on the problem
dimension, and could even be independent of problem dimension. It is the purpose of this short
note to resolve this apparent contradiction.

2. Some details

We first need to elaborate on the details of the context. In what follows, we consider the problem

minimize
x∈�n

f (x),

where f is a twice continuously differentiable possibly nonconvex function from �n to �, which
is assumed to be bounded below (by some value flow). To solve this problem, we may apply the
Adaptive Regularization with Cubics (ARC) algorithm; here we focus on the ARC variant that
has the best known and optimal worst-case evaluation complexity – the so-called ARC(S) in Cartis
et al. [3] – which can be briefly outlined as follows, in the case when approximate Hessians are
set to the true Hessian values of f . At iteration k, a step sk from the current iterate xk is computed,
which approximately minimizes the cubic model

m(xk + s) = 〈g(xk), s〉 + 1

2
〈s, H(xk)s〉 + 1

6
σk‖s‖3,

where 〈·, ·〉 and ‖ · ‖ are the Euclidean inner product and norm, respectively, where g(x)
def= ∇xf (x),

H(x)
def= ∇xxf (x) andσk ≥ σmin > 0 is an adaptive regularization parameter whose value is updated

recursively inside the algorithm. In particular, the cubic model is globally minimized over increas-
ing Krylov subspaces that contain the gradient g(xk) until a suitable termination criterion is
satisfied; the latter is a relative error condition on the model’s gradient, that is definitely satisfied
at any stationary point of the model but seems likely to be achieved sooner (see Section 4 in Cartis
et al. [2] for precise details). The step sk is accepted and the new iterate xk+1 set to xk + sk when-
ever a reasonable fraction of the predicted model decrease mk(xk + sk) is realized by the actual
decrease in the objective, f (xk) − f (xk + sk). Since the current weight σk has resulted in a success-
ful step, there is no pressing reason to increase it, and indeed there may be benefits in decreasing
it if the model overestimates the function locally. Otherwise, we judge that the improvement in
objective is insufficient – indeed there may be no improvement if f (xk) ≤ f (xk + sk) – and then
the step will be rejected and xk+1 left as xk . Under these circumstances, the only recourse available
is to increase the weight σk prior to the next iteration with the implicit intention of reducing the
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Optimization Methods & Software 3

size of the step. Note that if sk is chosen as the (exact) global minimizer of mk(xk + s) for all
s ∈ �n and σk is maintained at a sufficiently large value, then this ARC variant is similar to the
cubic regularization technique proposed in [12].

Crucially for our purposes, it has been proved [3,12] that if we assume that H(x) is Lips-
chitz continuous (with constant L) on each of the segments [xk , xk + sk] and if we define an
ε-approximate critical iterate as an iterate xk such that

‖g(xk)‖ ≤ ε, (2)

where ε ∈ (0, 1) is a user-specified accuracy, then the ARC algorithm started from the initial point
x0 will produce such an iterate in at most⌈

(f (x0) − flow)
κARC

ε3/2

⌉
(3)

iterations. The constant κARC only depends (polynomially) on L and (when allowing approximate
rather than exact model minimization) also on an upper bound on ‖H(x)‖ on the segments [xk , xk +
sk], as well as on fixed, dimension independent, algorithmic parameters (such as σmin). We will
also make use of a property of the ARC algorithm, namely that, for all k ≥ 0, we have

‖sk‖ ≤ 3 max

[
‖H(xk)‖

σk
,

√
‖g(xk)‖

σk

]
, (4)

(see [2, Lemma 2.2]).
Jarre’s example of slow minimization uses the Chebyshev–Rosenbrock function attributed to

Nesterov in [9], which is defined, for some ρ ≥ 1 and n ≥ 2, by

f (x) = 1

4
(x1 − 1)2 + ρ

n−1∑
i=1

(xi+1 − 2x2
i + 1)2 def= 1

4
(x1 − 1)2 + ρ

n−1∑
i=1

vi(x)
2, (5)

and whose gradient is given by

g1(x) = 1

2
(x1 − 1) − 8ρx1v1(x), (6)

gi(x) = 2ρ[vi−1(x) − 4xivi(x)], (i = 2, . . . , n − 1), (7)

and

gn(x) = 2ρvn−1(x). (8)

The nonzero entries of its Hessian are given (up to symmetry) by

H1,1(x) = 1

2
− 8ρv1(x) + 32ρx2

1, H1,2(x) = −8ρx1, (9)

Hi,i(x) = 2ρ(1 − 4vi(x) + 16x2
i ), Hi,i+1(x) = −8ρxi, (i = 2, . . . , n − 1) (10)

and

Hn,n(x) = 2ρ, (11)

while those of its third derivative tensor T(x) are given by

T1,1,1(x) = 96ρx1, T1,1,2(x) = −8ρ, T1,2,1 = −8ρ, (12)

