
Math. Program., Ser. A (2011) 130:295–319
DOI 10.1007/s10107-009-0337-y

FULL LENGTH PAPER

Adaptive cubic regularisation methods
for unconstrained optimization. Part II: worst-case
function- and derivative-evaluation complexity

Coralia Cartis · Nicholas I. M. Gould ·
Philippe L. Toint

Received: 1 October 2007 / Accepted: 12 November 2009 / Published online: 10 January 2010
© Springer and Mathematical Programming Society 2010

Abstract An Adaptive Regularisation framework using Cubics (ARC) was
proposed for unconstrained optimization and analysed in Cartis, Gould and Toint
(Part I, Math Program, doi:10.1007/s10107-009-0286-5, 2009), generalizing at the
same time an unpublished method due to Griewank (Technical Report NA/12, 1981,
DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math
Program 108(1):177–205, 2006) and a proposal by Weiser, Deuflhard and Erdmann
(Optim Methods Softw 22(3):413–431, 2007). In this companion paper, we further the
analysis by providing worst-case global iteration complexity bounds for ARC and a
second-order variant to achieve approximate first-order, and for the latter second-order,
criticality of the iterates. In particular, the second-order ARC algorithm requires at
most O(ε−3/2) iterations, or equivalently, function- and gradient-evaluations, to drive
the norm of the gradient of the objective below the desired accuracy ε, and O(ε−3)

This work was supported by the EPSRC grant GR/S42170.

C. Cartis (B)
School of Mathematics, University of Edinburgh, The King’s Buildings,
Edinburgh, EH9 3JZ Scotland, UK
e-mail: coralia.cartis@ed.ac.uk

C. Cartis · N. I. M. Gould
Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, OX11 0QX Oxfordshire, England, UK

N. I. M. Gould
Oxford University Computing Laboratory, Numerical Analysis Group,
Wolfson Building, Parks Road, Oxford, OX1 3QD England, UK
e-mail: nick.gould@stfc.ac.uk; nick.gould@comlab.ox.ac.uk

Ph. L. Toint
Department of Mathematics, FUNDP–University of Namur,
61, rue de Bruxelles, 5000 Namur, Belgium
e-mail: philippe.toint@fundp.ac.be

123

http://dx.doi.org/10.1007/s10107-009-0286-5

296 C. Cartis et al.

iterations, to reach approximate nonnegative curvature in a subspace. The orders of
these bounds match those proved for Algorithm 3.3 of Nesterov and Polyak which
minimizes the cubic model globally on each iteration. Our approach is more general
in that it allows the cubic model to be solved only approximately and may employ
approximate Hessians.

Keywords Nonlinear optimization · Unconstrained optimization ·
Cubic regularization · Newton’s method · Trust-region methods ·
Global complexity bounds · Global rate of convergence

Mathematics Subject Classification (2000) 90C30 · 65K05 · 49M37 · 49M15 ·
58C15 · 90C60 · 68Q25

1 Introduction

State-of-the-art methods for unconstrained smooth optimization rely on globalising
Newton-like iterations using either trust-region [2] or line-search [4] techniques. In
this paper and its predecessor [1], we explore a third alternative: employing a local
cubic overestimator of the objective as a regularisation strategy for the step computa-
tion. Namely, assume that a local minimizer of the smooth and unconstrained objective
f : R

n → R is sought, and let xk be our current best estimate. Furthermore, suppose
that the objective’s Hessian ∇xx f (x) is globally Lipschitz continuous on R

n with
�2-norm Lipschitz constant L . Then

f (xk +s) ≤ f (xk)+sT g(xk)+ 1
2 sT H(xk)s+ 1

6 L‖s‖3
2

def= mC
k (s), for all s ∈ R

n,

(1.1)

where we have defined g(x)
def= ∇x f (x) and H(x)

def= ∇xx f (x). Thus, so long as

mC
k (sk) < mC

k (0) = f (xk),

the new iterate xk+1 = xk + sk improves f (x). The bound (1.1) has been known
for a long time, see for example [4, Lemma 4.1.14]. However, (globally) minimizing
the model mC

k to compute a step sk , where the Lipschitz constant L is dynamically
estimated, was first considered by Griewank (in an unpublished technical report [8])
as a means for constructing an affine-invariant variant of Newton’s method which is
globally convergent to second-order critical points and has fast asymptotic conver-
gence. More recently, Nesterov and Polyak [11] considered a similar idea, although
from a different perspective. They were able to show that, if the step is computed
by globally minimizing the cubic model and if the objective’s Hessian is globally
Lipschitz continuous, then the resulting algorithm has a better global-complexity
bound than that achieved by the steepest descent method, and proved superior com-
plexity bounds for the (star) convex and other special cases. Subsequently, Nesterov
[10] has proposed more sophisticated methods which further improve the complexity
bounds in the convex case. Both Griewank [8] and Nesterov et al. [11] were able to char-
acterize the global minimizer of (1.1), even though the model mC

k may be nonconvex

123

Adaptive cubic regularisation methods 297

[1, Theorem 3.1]. Even more recently and again independently, Weiser, Deuflhard and
Erdmann [13] also pursued a similar line of thought, motivated (as Griewank) by the
design of an affine-invariant version of Newton’s method. The specific contributions
of the above authors have been carefully detailed in [1, Sect. 1].

Simultaneously unifying and generalizing the above contributions, our purpose for
the ARC framework has been to further develop such techniques in a suitable manner
for efficient large-scale calculations, while retaining the good global and local conver-
gence and complexity properties of previous schemes. Hence we no longer insist that
H(x) be globally, or even locally, Lipschitz (or Hölder) continuous in general, and
follow Griewank and Weiser et al. by introducing a dynamic positive parameter σk

instead of the scaled Lipschitz constant1 1
2 L in (1.1). Also, we allow for a symmetric

approximation Bk to the local Hessian H(xk) in the cubic model on each iteration.
Thus, instead of (1.1), it is the model

mk(s)
def= f (xk) + sT gk + 1

2 sT Bks + 1
3σk‖s‖3, (1.2)

that we employ as an approximation to f in each ARC iteration (the generic algorith-
mic framework is restated here in Sect. 2.1). Here, and for the remainder of the paper,
for brevity we write gk = g(xk) and ‖·‖ = ‖·‖2; our choice of the Euclidean norm for
the cubic term is made for simplicity of exposition. The rules for updating the param-
eter σk in the course of the ARC algorithm are justified by analogy to trust-region
methods [2, p. 116].

Since finding a global minimizer of the model mk(s) may not be essential in practice,
and as doing so might be prohibitively expensive from a computational point of view,
we relax this requirement by letting sk be an approximation to such a minimizer. Thus
in the generic ARC framework, we only require that sk ensures that the decrease in the
model is at least as good as that provided by a suitable Cauchy point. In particular, a
milder condition than the inequality in (1.1) is required for the computed step sk to be
accepted. The generic ARC requirements have proved sufficient for ensuring global
convergence to first-order critical points under mild assumptions [1, Theorem 2.5,
Corollary 2.6]. For (at least) Q-superlinear asymptotic rates [1, Sect. 4.2] and global
convergence to second-order critical points [1, Sect. 5], as well as efficient numerical
performance, we have strenghtened the conditions on sk by requiring that it glob-
ally minimizes the cubic model mk(s) over (nested and increasing) subspaces until
some suitable termination criterion is satisfied [1, Sect. 3.2, Sect. 3.3]. In practice, we
perform this approximate minimization of mk using Lanczos method (which in turn,
employs Krylov subspaces) [1, Sect. 6.2, Sect. 7], and have found that the resulting
second-order variants of ARC show superior numerical performance compared to a
standard trust-region method on small-scale test problems from CUTEr [1, Sect. 7].