Ti,i,i(x) = 96ρxi, Ti,i,i+1(x) = −8ρ, (i = 2, . . . , n − 1). (13)

The level contours for this function with ρ = 400 are shown in Figure 1, the leftmost graph
showing the levels in the (x1, x2) plane and the rightmost the levels in the (xi, xi+1) plane, for any
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4 C. Cartis et al.
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Figure 1. Contours of f (x) with ρ = 400 in the (x1, x2) plane (left) and in the (xi, xi+1) plane (for any 2 ≤ i ≤ n − 1)
(right).

i between 2 and n − 1. The unique first- (and second-) order critical point is x∗ = (1, 1, . . . , 1)T,
which is marked on the upper right of each graph.

The unconstrained minimization of this function is started from x0 = (−1, 1, 1, . . . , 1)T (also
marked in the upper left part of the graphs of Figure 1) at which f (x0) = 1 and ‖g(x0)‖ = 1. Let

L0
def= {x ∈ �n | f (x) ≤ f (x0)},

and note that all iterates of any descent algorithm will remain in this level set. It follows from (5)
and f (x0) = 1 that any x = (x1, . . . , xn) ∈ L0 satisfies

1

2
|x1 − 1| ≤ 1 and

√
ρ|xi+1 − 2x2

i + 1| ≤ 1 (i = 1, . . . , n − 1), (14)

and so, as ρ ≥ 1,

−1 ≤ x1 ≤ 3

and

−1 − 1√
ρ

≤ xi+1 ≤ 2x2
i (i = 1, . . . , n − 1). (15)

Thus, x ∈ L0 is uniformly bounded below independently of n, but may grow (doubly) exponen-
tially as n increases. Indeed, the double-exponential upper bound in (15) is essentially tight since
fixing x̃1 ∈ (1, 3] and letting x̃i+1 = 2x̃2

i − 1 for i = 1, . . . , n − 1, yields x̃ ∈ L0 with x̃n growing
doubly exponentially with n. In fact, the dependence or otherwise on n of xn for x ∈ L0 entirely
determines the amount of growth allowed in the remaining components of x since (14) and ρ ≥ 1
imply that

xi ≤
√

1

2
xi+1 + 1 (i = 1, . . . , n − 1), (16)

and furthermore, inductively, x1 = O(x1/(2n)
n ). (Since x1 ∈ [−1, 3], xn can depend on n at most

doubly exponentially.) In particular, due to (16), if xn is bounded above independently of n, so are
all the other components xi of x ∈ L0. These considerations lead to the following two possible
cases, relevant when employing the ARC algorithm.

(1) The component [xk]n of all ARC iterates xk , k ≥ 0, is uniformly bounded above by a constant
depending at most sub-exponentially on n. (This includes the case when [xk]n is independent
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Optimization Methods & Software 5

of n.) Then all ARC iterates will remain in [−α, α]n, for some α > 0 depending at most sub-
exponentially on n. We may therefore derive from (6)–(8) and the sparse nature of (9)–(11)
that there exist constants κg > 0 and κH > 0 dependent at most sub-exponentially on n such
that, for iterates generated by the ARC algorithm,

‖g(xk)‖ ≤ κg and ‖H(xk)‖ ≤ κH (17)

for all k ≥ 0. Moreover, (4) then implies that steps generated by the ARC algorithm satisfy
the inequality

‖sk‖ ≤ 3 max

[
κH

σmin
,

√
κg

σmin

]
def= κs.

As a consequence, we obtain that, for all k ≥ 0,

[xk , xk + sk] ⊂ [−α − κs, α + κs]n def= L

and, therefore, using the mean-value theorem, that H(x) is Lipschitz continuous in L with
constant maxx∈L ‖T(x)‖, which is itself depending at most sub-exponentially on n, because
of the sparsity of T (see (12)–(13)). As a consequence, the value of κARC in (3) depends on n
at most sub-exponentially and, because we may obviously choose flow = 0 since f (x) is the
sum of squared terms, the upper bound on the maximum number of iterations necessary to
achieve (2) starting from x0 is either fixed or depending at most subexponentially on n, for
given ε.

On the other hand, Jarre’s observation is that when ρ ≥ 400, any descent algorithm
(including ARC) must take

at least 1.44 × 1.618n iterations (18)

to move from x0 to x∗, at which f (x∗) = 0 = flow. Moreover, at least half that number of
iterations is required to obtain an iterate with [xk]1 ≥ 0, which ensures that (3) cannot be
interpreted as an upper bound on the number of iterations needed to reach an ε-dependent
neighbouhood of x∗. The next section elucidates this apparent contradiction between (3)
and (18).