In this paper, we revisit the global convergence results for ARC and one of its
second-order variants in order to estimate the iteration count, and relatedly, the num-
ber of function- and gradient-evaluations, required to reach within desired accuracy
of first-order—and for the second-order ARC even second-order—criticality of the

1 The factor 1
2 is for later convenience.

123

298 C. Cartis et al.

iterates, and thus establish a bound on the global worst-case iteration complexity of
these methods. (For details on the connection between convergence rates of algorithms
and the iteration complexity they imply, see [9, p. 36].) In particular, provided f is
continuously differentiable and its gradient is Lipschitz continuous, and Bk is bounded
above for all k, we show in Sect. 3 that the generic ARC framework takes at most
O(ε−2) iterations to drive the norm of the gradient of f below ε. This bound is of
the same order as for the steepest descent method [9, p. 29], which is to be expected
since the Cauchy-point condition requires no more than a move in the negative gra-
dient direction. Also, it matches the order of the complexity bounds for trust-region
methods shown in [6,7].

These steepest-descent-like complexity bounds can be improved when one of the
second-order variants of ARC—referred here as the ARC(S) algorithm—is employed.
ARC(S) [1] distinguishes itself from the other second-order ARC variants in [1] in
the particular criterion used to terminate the inner minimization of mk over (increas-
ing) subspaces containing gk . This difference ensures, under local convexity and local
Hessian Lipschitz continuity assumptions, that ARC(S) is Q-quadratically convergent
[1, Corollary 4.10], while the other second-order variants proposed are Q-superlinear
[1, Corollary 4.8] (under weaker assumptions). Regarding its iteration complexity,
assuming H(x) to be globally Lipschitz continuous along the path of the iterates, and
the approximation Bk to satisfy ‖(H(xk) − Bk)sk‖ = O(‖sk‖2), we show that the
ARC(S) algorithm has an overall worst-case iteration count of order ε−3/2 for gener-
ating ‖g(xk)‖ ≤ ε (see Corollary 5.3), and of order ε−3 for achieving approximate
nonnegative curvature in a subspace containing sk (see Corollary 5.4 and the remarks
following its proof). These bounds match those proved by Nesterov and Polyak [11,
Sect. 3] for their Algorithm 3.3. However, our framework is more general, as we allow
more freedom in the choice of sk and of Bk in a way that is relevant to practical
calculations.

The outline of the paper (Part II) is as follows. Section 2 describes the ARC algo-
rithmic framework and gives some useful preliminary complexity estimates. Section 3
shows a steepest-descent-like bound for the iteration complexity of the ARC scheme
when we only require that the step sk satisfies the Cauchy-point condition. Section 4
presents ARC(S), a second-order variant of ARC where the step sk minimizes the cubic
model over some subspace, while Sect. 5 shows improved first-order complexity for
ARC(S), and even approximate second-order complexity estimates for this variant. We
draw final conclusions in Sect. 6. Note that the assumption labels, such as AF.1, AF.4,
are conforming to notations introduced in Part I [1].

2 A cubic regularisation framework for unconstrained minimization

2.1 The algorithmic framework

Let us assume for now that

AF.1 f ∈ C1(Rn). (2.1)

123

Adaptive cubic regularisation methods 299

The generic Adaptive Regularisation with Cubics (ARC) scheme below follows the
proposal in [1] and incorporates also the second-order algorithm for minimizing f to
be analysed later on (see Sect. 4).

Algorithm 2.1: Adaptive Regularisation using Cubics (ARC).

Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and σ0 > 0, for k = 0, 1, . . . until convergence,
1. Compute a step sk for which

mk (sk) ≤ mk (sC
k), (2.2)

where the Cauchy point

sC
k = −αC

k gk and αC
k = arg min

α∈R+
mk (−αgk). (2.3)

2. Compute f (xk + sk) and

ρk = f (xk) − f (xk + sk)

f (xk) − mk (sk)
. (2.4)

3. Set

xk+1 =
{

xk + sk if ρk ≥ η1
xk otherwise.

4. Set

σk+1 ∈

⎧⎪⎨
⎪⎩

(0, σk] if ρk > η2 [very successful iteration][
σk , γ1σk

]
if η1 ≤ ρk ≤ η2 [successful iteration][

γ1σk , γ2σk
]

otherwise. [unsuccessful iteration]

(2.5)

Given an estimate xk of a critical point of f , a step sk is computed that is only
required to satisfy condition (2.2). The step sk is accepted and the new iterate xk+1 set
to xk + sk whenever (a reasonable fraction of) the predicted model decrease f (xk) −
mk(sk) is realized by the actual decrease in the objective, f (xk) − f (xk + sk). This
is measured by computing the ratio ρk in (2.4) and requiring ρk to be greater than a
prescribed positive constant η1 (for example, η1 = 0.1). Since the current weight σk

has resulted in a successful step, there is no pressing reason to increase it, and indeed
there may be benefits in decreasing it if good agreement between model and function
are observed. By contrast, if ρk is smaller than η1, we judge that the improvement
in objective is insufficient—indeed there is no improvement if ρk ≤ 0. If this hap-
pens, the step will be rejected and xk+1 left as xk . Under these circumstances, the
only recourse available is to increase the weight σk prior to the next iteration with the
implicit intention of reducing the size of the step.

Note that while Steps 2–4 of each ARC iteration were completely defined above,
we have not yet specified how to compute sk in Step 1. The Cauchy point sC

k achieves
(2.2) in a computationally inexpensive way (see [1, Sect. 2.1]); the choice of interest,

123

300 C. Cartis et al.

however, is when sk is an approximate (global) minimizer of mk(s), where Bk in (1.2)
is a nontrivial approximation to the Hessian H(xk) and the latter exists (see Sect. 4).
Nevertheless, condition (2.2) on sk is sufficient for ensuring global convergence of
ARC to first-order critical points ([1, Sect. 2.2]), and a worst-case iteration complexity
bound for ARC to generate ‖gk‖ ≤ ε will be provided in this case (Sect. 3).

We have not yet established if the ratio ρk in (2.4) is well-defined. A sufficient
condition for the latter is that

mk(sk) < f (xk). (2.6)

It follows from Lemma 3.1 below that the ARC framework satisfies

gk �= 0 	⇒ mk(sk) < f (xk). (2.7)

Note that due to the Cauchy condition, the basic ARC algorithm as stated above is only
a first-order scheme and hence, AF.1 is sufficient to make it well-defined. As such, it
will terminate whenever gk = 0. Thus, from (2.7), we can safely assume that (2.6)
holds on each iteration k ≥ 0 of the generic ARC framework. For the second-order
ARC variant that we analyse later on (Sect. 4 onwards), we will argue that condition
(2.6) holds even when gk = 0 (see the last paragraph of Sect. 4). This case must
be addressed for such a variant since it will not terminate when gk = 0 as long as
(approximate) problem negative curvature is encountered (in some given subspace).
Based on the above remarks and our comments at the end of Sect. 4, it is without loss
of generality that we assume that (2.6) holds unless the (basic or second-order) ARC
algorithm terminates.

Condition (2.6) and the construction of ARC’s Steps 2–4 are sufficient for deriving
the complexity properties in the next section, which will be subsequently employed
in our main complexity results.

2.2 Some iteration complexity properties

The construction of ARC implies that the total number of ARC iterations is the same as
the number of objective function evaluations as we also need to evaluate f on unsuc-
cessful iterations in order to be able to compute ρk in (2.4); the number of successful
ARC iterations is the same as the gradient-evaluation count.

Firstly, let us present a generic worst-case result regarding the number of unsuc-
cessful iterations that occur up to any given iteration.

Throughout, denote the index set of all successful iterations of the ARC algorithm
by

S def= {k ≥ 0 : k successful or very successful in the sense of (2.5)}. (2.8)

Given any j ≥ 0, denote the iteration index sets

S j
def= {k ≤ j : k ∈ S} and U j

def= {i ≤ j : i unsuccessful}, (2.9)

123

Adaptive cubic regularisation methods 301

which form a partition of {0, . . . , j}. Let |S j | and |U j | denote their respective cardinali-
ties. Concerning σk , we may require that on each very successful iteration k ∈ S j , σk+1
is chosen such that

σk+1 ≥ γ3σk, for some γ3 ∈ (0, 1]. (2.10)

Note that (2.10) allows {σk} to converge to zero on very successful iterations (but no
faster than {γ k

3 }). A stronger condition on σk is

σk ≥ σmin, k ≥ 0, (2.11)

for some σmin > 0. The conditions (2.10) and (2.11) will be employed in the com-
plexity bounds for ARC and the second-order variant ARC(S), respectively.

Theorem 2.1 For any fixed j ≥ 0, let S j and U j be defined in (2.9). Assume that
(2.10) holds and let σ > 0 be such that

σk ≤ σ , for all k ≤ j. (2.12)

Then

|U j | ≤
⌈
− log γ3

log γ1
|S j | + 1

log γ1
log

(
σ

σ0

)⌉
. (2.13)

In particular, if σk satisfies (2.11), then it also achieves (2.10) with γ3 = σmin/σ , and
we have that

|U j | ≤
⌈(|S j | + 1

) 1

log γ1
log

(
σ

σmin

)⌉
. (2.14)

Proof It follows from the construction of the ARC algorithm and from (2.10) that

γ3σk ≤ σk+1, for all k ∈ S j ,

and

γ1σi ≤ σi+1, for all i ∈ U j .

Thus we deduce inductively

σ0γ
|S j |
3 γ

|U j |
1 ≤ σ j . (2.15)

We further obtain from (2.12) and (2.15) that |S j | log γ3 + |U j | log γ1 ≤ log (σ/σ0),
which gives (2.13), recalling that γ1 > 1 and that |U j | is an integer. If (2.11) holds,
then it implies, together with (2.12), that (2.10) is satisfied with γ3 = σmin/σ ∈ (0, 1].
The bound (2.14) now follows from (2.13) and σ0 ≥ σmin. ��

123

302 C. Cartis et al.

Let Fk
def= F(xk, gk, Bk, Hk) ≥ 0, k ≥ 0, be some measure of optimality related to

our problem of minimizing f (where Hk may be present in Fk only when the former is
well-defined). For example, for first-order optimality, we may let Fk = ‖gk‖, k ≥ 0.
Given any ε > 0, and recalling (2.8), let

Sε
F

def= {k ∈ S : Fk > ε}, (2.16)

and let |Sε
F| denote its cardinality. To allow also for the case when an upper bound on

the entire |Sε
F| cannot be provided (see Corollary 3.4), we introduce a generic index

set So such that

So ⊆ Sε
F, (2.17)

and denote its cardinality by |So|. The next theorem gives an upper bound on |So|.
Theorem 2.2 Let { f (xk)} be bounded below by flow. Given any ε > 0, let Sε

F and So

be defined in (2.16) and (2.17), respectively. Suppose that the successful iterates xk

generated by the ARC algorithm have the property that

f (xk) − mk(sk) ≥ αε p, for all k ∈ So, (2.18)

where α is a positive constant independent of k and ε, and p > 0. Then

|So| ≤ ⌈
κpε

−p⌉ , (2.19)

where κp
def= (f (x0) − flow)/(η1α).

Proof It follows from (2.4) and (2.18) that

f (xk) − f (xk+1) ≥ η1αε p, for all k ∈ So. (2.20)

The construction of the ARC algorithm implies that the iterates remain unchanged
over unsuccessful iterations. Furthermore, from (2.6), we have f (xk) ≥ f (xk+1), for
all k ≥ 0. Thus summing up (2.20) over all iterates k ∈ So, with say jm ≤ ∞ as the
largest index, we deduce

f (x0) − f (x jm) =
jm−1∑

k=0,k∈S
[f (xk) − f (xk+1)]

≥
jm−1∑

k=0,k∈So

[f (xk) − f (xk+1)] ≥ |So|η1αε p. (2.21)

Recalling that { f (xk)} is bounded below, we further obtain from (2.21) that jm < ∞
and that

|So| ≤ 1

η1αε p
(f (x0) − flow),

123

Adaptive cubic regularisation methods 303

which immediately gives (2.19) since |So| must be an integer. ��
If (2.18) holds with So = Sε

F, then (2.19) gives an upper bound on the total number
of successful iterations with Fk > ε that occur. In particular, it implies that the ARC
algorithm takes at most �κpε

−p� successful iterations to generate an iterate k such
that Fk+1 ≤ ε.

In the next sections, we give conditions (on sk and f) under which (2.18) holds
with Fk = ‖gk‖ for p = 2 and p = 3/2. The conditions for the former value of p are
more general, while the complexity for the latter p is better.

3 An iteration complexity bound based on the Cauchy condition

The results in this section assume only condition (2.2) on the step sk . For the model
mk given by (1.2), we assume

AM.1 ‖Bk‖ ≤ κB, for all k ≥ 0, and some κB ≥ 0. (3.1)

This assumption is satisfied when the approximations Bk are close to the Hessian val-
ues H(xk), and the latter are uniformly bounded above. For the function f , however,
we only asume AF.1, and that the gradient g is Lipschitz continuous on an open convex
set X containing all the iterates {xk}, namely,

AF.4 ‖g(x) − g(y)‖≤κH‖x − y‖, for all x, y ∈ X, and some κH ≥ 1.

(3.2)

If f ∈ C2(Rn), then AF.4 is satisfied if the Hessian H(x) is bounded above on X .
Note that no Lipschitz continuity of H(x) will be required in this section.

The next lemma summarizes some useful properties of the ARC iteration.

Lemma 3.1 Suppose that the step sk satisfies (2.2).

(i) [1, Lemma 2.1] Then for k ≥ 0, we have that

f (xk) − mk(sk) ≥ ‖gk‖
6
√

2
min

[
‖gk‖

1 + ‖Bk‖ ,
1

2

√
‖gk‖
σk

]
. (3.3)

(ii) [1, Lemma 2.2] Let AM.1 hold. Then

‖sk‖ ≤ 3

σk
max(κB,

√
σk‖gk‖), k ≥ 0. (3.4)

We are now ready to show that it is always possible to make progress from a
nonoptimal point (gk �= 0).

123

304 C. Cartis et al.

Lemma 3.2 Let AF.1, AF.4 and AM.1 hold. Also, assume that

√
σk‖gk‖ >

108
√

2

1 − η2
(κH + κB)

def= κHB. (3.5)

Then iteration k is very successful and

σk+1 ≤ σk . (3.6)

Proof From (3.5), we have gk �= 0, and so (3.3) implies f (xk) > mk(sk). It follows
from (2.4) that

ρk > η2 ⇐⇒ rk
def= f (xk + sk) − f (xk) − η2[mk(sk) − f (xk)] < 0. (3.7)

To show (3.6), we derive an upper bound on rk , which will be negative due to (3.5).
Firstly, we express rk as

rk = f (xk + sk) − mk(sk) + (1 − η2) [mk(sk) − f (xk)] , k ≥ 0. (3.8)

To bound the first term in (3.8), a Taylor expansion of f (xk + sk) gives

f (xk + sk) − mk(sk) = (g(ξk) − gk)
T sk − 1

2
s�

k Bksk − σk

3
‖sk‖3, k ≥ 0,

for some ξk on the line segment (xk, xk + sk). Employing AM.1 and AF.4, we further
obtain

f (xk + sk) − mk(sk) ≤ (κH + κB)‖sk‖2, k ≥ 0. (3.9)

Now, (3.5), η2 ∈ (0, 1) and κH ≥ 0 imply
√

σk‖gk‖ ≥ κB, and so the bound (3.4)
becomes ‖sk‖ ≤ 3

√‖gk‖/σk , which together with (3.9), gives

f (xk + sk) − mk(sk) ≤ 9(κH + κB)
‖gk‖
σk

. (3.10)

Let us now evaluate the second difference in (3.8). It follows from (3.5), η2 ∈ (0, 1)

and κH ≥ 1 that 2
√

σk‖gk‖ ≥ 1 + κB ≥ 1 + ‖Bk‖, and thus the bound (3.3) becomes

mk(sk) − f (xk) ≤ − 1

12
√

2
· ‖gk‖3/2

√
σk

. (3.11)

Now, (3.10) and (3.11) provide the following upper bound for rk , namely,

rk ≤ ‖gk‖
σk

[
9(κH + κB) − 1 − η2

12
√

2

√
σk‖gk‖

]
, (3.12)

123

Adaptive cubic regularisation methods 305

which together with (3.5), implies rk < 0. Thus k is very successful, and (3.6) follows
from (2.5). ��

The next lemma gives an upper bound on σk when gk is bounded away from zero.