(2) Some ARC iterates depend (at least) exponentially on n, which is allowed by (14). Then (17)
holds with κg and κH now depending (at least) exponentially on n; similarly, the Lipschitz
constant of the Hessian depends (at least) exponentially on n on the path of the iterates.
Thus, in this case, the upper bound (3) depends (at least) exponentially on n, and so it is in
agreement with the lower bound (18). (Note that even if ARC is initialized with a starting
point that depends doubly-exponentially on n, (18) remains consistent with (3).)

Our numerical experiments with ARC applied to function (5) with ρ ≥ 400 and x0 =
(−1, 1, . . . , 1) invariably generated iterates with [xk]n ≤ 1. Thus numerically, we can guaran-
tee that we are in Case 1 above, specifically, when (3) is independent of n. However, we have
not been able to show analytically that the ARC iterates do not reach the ‘bad’, exponentially
dimension-dependent, part of the level set L0 for the second-order models that we use.
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6 C. Cartis et al.
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Figure 2. Evalution of τ(n) and θ(n) (dashed) (left, in log10 scale) and δ(n) (right) as functions of n.

3. Resolving the apparent contradiction

Assume that we are in Case 1 above. We first notice that (3) and (18) are obviously compatible if

ε ≤
(

κARC

1.44 × 1.618n

)2/3
def= θ(n), (19)

as in this case the accuracy requirement is tight enough to allow for the number of steps indi-
cated by Jarre’s bound. But what happens if (19) is violated is not clear. Using the famous
Sherlock Holmes adage that ‘When you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth’ (Conan Doyle, 1890 [7]), we must conclude in this case that
if an ε-approximate first-order critical point can be reached in a number of iterations that is either
dimension-independent or depending subexponentially on n, but that this point cannot be x∗, then
it must be that f (x) admits other approximate critical points in L0 within a fixed or polynomial
distance from x0. And indeed this happens to be the case. The leftmost graph of Figure 2 shows
(as a continuous line) the evolution with n of

τ(n) = min
x∈{x1,...,x50}

‖g(x)‖,

where the xk are the iterates generated by the ARC algorithm applied to minimize f (x) (with
dimension n), starting from x0. The dashed line in the same graph corresponds to the parallel
evolution of θ(n), the right-hand side of (19). The distance

δ(n) =
∥∥∥∥x0 − arg min

x∈{x1,...,x50}
‖g(x)‖

∥∥∥∥
is shown in the rightmost graph.

We may conclude from this figure that, for ε above the threshold given by (19), suitable
approximate first-order critical points of f (x) exist close to x0 (and can be found relatively easily
by standard optimization methods). A further investigation of these approximate critical points is
possible, using the analytical expression of f (x). Without entering into too much detail, we may
simply say that the gradient norm at such points is dominated by the magnitude of gn, which is
proportional to |vn−1| because of (8). As it turns out, (7) and the fact that all gi (i = 2, . . . , n − 1)
must also be small impose that the |vi| decrease as an approximate geometric progression. The
freedom left for each |gi| to be small (of the order of |gn|) is enough to counterbalance the effect
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Optimization Methods & Software 7

of x1 in g1 given by (6). However, this explanation remains problem specific, which considerably
limits its interest and applicability.

Note that a similar apparent contradiction is encountered when trust-region methods are applied
to (5). Namely, their associated worst-case complexity of O(ε−2) iterations [8] depends at most
polynomially on problem size, in apparent contrast to the exponential lower bound (18). However,
trust-region methods that we experimented with also generate an approximate local minimizer
within 10 iterations.

Similarly, steepest descent methods also satisfy an upper complexity boundO(ε−2) that depends
linearly on the Lipschitz constant of the gradient [11, p. 29]. Thus, a seeming contradiction with
the exponential bound (18) occurs when applying such methods with exact or inexact line searches
to minimizing (5). We expect a similar resolution to the ARC and trust-region cases, namely, the
finding of approximate stationary points on the way, before any of these two bounds are achieved.
However, it will likely be difficult to verify this in practice as steepest descent is often observed
to stagnate on Rosenbrock’s example (n = 2) in floating-point arithmetic.

It remains remarkable that our analysis shows the existence of (potentially many) approximate
first-order critical points for a dimension-dependent family of smooth functions for which the
gradient and Hessian Lipschitz constants are either dimension independent or depending poly-
nomially on dimension, at a level of approximation which improves exponentially with problem
size. It is the authors’ view that the implications of this observation (for instance on the geometry
of smooth infinite dimensional maps) deserves more study.
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