Lemma 3.3 Let AF.1, AF.4 and AM.1 hold. Also, let ε > 0 such that ‖gk‖ > ε for all
k = 0, . . . , j , where j ≤ ∞. Then

σk ≤ max
(
σ0,

γ2

ε
κ2

HB

)
, for all k = 0, . . . , j, (3.13)

where κHB is defined in (3.5).

Proof For any k ∈ {0, . . . , j}, due to ‖gk‖ > ε, (3.5) and Lemma 3.2, we have the
implication

σk >
κ2

HB

ε
	⇒ σk+1 ≤ σk . (3.14)

Thus, when σ0 ≤ γ2κ
2
HB/ε, (3.14) implies σk ≤ γ2κ

2
HB/ε,∀k ∈ {0, . . . , j}, where the

factor γ2 is introduced for the case when σk is less than κ2
HB/ε and the iteration k is

not very successful. Letting k = 0 in (3.14) gives (3.13) when σ0 ≥ γ2κ
2
HB/ε, since

γ2 > 1. ��
A comparison of Lemmas 3.2 and 3.3 to [2, Theorems 6.4.2, 6.4.3] can be per-

formed, and suggests naively that σk may be viewed as the reciprocal of the trust-region
radius.

Next we show that the conditions of Theorem 2.2 are satisfied with Fk = ‖gk‖,
which provides an upper bound on the number of successful iterations. To bound the
number of unsuccessful iterations, we then employ Theorem 2.1. Finally, we combine
the two bounds to deduce one on the total number of iterations.

Corollary 3.4 Let AF.1, AF.4 and AM.1 hold, and { f (xk)} be bounded below by flow.
Given any ε ∈ (0, 1], assume that ‖g0‖ > ε and let j1 ≤ ∞ be the first iteration such
that ‖g j1+1‖ ≤ ε. Then the ARC algorithm takes at most

Ls
1

def=
⌈
κs

Cε−2
⌉

(3.15)

successful iterations or equivalently, gradient evaluations, to generate ‖g j1+1‖ ≤ ε,
where

κs
C

def= (f (x0) − flow)/(η1αC),

αC
def= [6√

2 max
(
1 + κB, 2 max(

√
σ0, κHB

√
γ2)

)]−1
(3.16)

and κHB is defined in (3.5). Additionally, assume that on each very successful iteration
k, σk+1 is chosen such that (2.10) is satisfied. Then

j1 ≤
⌈
κCε−2

⌉
def= L1, (3.17)

123

306 C. Cartis et al.

and so the ARC algorithm takes at most L1 (successful and unsuccessful) iterations,
and function evaluations, to generate ‖g j1+1‖ ≤ ε, where

κC
def=

(
1 − log γ3

log γ1

)
κs

C + κu
C, κu

C
def= 1

log γ1
max

(
1,

γ2κ
2
HB

σ0

)
(3.18)

and κs
C is defined in (3.16).

Proof The definition of j1 in the statement of the Corollary is equivalent to

‖gk‖ > ε, for all k = 0, . . . , j1, and ‖g j1+1‖ ≤ ε. (3.19)

Thus Lemma 3.3 applies with j = j1. It follows from (3.3), AM.1, (3.13) and (3.19)
that

f (xk) − mk(sk) ≥ αCε2, for all k = 0, . . . , j1, (3.20)

where αC is defined in (3.16). Letting j = j1 in (2.9), Theorem 2.2 with Fk =
‖gk‖,Sε

F = {k ∈ S : ‖gk‖ > ε},So = S j1 and p = 2 yields the complexity bound

|S j1 | ≤ Ls
1, (3.21)

with Ls
1 defined in (3.15), which proves the first part of the Corollary.

Let us now give an upper bound on the number of unsuccessful iterations that occur

up to j1. It follows from (3.13) and ε ≤ 1 that we may let σ
def= max

(
σ0, γ2κ

2
HB

)
/ε and

j = j1 in Theorem 2.1. Then (2.13), the inequality log(σ/σ0) ≤ σ/σ0 and the bound
(3.21) imply that

|U j1 | ≤
⌈
− log γ3

log γ1
Ls

1 + κu
C

ε

⌉
, (3.22)

where U j1 is (2.9) with j = j1 and κu
C is defined in (3.18).

Since j1 = |S j1 | + |U j1 |, the bound (3.17) is the sum of the upper bounds (3.15)
and (3.22) on the number of consecutive successful and unsuccessful iterations k with
‖gk‖ > ε that occur. ��

We remark (again) that the complexity bound (3.17) is of the same order as that for
the steepest descent method [9, p. 29]. This is to be expected because of the (only)
requirement (2.2) that we imposed on the step, which implies no more than a move
along the steepest descent direction.

Similar complexity results for trust-region methods are given in [6,7].
Note that Corollary 3.4 implies lim infk→∞ ‖gk‖ = 0. In fact, we have proved the

latter limit in [1, Theorem 2.5] solely under the conditions AF.1 and AM.1. Thus, the
additional condition AF.4 in Corollary 3.4 shows that stronger problem assumptions
are required in order to be able to estimate the global iteration complexity of ARC

123

Adaptive cubic regularisation methods 307

than to ensure its global convergence. Furthermore, provided also that g is uniformly
continuous on the iterates—an assumption that is weaker than AF.4—we have shown
in [1, Corollary 2.6] that limk→∞ gk = 0.

4 A second-order ARC algorithm

The step sk computed by the ARC algorithm has only been required to satisfy the Cau-
chy condition (2.2). This has proved sufficient to guarantee approximate first-order
criticality of the generated iterates to desired accuracy in a finite number of itera-
tions (Sect. 3), and furthermore, convergence of ARC to first-order critical points
[1]. To be able to guarantee stronger complexity and convergence properties for
the ARC algorithm, we could set sk to the (exact) global minimizer of mk(s) over
R

n . Such a choice is possible as mk(s) is bounded below over R
n ; moreover, even

though mk may be nonconvex, a characterization of its global minimizer can be given
(see [8], [11, Sect. 5.1], [1, Theorem 3.1]), and can be used for computing such a
step [1, Sect. 6.1]. Indeed, Griewank [8] and Nesterov et al. [11] show global con-
vergence to second-order critical points at fast asymptotic rate of their algorithms
with such a choice of sk (provided the Hessian is globally Lipschitz continuous and
Bk = H(xk), etc.); in [11], global iteration complexity bounds of order ε−3/2 and ε−3

are given for approximate (within ε) first-order and second-order optimality, respec-
tively. This choice of sk , however, may be in general prohibitively expensive from
a computational point of view, and thus, for most (large-scale) practical purposes,
(highly) inefficient (see [1, Sect. 6.1]). Therefore, in [1], we have proposed to com-
pute sk as an approximate global minimizer of mk(s) by globally minimizing the
model over a sequence of (nested and increasing) subspaces, in which each such
subproblem is computationally quite inexpensive (see [1, Sect. 6.2]). Thus the con-
ditions we have required on sk in [1, Sect. 3.2], and further on in this paper (see
(4.1) and (4.2)), are some derivations of first- and second-order optimality when sk

is the global minimizer of mk over a subspace. Provided each subspace includes
gk , the resulting ARC will satisfy (2.2), and so it will remain globally convergent
to first-order, and the previous complexity bound still applies. In our ARC imple-
mentation [1], the successive subspaces that mk is minimized over in each (major)
ARC iteration are generated using Lanczos method and so they naturally include the
gradient gk [1, Sect. 6.2]. Another ingredient needed in this context is a termina-
tion criterion for the method used to minimize mk (over subspaces). Various such
rules were proposed in [1, Sect. 3.3], with the aim of yielding a step sk that does
not become too small compared to the size of the gradient. Using the above tech-
niques for the step calculation, we showed in [1] that the resulting ARC methods
have Q-superlinear asymptotic rates of convergence (without requiring Lipschitz con-
tinuity of the Hessian) and converge globally to approximate second-order critical
points.

Using the (only) termination criterion that was shown in [1, Sect. 4.2] to make ARC
Q-quadratically convergent locally, and the subspace minimization condition for sk ,
we show that the resulting ARC variant—referred to here as ARC(S)—satisfies the
same complexity bounds for first- and second-order criticality as in [11], despite solv-
ing the cubic model inexactly and using approximate Hessians.

123

308 C. Cartis et al.

Minimizing the cubic model in a subspace In what follows, we require that sk

satisfies

g�
k sk + s�

k Bksk + σk‖sk‖3 = 0, k ≥ 0, (4.1)

and

s�
k Bksk + σk‖sk‖3 ≥ 0, k ≥ 0. (4.2)

The next lemma presents some suitable choices for sk that achieve (4.1) and (4.2).

Lemma 4.1 [1] Suppose that sk is the global minimizer of mk(s), for s ∈ Lk , where
Lk is a subspace of R

n. Then sk satisfies (4.1) and (4.2). Furthermore, letting Qk

denote any orthogonal matrix whose columns form a basis of Lk , we have that

Q�
k Bk Qk + σk‖sk‖I is positive semidefinite. (4.3)

In particular, if s∗
k is the global minimizer of mk(s), s ∈ R

n, then s∗
k achieves (4.1)

and (4.2).

Proof See the proof of [1, Lemma 3.2], which applies the characterization of the
global minimizer of a cubic model over R

n to the reduced model mk
∣∣Lk . ��

The Cauchy point (2.3) satisfies (4.1) and (4.2) since it globally minimizes mk over
the subspace generated by −gk . To improve the properties and performance of ARC,
however, it may be necessary to minimize mk over (increasingly) larger subspaces
(that each contain gk so that (2.2) can still be achieved).

The next lemma gives a lower bound on the model decrease when (4.1) and (4.2)
are satisfied.

Lemma 4.2 [1, Lemma 3.3] Suppose that sk satisfies (4.1) and (4.2). Then

f (xk) − mk(sk) ≥ 1

6
σk‖sk‖3. (4.4)

A termination criterion for the approximate minimization of mk For the above
bound (4.4) on the model decrease to be useful for investigating complexity bounds
for ARC, we must ensure that sk does not become too small compared to the size of
the gradient. To deduce a lower bound on ‖sk‖, we need to be more specific about
ARC. In particular, a suitable termination criterion for the method used to minimize
mk(s) needs to be specified.

Let us assume that some iterative solver is used on each (major) iteration k to approx-
imately minimize mk(s). Let us set the termination criterion for its inner iterations i
to be

‖∇smk(si,k)‖ ≤ θi,k‖gk‖, (4.5)

123

Adaptive cubic regularisation methods 309

where

θi,k
def= κθ min(1, ‖si,k‖), (4.6)

where si,k are the inner iterates generated by the solver and κθ is any constant in (0, 1).
Note that gk = ∇smk(0). The condition (4.5) is always satisfied by any minimizer

si,k of mk , since then ∇smk(si,k) = 0. Thus condition (4.5) can always be achieved by
an iterative solver, the worst that could happen is to iterate until an exact minimizer
of mk is found. We hope in practice to terminate well before this inevitable outcome.

It follows from (4.5) and (4.6) that

TC.s ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖sk‖), k ≥ 0,

(4.7)

where sk
def= si,k > 0 with i being the last inner iteration. The lower bound on sk that

the criterion TC.s provides is given in Lemma 5.2.
A family of termination criteria were proposed in [1, Sect. 3.3], that also includes

TC.s. Conditions were given under which ARC with any of these termination rules (and
sk satisfying (4.1) and (4.2)) is locally Q-superlinearly convergent, without assuming
Lipschitz continuity of the Hessian H(x) (see [1, Corollary 4.8]); the latter result also
applies to TC.s. Furthermore, when the Hessian is locally Lipschitz continuous and
standard local convergence assumptions hold, ARC with the TC.s rule is locally Q-
quadratically convergent (see [1, Corollary 4.10]). This rate of convergence implies
an O(| log log ε|) local iteration complexity bound (when the iterates are attracted to
a local minimizer x∗ of f with H(x∗) positive definite) [9]; however, the basin of
attraction of x∗ is unknown in general.

Summary Let us now summarize the second-order ARC variant that we described
above.

Algorithm 4.1: ARC(S).

In each iteration k of the ARC algorithm, perform Step 1 as follows:
compute sk such that (4.1), (4.2) and TC.s are achieved, and (2.2) remains satisfied.

For generality purposes, we do not prescribe how the above conditions in ARC(S) are
to be achieved by sk . We have briefly mentioned in the first paragraph of this section—
and discussed at length in [1, Sect. 6.2, Sect. 7]—a way to satisfy them using Lanczos
method (to globally minimizes mk over a sequence of nested Krylov subspaces until
TC.s holds) in each major ARC(S) iteration k.

Let us now ensure that (2.6) holds unless ARC(S) terminates. Clearly, (2.7) con-
tinues to hold since sk still satisfies (2.2). In the case when gk = 0 for some k ≥ 0,
we need to be more careful. If sk minimizes mk over a subspace Lk generated by the

123

310 C. Cartis et al.

columns of some orthogonal matrix Qk (as it is the case in our implementation of
ARC(S) and in its complexity analysis for second-order optimality in Sect. 5.2), then
we have

(4.3) holds and λmin(Q�
k Bk Qk) < 0 	⇒ sk �= 0, (4.8)

since Lemma 4.1 holds even when gk = 0. Thus, when the left-hand side of the
implication (4.8) holds, (4.4), (4.8) and σk > 0 imply that (2.6) is satisfied. But if
λmin(Q�

k Bk Qk) ≥ 0 and gk = 0, then, from (4.1), sk = 0 and the ARC(S) algorithm
will terminate. Hence, if our intention is to identify whether Bk is indefinite, it will be
necessary to build Qk so that Q�

k Bk Qk predicts negative eigenvalues of Bk . This will
ultimately be the case with probability one if Qk is built as the Lanczos basis of the
Krylov space {Bl

kv}l≥0 for some random initial vector v �= 0. We assume here that,
irrespectively of the way the step conditions are achieved in ARC(S), (2.6) holds even
when gk = 0, unless the ARC(S) algorithm terminates.

5 Iteration complexity bounds for the ARC(S) algorithm

For the remainder of the paper, let us assume that

AF.3 f ∈ C2(Rn). (5.1)

Note that no assumption on the Hessian of f being globally or locally Lipschitz con-
tinuous has been imposed in Corollary 3.4. In what follows, however, we assume that
the objective’s Hessian is globally Lipschitz continuous along the path of all generated
iterates, namely, there exists a constant L > 0 so that

AF.6 ‖H(x)−H(xk)‖≤ L‖x−xk‖, for all x ∈ [xk, xk +sk] and for all k ≥0.

(5.2)

Clearly, AF.6 holds when H(x) is globally Lipschitz continuous over R
n . Suppose

also that Bk and H(xk) agree along sk in the sense that

AM.4 ‖(H(xk) − Bk)sk‖≤C‖sk‖2, for all k ≥0, and some constant C > 0.

(5.3)

The requirement (5.3) is a slight strengthening of the Dennis–Moré condition [3].
The latter is achieved by a number of quasi-Newton techniques under some additional
assumptions [12, Sect. 3.3, Chapter 8]; see our discussion following [1, (4.8)]. Quasi-
Newton methods may still satisfy AM.4 in practice, though we are not aware if this
can be ensured theoretically. We remark that if the inequality in AM.4 holds for suf-
ficiently large k, it also holds for all k ≥ 0. The condition AM.4 is trivially satisfied
with C = 0 when we set Bk = H(xk) for all k ≥ 0.

Some preliminary lemmas are to follow. Firstly, let us show that when the above
assumptions hold, σk cannot become unbounded, irrespectively of how the step sk

123

Adaptive cubic regularisation methods 311

is computed as long as (2.6) holds. Thus the result below applies to the basic ARC
framework and to ARC(S).

Lemma 5.1 [1, Lemma 5.2] Let AF.3, AF.6 and AM.4 hold. Then

σk ≤ max
(
σ0,

3
2 γ2(C + L)

) def= L0, for all k ≥ 0. (5.4)

In view of the global complexity analysis to follow, we would like to obtain a tighter
bound on the model decrease in ARC(S) than in (3.3). For that, we use the bound (4.4)
and a lower bound on sk to be deduced in the next lemma.

Lemma 5.2 Let AF.3–AF.4, AF.6, AM.4 and TC.s hold. Then sk satisfies

‖sk‖ ≥ κg
√‖gk+1‖ for all successful iterations k, (5.5)

where κg is the positive constant

κg
def=

√
1 − κθ

1
2 L + C + L0 + κθκH

(5.6)

and κθ is defined in (4.7) and L0, in (5.4).

Proof The conditions of Lemma 5.1 are satisfied, and so the bound (5.4) on σk holds.
The proof of (5.5) follows similarly to that of [1, Lemma 4.9] , by letting σmax = L0
and L∗ = L , and recalling that we are now in a non-asymptotic regime. (The lat-
ter Lemma was employed in [1] to prove that ARC(S) is Q-quadratically convergent
asymptotically.) For convenience, however, and since the bound (5.5) is crucial for
the complexity analysis to follow, we give a complete proof of the lemma here.

Let k ∈ S, and so gk+1 = g(xk + sk). Then

‖gk+1‖ ≤ ‖g(xk + sk) − ∇smk(sk)‖ + ‖∇smk(sk)‖
≤ ‖g(xk + sk) − ∇smk(sk)‖ + θk‖gk‖, (5.7)

where we used TC.s to derive the last inequality. We also have from differentiating
mk ,

∇smk(sk) = gk + Bksk + σk‖sk‖sk,

and from Taylor’s theorem that

‖g(xk + sk) − ∇smk(sk)‖ ≤
∥∥∥∥∥∥

1∫
0

[H(xk + τ sk) − Bk]skdτ

∥∥∥∥∥∥ + σk‖sk‖2. (5.8)

From the triangle inequality and AF.4, we obtain

‖gk‖ ≤ ‖gk+1‖ + ‖gk+1 − gk‖ ≤ ‖gk+1‖ + κH‖sk‖. (5.9)

123

312 C. Cartis et al.

Substituting (5.9) and (5.8) into (5.7), we deduce

(1 − θk)‖gk+1‖ ≤
∥∥∥∥∥∥

1∫
0

[H(xk + τ sk) − Bk]skdτ

∥∥∥∥∥∥ + θkκH‖sk‖ + σk‖sk‖2. (5.10)

It follows from the definition of θk in (4.7) that θk ≤ κθ‖sk‖ and θk ≤ κθ , and (5.10)
becomes

(1 − κθ)‖gk+1‖ ≤
∥∥∥∥∥∥

1∫
0

[H(xk + τ sk) − Bk]skdτ

∥∥∥∥∥∥ + (κθκH + σk)‖sk‖2. (5.11)

The triangle inequality, AM.4 and AF.6 provide

∥∥∥∥∥∥
1∫

0

[H(xk + τ sk) − Bk]skdτ

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

1∫
0

[H(xk + τ sk) − H(xk)]dτ

∥∥∥∥∥∥ · ‖sk‖

+‖(H(xk) − Bk)sk‖,

≤
1∫

0

‖H(xk + τ sk) − H(xk)‖dτ · ‖sk‖ + C‖sk‖2,

≤ (
1
2 L + C

) ‖sk‖2. (5.12)

It now follows from (5.11) and from the bound (5.4) in Lemma 5.1 that

(1 − κθ)‖gk+1‖ ≤ (
1
2 L + C + κθκH + L0

) ‖sk‖2, (5.13)

which together with (5.6) provides (5.5). ��
In the next sections, ARC(S) is shown to satisfy better complexity bounds than

the basic ARC framework. In particular, the overall iteration complexity bound for
ARC(S) is O(ε−3/2) for first-order optimality within ε, and O(ε−3), for approximate
second-order conditions in a subspace containing sk . As in [11], we also require f to
have a globally Lipschitz continuous Hessian along the path of the iterates. We allow
more freedom in the cubic model, however, since Bk does not have to be the exact
Hessian, as long as it satisfies AM.4; also, sk is not required to be a global minimizer
of mk over R

n .

5.1 A worst-case bound for approximate first-order optimality

We are now ready to give an improved complexity bound for the ARC(S) algorithm.

123

Adaptive cubic regularisation methods 313

Corollary 5.3 Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold, and { f (xk)} be bounded
below by flow. Let σk be bounded below as in (2.11), and let ε > 0. Then the total
number of successful iterations with

min (‖gk‖, ‖gk+1‖) > ε (5.14)

that occur when applying the ARC(S) algorithm is at most

L̃s
1

def=
⌈
κs

Sε−3/2
⌉
, (5.15)

where

κs
S

def= (f (x0) − flow)/(η1αS), αS
def= (σminκ

3
g)/6 (5.16)

and κg is defined in (5.6). Assuming that (5.14) holds at k = 0, the ARC(S) algorithm
takes at most L̃s

1 + 1 successful iterations or equivalently, gradient evaluations, to
generate a (first) iterate, say l1, with ‖gl1+1‖ ≤ ε.

Furthermore, when ε ≤ 1, we have

l1 ≤
⌈
κSε−3/2

⌉
def= L̃1, (5.17)

and so the ARC(S) algorithm takes at most L̃1 (successful and unsuccessful) iterations,
and function evaluations, to generate ‖gl1+1‖ ≤ ε, where

κS
def= (1 + κu

S)(2 + κs
S) and κu

S
def= log(L0/σmin)/ log γ1, (5.18)

with L0 defined in (5.4) and κs
S, in (5.16).

Proof Let

Sε
g

def= {k ∈ S : min (‖gk‖, ‖gk+1‖) > ε}, (5.19)

and let |Sε
g | denote its cardinality. It follows from (4.4), (2.11), (5.5) and (5.19) that

f (xk) − mk(sk) ≥ αSε3/2, for all k ∈ Sε
g , (5.20)

where αS is defined in (5.16). Letting Fk = min (‖gk‖, ‖gk+1‖) ,Sε
F = So = Sε

g and

p = 3/2 in Theorem 2.2, we deduce that |Sε
g | ≤ L̃s

1, with L̃s
1 defined in (5.15). This

proves the first part of the Corollary and, assuming that (5.14) holds with k = 0, it
also implies the bound

|Sl+| ≤ L̃s
1, (5.21)

where Sl+ is (2.9) with j = l+ and l+ is the first iterate such that (5.14) does not hold
at l+ + 1. Thus ‖gk‖ > ε, for all k = 0, . . . , (l+ + 1) and ‖gl++2‖ ≤ ε. Recalling the

123

314 C. Cartis et al.

definition of l1 in the statement of the Corollary, it follows that Sl1\{l1} = Sl+ , where
Sl1 is (2.9) with j = l1. From (5.21), we now have

|Sl1 | ≤ L̃s
1 + 1. (5.22)

A bound on the number of unsuccessful iterations up to l1 follows from (5.22) and
from (2.14) in Theorem 2.1 with j = l1 and σ = L0, where L0 is provided by (5.4)
in Lemma 5.1. Thus we have

|Ul1 | ≤
⌈
(2 + L̃s

1)κ
u
S

⌉
, (5.23)

where Ul1 is (2.9) with j = l1 and κu
S is defined in (5.18). Since l1 = |Sl1 | + |Ul1 |,

the upper bound (5.17) is the sum of (5.22) and (5.23), where we also employ the
expression (5.15) of L̃s

1. ��
Note that we may replace the cubic term σk‖s‖3/3 in mk(s) by σk‖s‖α/α, for

some α > 2. Let us further assume that then, we also replace AM.4 by the condition
‖(H(xk) − Bk)sk‖ ≤ C‖sk‖α−1, and AF.6 by (α − 2)−Hölder continuity of H(x)

along the path of the iterates, i. e., there exists CH > 0 such that

‖H(x) − H(xk)‖ ≤ CH‖x − xk‖α−2, for all x ∈ [xk, xk + sk] and k ≥ 0.

In these conditions and using similar arguments as for α = 3, one can show that

lα ≤ ⌈
καε−α/(α−1)

⌉
,

where lα is a (first) iteration such that ‖glα+1‖ ≤ ε, ε ∈ (0, 1) and κα > 0 is a constant
independent of ε. Thus, when α ∈ (2, 3), the resulting variants of the ARC algorithm
have better worst-case iteration complexity than the steepest descent method under
weaker assumptions on H(x) and Bk than Lipchitz continuity and AM.4, respectively.
When α > 3, the complexity of the ARC α-variants is better than the O(ε−3/2) of the
ARC algorithm, but the result applies only to quadratic functions.

5.2 A complexity bound for achieving approximate second-order
optimality in a subspace

The next corollary addresses the complexity of achieving approximate nonnegative
curvature in the Hessian approximation Bk along sk and in a subspace. Note that the
approach in Sect. 2.1 and Sect. 3, when we require at least as much model decrease
as given by the Cauchy point, is not expected to provide second-order optimality of
the iterates asymptotically as it is, essentially, steepest descent method. When in the
ARC(S) algorithm the step sk is computed by globally minimizing the model over sub-
spaces (that may even equal R

n asymptotically), second-order criticality of the iterates
is achieved in the limit, at least in these subspaces, as shown in [1, Theorem 5.4] (pro-
vided AF.6 and AM.4 hold). We now analyse the global complexity of reaching within

123

Adaptive cubic regularisation methods 315

ε of second-order criticality with respect to the approximate Hessian in the subspaces
of minimization.

Corollary 5.4 Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold. Let { f (xk)} be bounded
below by flow and σk , as in (2.11). Let sk in ARC(S) be the global minimizer of mk(s)
over a subspace Lk that is generated by the columns of an orthogonal matrix Qk

and let λmin(Q�
k Bk Qk) denote the leftmost eigenvalue of Q�

k Bk Qk. Then, given any
ε > 0, the total number of successful iterations with negative curvature

− λmin(Q�
k Bk Qk) > ε (5.24)

that occur when applying the ARC(S) algorithm is at most

Ls
2

def=
⌈
κcurvε

−3
⌉
, (5.25)

where

κcurv
def= (f (x0) − flow)/(η1αcurv) and αcurv

def= σmin/(6L3
0), (5.26)

with σmin and L0 defined in (2.11) and (5.4), respectively. Assuming that (5.24) holds at
k = 0, the ARC(S) algorithm takes at most Ls

2 successful iterations or equivalently, gra-
dient evaluations, to generate a (first) iterate, say l2, with −λmin(Q�

l2+1 Bl2+1 Ql2+1) ≤
ε. Furthermore, when ε ≤ 1, we have

l2 ≤
⌈
κ t

curvε
−3

⌉
def= L2, (5.27)

and so the ARC(S) algorithm takes at most L2 (successful and unsuccessful) itera-
tions, and function evaluations, to generate −λmin(Q�

l2+1 Bl2+1 Ql2+1) ≤ ε, where

κ t
curv

def= (1 + κu
S)κcurv + κu

S and κu
S is defined in (5.18).

Proof Lemma 4.1 implies that the matrix Q�
k Bk Qk +σk‖sk‖I is positive semidefinite

and thus,

λmin(Q�
k Bk Qk) + σk‖sk‖ ≥ 0, for k ≥ 0,

which further gives

σk‖sk‖ ≥ |λmin(Q�
k Bk Qk)|, for any k ≥ 0 such that − λmin(Q�

k Bk Qk) > ε,

(5.28)

since the latter inequality implies λmin(Q�
k Bk Qk) < 0. It follows from (4.4), (5.4)

and (5.28) that

f (xk) − mk(sk) ≥ αcurvε
3, for all k ≥ 0 with − λmin(Q�

k Bk Qk) > ε, (5.29)

123

316 C. Cartis et al.

where αcurv is defined in (5.26). Define Sε
λ

def= {k ∈ S : −λmin(Q�
k Bk Qk) > ε} and

|Sε
λ|, its cardinality. Letting Fk = |λmin(Q�

k Bk Qk)|,So = Sε
F = Sε

λ and p = 3 in
Theorem 2.2 provides the bound

|Sε
λ| ≤ Ls

2, where Ls
2 is defined in (5.25). (5.30)

Assuming that (5.24) holds at k = 0, and recalling that l2 is the first iteration such
that (5.24) does not hold at l2 + 1 and that Sl2 is (2.9) with j = l2, we have Sl2 ⊆ Sε

λ .
Thus (5.30) implies

|Sl2 | ≤ Ls
2. (5.31)

A bound on the number of unsuccessful iterations up to l2 can be obtained in the same
way as in the proof of Corollary 5.3, since Theorem 2.1 does not depend on the choice
of optimality measure Fk . Thus we deduce, also from (5.31),

|Ul2 | ≤ ⌈
(1 + |Sl2 |)κu

S

⌉ ≤ ⌈
(1 + Ls

2)κ
u
S

⌉
, (5.32)

where Ul2 is given in (2.9) with j = l2 and κu
S , in (5.18). Since l2 = |Sl2 | + |Ul2 |, the

bound (5.27) readily follows from ε ≤ 1, (5.31) and (5.32). ��

Note that the complexity bounds in Corollary 5.4 also give a bound on the number
of the iterations at which negative curvature occurs along the step sk by considering
Lk as the subspace generated by the normalized sk .

Assuming sk in ARC(S) minimizes mk globally over the subspace generated by the
columns of the orthogonal matrix Qk for k ≥ 0, let us now briefly remark on the
complexity of driving the leftmost negative eigenvalue of Q�

k H(xk)Qk—as opposed
to Q�

k Bk Qk—below a given tolerance, i. e.,

− λmin(Q�
k H(xk)Qk) ≤ ε. (5.33)

In the conditions of Corollary 5.4, let us further assume that

‖Bk − H(xk)‖ ≤ ε2, for all k ≥ k1 where k1 is such that ‖gk1‖ ≤ ε1, (5.34)

for some positive parameters ε1 and ε2, with ε2
√

n < ε. Then Corollary 5.3 gives an
upper bound on the (first) iteration k1 with ‖gk‖ ≤ ε1, and we are left with having
to estimate k ≥ k1 until (5.33) is achieved. A useful property concerning H(xk) and
its approximation Bk is needed for the latter. Given any matrix Qk with orthogonal
columns, [5, Corollary 8.1.6] provides the first inequality below

|λmin(Q�
k H(xk)Qk) − λmin(Q�

k Bk Qk)| ≤ ‖Q�
k [H(xk) − Bk]Qk‖

≤ √
n‖H(xk) − Bk‖, k ≥ 0, (5.35)

123

Adaptive cubic regularisation methods 317

while the second inequality above employs ‖Q�
k ‖ ≤ √

n and ‖Qk‖ = 1. Now (5.34)
and (5.35) give

|λmin(Q�
k Hk Qk) − λmin(Q�

k Bk Qk)| ≤ ε2
√

n, k ≥ k1, (5.36)

and thus, (5.33) is satisfied when

− λmin(Q�
k Bk Qk) ≤ ε − ε2

√
n

def= ε3. (5.37)

Now Corollary 5.4 applies and gives us an upper bound on the number of iterations k
such that (5.37) is achieved, which is O(ε−3

3).
If we make the choice Bk = H(xk) and Qk is full-dimensional for all k ≥ 0, then

the above argument or the second part of Corollary 5.4 imply that (5.33) is achieved
for k at most O(ε−3), which recovers the result obtained by Nesterov and Polyak [11,
p. 185] for their Algorithm 3.3.

Corollary 5.4 implies lim infk∈S,k→∞ λmin(QT
k Bk Qk) ≥ 0, provided its condi-

tions hold. The global convergence result to approximate critical points [1, Theorem
5.4] is more general as it does not employ TC.s; also, conditions are given for the
above limit to hold when Bk is replaced by H(xk).

5.3 A complexity bound for achieving approximate first- and second-order
optimality

Finally, in order to estimate the complexity of generating an iterate that is both approx-
imately first- and second-order critical, let us combine the results in Corollaries 5.3
and 5.4.

Corollary 5.5 Let AF.3–AF.4, AF.6, AM.1 and AM.4 hold, and { f (xk)} be bounded
below by flow. Let σk be bounded below as in (2.11), and sk in ARC(S) be the global
minimizer of mk(s) over a subspace Lk that is generated by the columns of an orthog-
onal matrix Qk. Given any ε ∈ (0, 1), the ARC(S) algorithm generates l3 ≥ 0 with

max
(
‖gl3+1‖,−λmin(Q�

l3+1 Bl3+1 Ql3+1)
)

≤ ε (5.38)

in at most �κs
fsε

−3� successful iterations, or equivalently, gradient evaluations, where

κs
fs

def= κs
S + κcurv + 1, (5.39)

and κs
S and κcurv are defined in (5.16) and (5.26), respectively. Furthermore, for the

total number of iterations l3, or equivalently, for the function evaluations required, we

have l3 ≤ ⌈
κfsε

−3
⌉

, where κfs
def= (1 + κu

S)κs
fs + κu

S and κu
S is defined in (5.18).

Proof The conditions of Corollaries 5.3 and 5.4 are satisfied. Thus the sum of the
bounds (5.15) and (5.30), i. e.,

�κs
Sε−3/2 + κcurvε

−3�, (5.40)

123

318 C. Cartis et al.

gives an upper bound on all the possible successful iterations that may occur either
with

min(‖gk‖), ‖gk+1‖) > ε

or with

−λmin(Q�
k Bk Qk) > ε.

As the first of these criticality measures involves both iterations k and k + 1, the latest
such a successful iteration is given by (5.39). The bound on l3 follows from Theorem
2.1, as in the proof of Corollary 5.3. ��

The above result shows that the better bound (5.17) for approximate first-order
optimality is obliterated by (5.27) for approximate second-order optimality (in the
minimization subspaces) when seeking accuracy in both these optimality conditions.

Counting zero gradient values. Recall the discussion in the last paragraphs of
Sect. 2.1 and Sect. 4 regarding the case when there exists k ≥ 0 such that gk = 0.
Note that in the conditions of Corollary 5.4, (4.8) implies that sk �= 0 and (2.6) holds.
Furthermore, (5.29) remains satisfied even when gk = 0, since our derivation of (5.29)
in the proof of Corollary 5.4 does not depend on the value of the gradient. Similarly,
Corollary 5.5 also continues to hold in this case.

6 Conclusions

In this paper, we investigated the global iteration complexity of a general adaptive
cubic regularisation framework, and a second-order variant, for unconstrained opti-
mization, both first introduced and analysed in the companion paper [1]. The generality
of the former framework allows a worst-case complexity bound that is of the same
order as for the steepest descent method. Its second-order variant, however, has bet-
ter first-order complexity and allows second-order criticality complexity bounds, that
match the order of similar bounds proved by Nesterov and Polyak [11] for their Algo-
rithm 3.3. Our approach is more general as it allows approximate model minimization
to be employed, as well as approximate Hessians.

Similarly to [10,11], further attention needs to be devoted to analysing the global
iteration complexity of ARC and its variants for particular problem classes, such as
when f is convex or strongly convex.

Together with Part I [1], the ARC framework, and in particular, its second-order
variants, have been shown to have good global and local convergence, as well as com-
plexity, and to perform better than a basic trust-region approach on small-scale test
problems from CUTEr.

Acknowledgments The authors would like to thank the editor and the referees for their useful suggestions
that have greatly improved the manuscript.

123

Adaptive cubic regularisation methods 319

References

1. Cartis, C., Gould, N.I.M., Toint, Ph.L.: Adaptive cubic regularisation methods for unconstrained
optimization. Part I: motivation, convergence and numerical results. Math. Program. doi:10.1007/
s10107-009-0286-5 (online) (2009)

2. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM, Philadelphia (2000)
3. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-

Newton methods. Math. Comput. 28(126), 549–560 (1974)
4. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equa-

tions. Prentice-Hall, Englewood Cliffs, New Jersey, USA (1983). Reprinted as Classics in Applied
Mathematics 16, SIAM, Philadelphia, USA (1996)

5. Golub, G.H., Van Loan, C.F.: Matrix Computations. The John Hopkins University Press, Baltimore
(1996)

6. Gratton, S., Mouffe, M., Toint, Ph.L., Weber-Mendonça, M.: A recursive trust-region method in infinity
norm for bound-constrained nonlinear optimization. IMA J. Numer. Anal. 28(4), 827–861 (2008)

7. Gratton, S., Sartenaer, A., Toint, Ph.L.: Recursive trust-region methods for multiscale nonlinear opti-
mization. SIAM J. Optim. 19(1), 414–444 (2008)

8. Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding
cubic terms. Technical Report NA/12 (1981), Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, United Kingdom (1981)

9. Nesterov, Yu.: Introductory Lectures on Convex Optimization. Kluwer, Dordrecht, The Netherlands
(2004)

10. Nesterov, Yu.: Accelerating the cubic regularization of Newton’s method on convex problems. Math.
Program. 112(1), 159–181 (2008)

11. Nesterov, Yu., Polyak, B.T.: Cubic regularization of Newton’s method and its global performance.
Math. Program. 108(1), 177–205 (2006)

12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
13. Weiser, M., Deuflhard, P., Erdmann, B.: Affine conjugate adaptive Newton methods for nonlinear

elastomechanics. Optim. Methods Softw. 22(3), 413–431 (2007)

123

http://dx.doi.org/10.1007/s10107-009-0286-5
http://dx.doi.org/10.1007/s10107-009-0286-5

	Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity
	Abstract
	1 Introduction
	2 A cubic regularisation framework for unconstrained minimization
	2.1 The algorithmic framework
	2.2 Some iteration complexity properties

	3 An iteration complexity bound based on the Cauchy condition
	4 A second-order ARC algorithm
	5 Iteration complexity bounds for the ARC(S) algorithm
	5.1 A worst-case bound for approximate first-order optimality
	5.2 A complexity bound for achieving approximate second-order optimality in a subspace
	5.3 A complexity bound for achieving approximate first- and second-order optimality

	6 Conclusions
	Acknowledgments
	References

